
Using FeatureExtraction

Martijn J. Schuemie

2024-10-18

Contents

1 Introduction 1

2 Covariate settings 2

2.1 Using the default set of covariates . 2

2.2 Using prespecified analyses . 3

2.3 Creating a set of custom covariates . 3

2.4 Temporal covariates . 5

3 Constructing covariates for a cohort of interest 6

3.1 Configuring the connection to the server . 6

3.2 Creating a cohort of interest . 7

3.3 Creating per-person covariates for a cohort of interest . 8

3.3.1 Per-person covariate output format . 8

3.3.2 Saving the data to file . 9

3.3.3 Removing infrequent covariates, normalizing, and removing redundancy 9

3.4 Creating aggregated covariates for a cohort of interest . 10

3.4.1 Aggregated covariate output format . 10

3.5 Creating a table 1 . 11

4 Comparing two cohorts 12

1 Introduction

The FeatureExtraction package can be used to create features for a cohort, using the information stored
in the Common Data Model. A cohort is defined a set of persons who satisfy one or more inclusion criteria
for a duration of time. Features can for example be diagnoses observed prior to entering the cohort. Some
people might also refer to such features as ‘baseline characteristics’, or to features in general as ‘covariates’,
and we will use those terms interchangeably throughout this vignette.

This vignette describes how features can be constructed using the default covariate definitions embedded in
the package. Although these definitions allow quite some customization through predefined parameters, it

1

is possible that someone needs more customization. In this case, the reader is referred to the other vignettes
included in this package that deal with constructing completely custom covariates.

This vignette will first describe how to specify which features to construct. In many situations,
for example when using FeatureExtraction as part of another package such as CohortMethod or
PatientLevelPrediction, that is all one needs to know about the FeatureExtraction package, as the
actual calling of the package is done by the other package. However, it is also possible to use this package
on its own, for example to create a descriptive characterization of a cohort to include in a paper.

2 Covariate settings

Users can specify which covariates to construct in three ways:

1. Choose the default set of covariates.
2. Choose from a set of prespecified analyses.
3. Create a set of custom analyses.

An analysis is a process that creates one or more similar covariates. For example, one analysis might create
a binary covariate for each condition observed in the condition_occurrence table in the year prior to cohort
start, and another analysis might create a single covariate representing the Charlson comorbidity index.

Note that it is always possible to specify a set of concept IDs that can or can’t be used to construct features.
When choosing the default set (option 1) or the prespecified analysis (option 2) this can only be done across
all analysis. When creating custom analyses (option 3) this can be specified per analysis.

For advanced users: It is also possible to specify a set of covariate IDs that need to be constructed. A
covariate ID identifies a specific covariate, for example the Charlson comorbidity index, or the occurrence
of a specific condition concept in a specific time window. A covariate ID is therefore not to be confused
with a concept ID. The typical scenario where one might want to specify covariate IDs to construct is when
someone already constructed covariates in one population, found a subset of covariates to be of interest, and
would like to have only those covariates constructed in another population.

2.1 Using the default set of covariates

Using the default set of covariates is straightforward:

settings <- createDefaultCovariateSettings()

This will create a wide array of features, ranging from demographics, through conditions and drugs, to
several risk scores.

Note that we could specify a set of concepts that should not be used to create covariates, for example:

settings <- createDefaultCovariateSettings(
excludedCovariateConceptIds = 1124300,
addDescendantsToExclude = TRUE

)

This will create the default set of covariates, except those derived from concept 1124300 (the ingredient
diclofenac) and any of its descendants (ie. all drugs containing the ingredient diclofenac).

2

2.2 Using prespecified analyses

The function createCovariateSettings allow the user to choose from a large set of predefined covariates.
Type ?createCovariateSettings to get an overview of the available options. For example:

settings <- createCovariateSettings(
useDemographicsGender = TRUE,
useDemographicsAgeGroup = TRUE,
useConditionOccurrenceAnyTimePrior = TRUE

)

This will create binary covariates for gender, age (in 5 year age groups), and each concept observed in the
condition_occurrence table any time prior to (and including) the cohort start date.
Many of the prespecified analyses refer to a short, medium, or long term time window. By default, these
windows are defined as:

• Long term: 365 days prior up to and including the cohort start date.
• Medium term: 180 days prior up to and including the cohort start date.
• Short term: 30 days prior up to and including the cohort start date.

However, the user can change these values. For example:

settings <- createCovariateSettings(
useConditionEraLongTerm = TRUE,
useConditionEraShortTerm = TRUE,
useDrugEraLongTerm = TRUE,
useDrugEraShortTerm = TRUE,
longTermStartDays = -180,
shortTermStartDays = -14,
endDays = -1

)

This redefines the long term window as 180 days prior up to (but not including) the cohort start date, and
redefines the short term window as 14 days prior up to (but not including) the cohort start date.
Again, we can also specify which concept IDs should or should not be used to construct covariates:

settings <- createCovariateSettings(
useConditionEraLongTerm = TRUE,
useConditionEraShortTerm = TRUE,
useDrugEraLongTerm = TRUE,
useDrugEraShortTerm = TRUE,
longTermStartDays = -180,
shortTermStartDays = -14,
endDays = -1,
excludedCovariateConceptIds = 1124300,
addDescendantsToExclude = TRUE

)

2.3 Creating a set of custom covariates

This option should only be used by advanced users. It requires one to understand that at the implementa-
tion level, an analysis is a combination of a piece of highly parameterized SQL together with a specification

3

of the parameter values. The best way to understand the available options is to take a prespecified analysis
as starting point, and convert it to a detailed setting object:

settings <- createCovariateSettings(useConditionEraLongTerm = TRUE)
settings2 <- convertPrespecSettingsToDetailedSettings(settings)
settings2$analyses[[1]]

$analysisId
[1] 202
##
$sqlFileName
[1] "DomainConcept.sql"
##
$parameters
$parameters$analysisId
[1] 202
##
$parameters$analysisName
[1] "ConditionEraLongTerm"
##
$parameters$startDay
[1] -365
##
$parameters$endDay
[1] 0
##
$parameters$subType
[1] "all"
##
$parameters$domainId
[1] "Condition"
##
$parameters$domainTable
[1] "condition_era"
##
$parameters$domainConceptId
[1] "condition_concept_id"
##
$parameters$domainStartDate
[1] "condition_era_start_date"
##
$parameters$domainEndDate
[1] "condition_era_end_date"
##
$parameters$description
[1] "One covariate per condition in the condition_era table overlapping with any part of the long term window."
##
##
$includedCovariateConceptIds
list()
##
$includedCovariateIds
list()
##

4

$addDescendantsToInclude
[1] FALSE
##
$excludedCovariateConceptIds
list()
##
$addDescendantsToExclude
[1] FALSE

One can create a detailed analysis settings object from scratch, and use it to create a detailed settings object:

analysisDetails <- createAnalysisDetails(
analysisId = 1,
sqlFileName = "DemographicsGender.sql",
parameters = list(

analysisId = 1,
analysisName = "Gender",
domainId = "Demographics"

),
includedCovariateConceptIds = c(),
addDescendantsToInclude = FALSE,
excludedCovariateConceptIds = c(),
addDescendantsToExclude = FALSE,
includedCovariateIds = c()

)

settings <- createDetailedCovariateSettings(list(analysisDetails))

2.4 Temporal covariates

Ordinarily, covariates are created for just a few time windows of interest, for example the short, medium, and
long term windows described earlier. However, sometimes a more fine-grained temporal resolution is required,
for example creating covariates for each day separately, in the 365 days prior to cohort start. We will refer
to this type of covariates as temporal covariates. Temporal covariates share the same covariate ID across
the time windows, and use a separate time ID to distinguish between time windows. There currently aren’t
many applications that are able to handle temporal covariates. For example, the CohortMethod package will
break when provided with temporal covariates. However, there are some machine learning algorithms in the
PatientLevelPrediction package that require temporal covariates.

Again, we can just choose to use the default settings:

settings <- createDefaultTemporalCovariateSettings()

Or, we can choose from a set of prespecified temporal covariates:

settings <- createTemporalCovariateSettings(
useConditionOccurrence = TRUE,
useMeasurementValue = TRUE

)

In this case we’ve chosen to create binary covariates for each concept in the condition_occurrence table,
and continuous covariates for each measurement - unit combination in the measurement table in the CDM.

5

By default, temporal covariates are created for each day separately in the 365 days before (but not including)
the cohort start date. Different time windows can also be specified, for example creating 7 day intervals
instead:

settings <- createTemporalCovariateSettings(
useConditionOccurrence = TRUE,
useMeasurementValue = TRUE,
temporalStartDays = seq(-364, -7, by = 7),
temporalEndDays = seq(-358, -1, by = 7)

)

Each time window includes the specified start and end day.

Similar to ordinary covariates, advanced users can also define custom analyses:

analysisDetails <- createAnalysisDetails(
analysisId = 1,
sqlFileName = "MeasurementValue.sql",
parameters = list(

analysisId = 1,
analysisName = "MeasurementValue",
domainId = "Measurement"

),
includedCovariateConceptIds = c(),
addDescendantsToInclude = FALSE,
excludedCovariateConceptIds = c(),
addDescendantsToExclude = FALSE,
includedCovariateIds = c()

)

settings <- createDetailedTemporalCovariateSettings(list(analysisDetails))

3 Constructing covariates for a cohort of interest

Here we will walk through an example, creating covariates for two cohorts of interest: new users of diclofenac
and new users of celecoxib.

3.1 Configuring the connection to the server

We need to tell R how to connect to the server where the data are. CohortMethod uses the
DatabaseConnector package, which provides the createConnectionDetails function. Type ?createConnectionDetails
for the specific settings required for the various database management systems (DBMS). For example, one
might connect to a PostgreSQL database using this code:

connectionDetails <- createConnectionDetails(
dbms = "postgresql",
server = "localhost/ohdsi",
user = "joe",
password = "supersecret"

)

6

cdmDatabaseSchema <- "my_cdm_data"
resultsDatabaseSchema <- "my_results"

The last two lines define the cdmDatabaseSchema and resultSchema variables. We’ll use these later to tell
R where the data in CDM format live, and where we want to write intermediate and result tables. Note
that for Microsoft SQL Server, database schemas need to specify both the database and the schema, so for
example cdmDatabaseSchema <- "my_cdm_data.dbo".

3.2 Creating a cohort of interest

FeatureExtraction requires the cohorts to be instantiated in the cohort table in the Common Data Model, or
in a table that has the same structure as the cohort table. We could create cohorts using a cohort definition
tool, but here we’ll just use some simple SQL to find the first drug era per person. Note that because we will
be creating covariates based on data before cohort start, we are requiring 365 days of observation before the
first exposure. FeatureExtraction will not check if a subject is observed during the specified time windows.

/***********************************
File cohortsOfInterest.sql
***********************************/

IF OBJECT_ID('@resultsDatabaseSchema.cohorts_of_interest', 'U') IS NOT NULL
DROP TABLE @resultsDatabaseSchema.cohorts_of_interest;

SELECT first_use.*
INTO @resultsDatabaseSchema.cohorts_of_interest
FROM (
SELECT drug_concept_id AS cohort_definition_id,
MIN(drug_era_start_date) AS cohort_start_date,
MIN(drug_era_end_date) AS cohort_end_date,
person_id
FROM @cdmDatabaseSchema.drug_era
WHERE drug_concept_id = 1118084-- celecoxib
OR drug_concept_id = 1124300 --diclofenac
GROUP BY drug_concept_id,
person_id
) first_use
INNER JOIN @cdmDatabaseSchema.observation_period
ON first_use.person_id = observation_period.person_id
AND cohort_start_date >= observation_period_start_date
AND cohort_end_date <= observation_period_end_date
WHERE DATEDIFF(DAY, observation_period_start_date, cohort_start_date) >= 365;

This is parameterized SQL which can be used by the SqlRender package. We use parameterized SQL so
we do not have to pre-specify the names of the CDM and result schemas. That way, if we want to run the
SQL on a different schema, we only need to change the parameter values; we do not have to change the SQL
code. By also making use of translation functionality in SqlRender, we can make sure the SQL code can be
run in many different environments.

library(SqlRender)
sql <- readSql("cohortsOfInterest.sql")
sql <- render(sql,

cdmDatabaseSchema = cdmDatabaseSchema,

7

resultsDatabaseSchema = resultsDatabaseSchema
)
sql <- translate(sql, targetDialect = connectionDetails$dbms)

connection <- connect(connectionDetails)
executeSql(connection, sql)

In this code, we first read the SQL from the file into memory. In the next line, we replace the two parameter
names with the actual values. We then translate the SQL into the dialect appropriate for the DBMS we
already specified in the connectionDetails. Next, we connect to the server, and submit the rendered and
translated SQL.
If all went well, we now have a table with the cohorts of interest. We can see how many events per type:

sql <- paste(
"SELECT cohort_definition_id, COUNT(*) AS count",
"FROM @resultsDatabaseSchema.cohorts_of_interest",
"GROUP BY cohort_definition_id"

)
sql <- render(sql, resultsDatabaseSchema = resultsDatabaseSchema)
sql <- translate(sql, targetDialect = connectionDetails$dbms)

querySql(connection, sql)

cohort_concept_id count
1 1124300 240761
2 1118084 47293

3.3 Creating per-person covariates for a cohort of interest

We can create per-person covariates for one of the cohorts of interest, for example using the default settings:

covariateSettings <- createDefaultCovariateSettings()

covariateData <- getDbCovariateData(
connectionDetails = connectionDetails,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortDatabaseSchema = resultsDatabaseSchema,
cohortTable = "cohorts_of_interest",
cohortIds = c(1118084),
rowIdField = "subject_id",
covariateSettings = covariateSettings

)
summary(covariateData)

3.3.1 Per-person covariate output format

The main component of the covariateData object is covariates:

covariateData$covariates

The columns are defined as follows:

8

• rowId uniquely identifies a cohort entry. When calling getDbCovariateData we defined rowIdField
= "subject_id", so in this case the rowId is the same as the subject_id in the cohort table. In cases
where a single subject can appear in the cohort more than once it is up to the user to create a field in
the cohort table that uniquely identifies each cohort entry, and use that as rowIdField.

• covariateId identifies the covariate, and definitions of covariates can be found in the cohortData$covariateRef
object.

• covariateValue field provides the value.

3.3.2 Saving the data to file

Creating covariates can take considerable computing time, and it is probably a good idea to save them for
future sessions. Because covariateData objects use Andromeda, we cannot use R’s regular save function.
Instead, we’ll have to use the saveCovariateData() function:

saveCovariateData(covariateData, "covariates")

We can use the loadCovariateData() function to load the data in a future session.

3.3.3 Removing infrequent covariates, normalizing, and removing redundancy

One reason for generating per-person covariates may be to use them in some form of machine learning. In
that case it may be necessary to tidy the data before proceeding. The tidyCovariateData function can
perform three tasks:

1. Remove infrequent covariates: Oftentimes the majority of features have non-zero values for only
one or a few subjects in the cohort. These features are unlikely to end up in any fitted model, but
can increase the computational burden, so removing them could increase performance. By default,
covariates appearing in less than .1% of the subjects are removed.

2. Normalization: Scales all covariate values to a value between 0 and 1 (by dividing by the max value
for each covariate).

3. Removal of redundancy: If every person in the cohort has the same value for a covariate (e.g. a
cohort that is restricted to women will have the same gender covariate value for all) that covariate
is redundant. Redundant covariates may pose a problem for some machine learning algorithms, for
example causing a simple regression to no longer have a single solution. Similarly, groups of covariates
may be redundant (e.g. every person will belong to at least one age group, making one group redundant
as it can be defined as the absence of the other groups).

tidyCovariates <- tidyCovariateData(covariateData,
minFraction = 0.001,
normalize = TRUE,
removeRedundancy = TRUE

)

If we want to know how many infrequent covariates were removed we can query the metaData object:

deletedCovariateIds <- attr(tidyCovariates, "metaData")$deletedInfrequentCovariateIds
head(deletedCovariateIds)

Similarly, if we want to know which redundant covariates were removed we can also query the metaData
object:

9

deletedCovariateIds <- attr(tidyCovariates, "metaData")$deletedRedundantCovariateIds
head(deletedCovariateIds)

If we want to know what these numbers mean, we can use the covariateRef object that is part of any
covariateData object. Remember that the covariate data is stored in an Andromeda object, so we should
use the proper syntax for querying these objects (see the Andromeda package documentation):

library(Andromeda)
covariateData$covariateRef %>%

filter(covariateId %in% deletedCovariateIds,) %>%
collect()

3.4 Creating aggregated covariates for a cohort of interest

Often we do not need to have per-person covariates, but instead we are interested in aggregated statistics
instead. For example, we may not need to know which persons are male, but would like to know what
proportion of the cohort is male. We can aggregate per-person covariates:

covariateData2 <- aggregateCovariates(covariateData)

Of course, if all we wanted was aggregated statistics it would have been more efficient to aggregate them
during creation:

covariateSettings <- createDefaultCovariateSettings()

covariateData2 <- getDbCovariateData(
connectionDetails = connectionDetails,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortDatabaseSchema = resultsDatabaseSchema,
cohortTable = "cohorts_of_interest",
cohortIds = c(1118084),
covariateSettings = covariateSettings,
aggregated = TRUE

)
summary(covariateData2)

Note that we specified aggregated = TRUE. Also, we are no longer required to define a rowIdField because
we will no longer receive per-person data.

3.4.1 Aggregated covariate output format

The two main components of the aggregated covariateData object are covariates and covariatesContinuous,
for binary and continuous covariates respectively:

covariateData2$covariates

covariateData2$covariatesContinuous

The columns of covariates are defined as follows:

10

• covariateId identifies the covariate, and definitions of covariates can be found in the covariateData$covariateRef
object.

• sumValue is the sum of the covariate values. Because these are binary features, this is equivalent to
the number of people that have the covariate with a value of 1.

• averageValue is the average covariate value. Because these are binary features, this is equivalent to
the proportion of people that have the covariate with a value of 1.

The columns of covariatesContinuous are defined as follows:

• covariateId identifies the covariate, and definitions of covariates can be found in the cohortData$covariateRef
object.

• countValue is the number of people that have a value (for continuous variables).
• minValue, maxValue, averageValue, standardDeviation, medianValue, p10Value, p25Value,

p75Value, and p90Value all inform on the distribution of covariate values. Note that for some
covariates (such as the Charlson comorbidity index) a value of 0 is interpreted as the value 0, while for
other covariates (Such as blood pressure) 0 is interpreted as missing, and the distribution statistics are
only computed over non-missing values. To learn which continuous covariates fall into which category
one can consult the missingMeansZero field in the covariateData$analysisRef object.

3.5 Creating a table 1

One task supported by the FeatureExtraction package is creating a table of overall study population
characteristics that can be include in a paper. Since this is typically the first table in a paper we refer to
such a table as ‘table 1’. A default table 1 is available in the FeatureExtraction package:

result <- createTable1(
covariateData1 = covariateData2

)
print(result, row.names = FALSE, right = FALSE)

Where applicable, these characteristics are drawn from analyses pertaining the ‘long-term’ windows, so
concepts observed in the 365 days before up to and included the cohort start date.

The createTable1 function requires a simple specification of what variables to include in the table. The de-
fault specifications included in the package can be reviewed by calling the getDefaultTable1Specifications
function. The specification reference analysis IDs and covariate IDs, and in the default specification these
IDs refer to those in the default covariate settings. It is possible to create custom table 1 specifications and
use those instead.

Here we based table 1 on a covariateData object containing all default covariates, even though only a small
fraction of covariates are used in the table. If we only want to extract those covariates needed for the table,
we can use the createTable1CovariateSettings function:

covariateSettings <- createTable1CovariateSettings()

covariateData2b <- getDbCovariateData(
connectionDetails = connectionDetails,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortDatabaseSchema = resultsDatabaseSchema,
cohortTable = "cohorts_of_interest",
cohortIds = c(1118084),
covariateSettings = covariateSettings,
aggregated = TRUE

11

)
summary(covariateData2b)

4 Comparing two cohorts

Another task supported by the FeatureExtraction package is comparing two cohorts of interest. Suppose
we want to compare two cohorts only on the variables included in the default table 1:

settings <- createTable1CovariateSettings(
excludedCovariateConceptIds = c(1118084, 1124300),
addDescendantsToExclude = TRUE

)

covCelecoxib <- getDbCovariateData(
connectionDetails = connectionDetails,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortDatabaseSchema = resultsDatabaseSchema,
cohortTable = "cohorts_of_interest",
cohortIds = c(1118084),
covariateSettings = settings,
aggregated = TRUE

)

covDiclofenac <- getDbCovariateData(
connectionDetails = connectionDetails,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortDatabaseSchema = resultsDatabaseSchema,
cohortTable = "cohorts_of_interest",
cohortIds = c(1124300),
covariateSettings = settings,
aggregated = TRUE

)
std <- computeStandardizedDifference(covCelecoxib, covDiclofenac)

In this example we have chosen to exclude any covariates derived from the two concepts that were used
to define the two cohorts: celecoxib (1118084), and diclofenac (1124300). We compute the standardized
difference between the remaining covariates.

head(std)

The stdDiff column contains the standardized difference. By default the data is ranked in descending order
of the absolute value of the standardized difference, showing the covariate with the largest difference first.

We can also show the comparison as a standard table 1:

result <- createTable1(
covariateData1 = covCelecoxib,
covariateData2 = covDiclofenac,
output = "two columns"

)
print(result, row.names = FALSE, right = FALSE)

12

	Introduction
	Covariate settings
	Using the default set of covariates
	Using prespecified analyses
	Creating a set of custom covariates
	Temporal covariates

	Constructing covariates for a cohort of interest
	Configuring the connection to the server
	Creating a cohort of interest
	Creating per-person covariates for a cohort of interest
	Per-person covariate output format
	Saving the data to file
	Removing infrequent covariates, normalizing, and removing redundancy

	Creating aggregated covariates for a cohort of interest
	Aggregated covariate output format

	Creating a table 1

	Comparing two cohorts

