
Package ‘FieldSimR’
August 30, 2024

Title Simulation of Plot Errors and Phenotypes in Plant Breeding Field
Trials

Version 1.4.0

Date 2024-08-30

Maintainer Christian Werner <werner.christian@proton.me>

Description Simulates plot data in multi-environment field trials with one or more traits.
Its core function generates plot errors that capture spatial trend, random error (noise),
and extraneous variation, which are combined at a user-defined ratio.
Phenotypes can be generated by combining the plot errors with simulated genetic val-
ues that capture
genotype-by-
environment (GxE) interaction using wrapper functions for the R package `AlphaSimR`.

License GPL (>= 3)

URL https://github.com/crWerner/fieldsimr,

https://crwerner.github.io/fieldsimr/

Encoding UTF-8

Language en-GB

LazyData true

Imports ggplot2, interp, lattice, Matrix, mbend, cluster, grDevices,
RColorBrewer

Suggests AlphaSimR, knitr, rmarkdown

RoxygenNote 7.3.2

Depends R (>= 3.5.0)

VignetteBuilder knitr

BugReports https://github.com/crWerner/fieldsimr/issues

NeedsCompilation no

Author Christian Werner [aut, cre] (<https://orcid.org/0000-0001-9400-5061>),
Daniel Tolhurst [aut] (<https://orcid.org/0000-0002-4787-080X>),
Jon Bancic [ctb]

Repository CRAN

Date/Publication 2024-08-30 15:00:06 UTC

1

https://github.com/crWerner/fieldsimr
https://crwerner.github.io/fieldsimr/
https://github.com/crWerner/fieldsimr/issues
https://orcid.org/0000-0001-9400-5061
https://orcid.org/0000-0002-4787-080X

2 compsym_asr_input

Contents
compsym_asr_input . 2
compsym_asr_output . 5
error_df_bivar . 7
field_trial_error . 8
group_cor_mat . 11
gv_df_unstr . 12
make_phenotypes . 13
multi_asr_input . 14
multi_asr_output . 16
plot_effects . 18
plot_hist . 19
plot_matrix . 20
qq_plot . 21
rand_cor_mat . 22
rand_diag_mat . 23
sample_met . 24
sample_variogram . 25
skew_diag_mat . 26
struc_cor_mat . 27
theoretical_variogram . 28
unstr_asr_input . 29
unstr_asr_output . 33

Index 36

compsym_asr_input Simulate genetic values based on a compound symmetry model for
GxE interaction - ‘AlphaSimR‘ input parameters

Description

Creates a list of input parameters for ‘AlphaSimR‘ to simulate genetic values in multiple environ-
ments for one or more traits based on a compound symmetry model for genotype-by-environment
(GxE) interaction.
This function utilises the ability of ‘AlphaSimR‘ to simulate correlated traits. The wrapper func-
tion compsym_asr_input() is used to specify the input parameters required in ‘AlphaSimR‘. After
simulating the genetic values, the wrapper function compsym_asr_output can be used to generate a
data frame with output values.

Usage

compsym_asr_input(
ntraits = 1,
nenvs = 2,
mean = 0,
var = 1,

https://CRAN.R-project.org/package=AlphaSimR

compsym_asr_input 3

prop.main = 0.5,
corA = NULL,
meanDD = NULL,
varDD = NULL,
prop.mainDD = NULL,
corDD = NULL,
relAA = NULL,
prop.mainAA = NULL,
corAA = NULL

)

Arguments

ntraits Number of traits to be simulated.
nenvs Number of environments to be simulated (minimum of two).
mean A vector of mean genetic values for each environment-within-trait combination.

If only one value is specified, all combinations will be assigned the same mean.
var A vector of genetic variances for each trait.

Note: When useVarA = TRUE is specified in ‘AlphaSimR‘ (default), the values
in var represent the additive genetic variances, otherwise they represent the total
(additive + non-additive) genetic variances.

prop.main A vector defining the proportion of main effect variance for each trait. If only
one value is specified, all traits will be assigned the same proportion.
Note: 0 < prop.main < 1.

corA A matrix of additive genetic correlations between traits. By default, a diagonal
matrix is constructed.

meanDD A vector of mean dominance degrees for each environment-within-trait combi-
nation (similar to mean). If only one value is specified, all combinations will
be assigned the same mean. By default, meanDD = NULL and dominance is not
simulated.

varDD A vector of dominance degree variances for each trait.
prop.mainDD A vector defining the proportion of dominance degree main effect variance for

each trait (similar to prop.main). If only one value is specified, all traits will be
assigned the same proportion.
Note: 0 < prop.mainDD < 1.

corDD A matrix of dominance degree correlations between traits (similar to corA). If
not specified and dominance is simulated, a diagonal matrix is constructed.

relAA A vector defining the relative magnitude of additive-by-additive (epistatic) vari-
ance to additive genetic variance for each trait, that is in a diploid organism with
allele frequency of 0.5. If only one value is specified, all traits will be assigned
the same relative magnitude.

prop.mainAA A vector defining the proportion of epistatic main effect variance for each trait
(similar to prop.main). If only one value is specified, all traits will be assigned
the same proportion.
Note: 0 < prop.mainAA < 1.

corAA A matrix of epistatic correlations between traits (similar to corA). If not speci-
fied and epistasis is simulated, a diagonal matrix is constructed.

4 compsym_asr_input

Details

The compound symmetry model assumes the same genetic variance for each environment and the
same genetic covariance between each pair of environments. New functionality is being imple-
mented which relaxes the former assumption (also see unstr_asr_output).

Note: ‘AlphaSimR‘ can simulate different biological effects (see: SimParam).

• For additive traits use addTraitA().

• For additive + dominance traits use addTraitAD().

• For additive + epistatic traits use addTraitAE().

• For additive + dominance + epistatic traits use addTraitADE().

Check the useVarA argument of these functions when simulating non-additive traits.

Value

A list with input parameters for ‘AlphaSimR‘, which are used to simulate correlated genetic values
based on a compound symmetry model for GxE interaction.

Examples

Simulate genetic values with 'AlphaSimR' for two additive + dominance traits
in two environments based on a compound symmetry model.

1. Define the genetic architecture of the simulated traits.
Mean genetic values and mean dominance degrees.
mean <- c(4.9, 5.4, 235.2, 228.5) # Trait 1 x 2 environments, Trait 2 x 2 environments
meanDD <- c(0.4, 0.4, 0.1, 0.1) # Trait 1 and 2, same value for both environments

Additive genetic variances and dominance degree variances.
var <- c(0.08, 13) # Different values for Traits 1 and 2
varDD <- 0.2 # Same value for Traits 1 and 2

Proportion of additive and dominance degree main effect variances.
prop.main <- c(0.4, 0.6) # Different values for Traits 1 and 2
prop.mainDD <- 0.4 # Same value for Traits 1 and 2

Additive and dominance degree correlations between the two simulated traits.
corA <- matrix(c(

1.0, 0.5,
0.5, 1.0

), ncol = 2)
corDD <- diag(2) # Assuming independence

input_asr <- compsym_asr_input(
ntraits = 2,
nenvs = 2,
mean = mean,
var = var,
prop.main = prop.main,
corA = corA,

https://gaynorr.github.io/AlphaSimR/reference/SimParam.html

compsym_asr_output 5

meanDD = meanDD,
varDD = varDD,
prop.mainDD = prop.mainDD,
corDD = corDD

)

compsym_asr_output Simulate genetic values based on a compound symmetry model for
GxE interaction - Simulation with ‘AlphaSimR‘

Description

Creates a data frame of simulated genetic values in multiple environments for one or more traits
based on a compound symmetry model for genotype-by-environment (GxE) interaction. The wrap-
per function compsym_asr_output() requires an ‘AlphaSimR‘ population object generated with
compsym_asr_input.

Usage

compsym_asr_output(pop, ntraits = 1, nenvs, nreps = 1, return.effects = FALSE)

Arguments

pop An ‘AlphaSimR‘ population object (Pop-class or HybridPop-class) generated
with compsym_asr_input.

ntraits Number of traits specified in compsym_asr_input.

nenvs Number of environments specified in compsym_asr_input.

nreps A vector defining the number of replicates in each environment. If only one
value is specified, all environments will be assigned the same number.

return.effects When TRUE (default is FALSE), a list is returned with additional entries contain-
ing the genotype main effects and GxE interaction effects for each trait.

Value

A data frame with columns ’env’, genotype ’id’, and ’rep’, followed by the simulated genetic values
for each trait. When return.effects = TRUE, a list is returned with additional entries containing
the genotype main effects and GxE interaction effects for each trait.

Examples

Simulate genetic values with 'AlphaSimR' for two additive + dominance traits
in two environments based on a compound symmetry model.

1. Define the genetic architecture of the simulated traits.
Mean genetic values and mean dominance degrees.
mean <- c(4.9, 5.4, 235.2, 228.5) # Trait 1 x 2 environments, Trait 2 x 2 environments

https://CRAN.R-project.org/package=AlphaSimR
https://CRAN.R-project.org/package=AlphaSimR
https://gaynorr.github.io/AlphaSimR/reference/Pop-class.html
https://gaynorr.github.io/AlphaSimR/reference/HybridPop-class.html

6 compsym_asr_output

meanDD <- c(0.4, 0.4, 0.1, 0.1) # Trait 1 and 2, same value for both environments

Additive genetic variances and dominance degree variances.
var <- c(0.08, 13) # Different values for Traits 1 and 2
varDD <- 0.2 # Same value for Traits 1 and 2

Proportion of additive and dominance degree main effect variances.
prop.main <- c(0.4, 0.6) # Different values for Traits 1 and 2
prop.mainDD <- 0.4 # Same value for Traits 1 and 2

Additive and dominance degree correlations between the two simulated traits.
corA <- matrix(c(

1.0, 0.5,
0.5, 1.0

), ncol = 2)
corDD <- diag(2) # Assuming independence

input_asr <- compsym_asr_input(
ntraits = 2,
nenvs = 2,
mean = mean,
var = var,
prop.main = prop.main,
corA = corA,
meanDD = meanDD,
varDD = varDD,
prop.mainDD = prop.mainDD,
corDD = corDD

)

2. Use input_asr to simulate genetic values with 'AlphaSimR' based on a
compound symmetry model.

library("AlphaSimR")
FOUNDERPOP <- quickHaplo(

nInd = 10,
nChr = 1,
segSites = 20

)

SP <- SimParam$new(FOUNDERPOP)

SP$addTraitAD(
nQtlPerChr = 20,
mean = input_asr$mean,
var = input_asr$var,
corA = input_asr$corA,
meanDD = input_asr$meanDD,
varDD = input_asr$varDD,
corDD = input_asr$corDD,

error_df_bivar 7

useVarA = TRUE
)

By default, the variances in 'var' represent additive genetic variances.
When useVarA = FALSE, the values represent total genetic variances.

pop <- newPop(FOUNDERPOP)

3. Create a data frame with simulated genetic values for the two traits in
the two environments, with two replicates of each genotype.

gv_ls <- compsym_asr_output(
pop = pop,
ntraits = 2,
nenvs = 2,
nreps = 2,
return.effects = TRUE

)

error_df_bivar Plot errors - Example data frame

Description

An example data frame with simulated plot errors for two traits in three environments. Environ-
ments 1 and 2 comprise two blocks, while Environment 3 comprises three blocks. The blocks are
aligned in the column direction (side-by-side) and comprise 5 columns and 20 rows. The data
frame was generated using the function field_trial_error with bivariate interpolation. The simula-
tion is demonstrated in the vignette Simulation of plot errors and phenotypes in a plant breeding
field trial.

Usage

error_df_bivar

Format

A data frame with 700 rows and 6 columns:

env Environment number

block Block number

col Column number

row Row number

e.Trait1 Simulated plot errors for Trait 1

e.Trait2 Simulated plot errors for Trait 2

https://crwerner.github.io/fieldsimr/articles/spatial_error_demo.html
https://crwerner.github.io/fieldsimr/articles/spatial_error_demo.html

8 field_trial_error

field_trial_error Simulate plot errors in plant breeding field trials

Description

Creates a data frame of simulated plot errors in multi-environment field trials for one or more traits.
The plot errors capture spatial trend, random error (noise), and extraneous variation. Spatial trend
is simulated using bivariate interpolation or a separable first-order autoregressive (AR1) process.
Random error is simulated using an independent process. Extraneous variation is simulated using
random or zig-zag ordering between neighbouring columns and/or rows. The three error compo-
nents are combined at a user-defined ratio.
Correlated plot errors can be simulated between traits by setting different correlation structures for
each error component. A separable structure is assumed between traits and plots within environ-
ments, but different error variances can be specified for each environment-within-trait combination.

Usage

field_trial_error(
ntraits = 1,
nenvs = 1,
nblocks = 2,
block.dir = "col",
ncols = 10,
nrows = 20,
varR = 1,
ScorR = NULL,
RcorR = NULL,
EcorR = NULL,
spatial.model = "Bivariate",
complexity = NULL,
plot.length = 8,
plot.width = 2,
col.cor = 0.5,
row.cor = 0.7,
prop.spatial = 0.5,
ext.ord = "random",
ext.dir = "row",
prop.ext = 0,
return.effects = FALSE

)

Arguments

ntraits Number of traits to be simulated.

nenvs Number of environments to be simulated.

nblocks A vector defining the number of blocks in each environment. If only one value
is specified, all environments will be assigned the same number.

field_trial_error 9

block.dir A vector defining the block direction in each environment. Use ’col’ for side-by-
side (default), ’row’ for above-and-below, or NA if only one block is simulated.
If only one value is specified, all environments will be assigned the same block
direction.

ncols A vector defining the number of columns in each environment. If only one value
is specified, all environments will be assigned the same number.

nrows A vector defining the number of rows in each environment. If only one value is
specified, all environments will be assigned the same number.

varR A vector of error variances for each environment-within-trait combination. If
only one value is specified, all combinations will be assigned the same error
variance.

ScorR A matrix of spatial error correlations between traits. If not specified and spatial
trend is simulated, a diagonal matrix is constructed.

RcorR A matrix of random error correlations between traits. If not specified and ran-
dom error is simulated, a diagonal matrix is constructed.

EcorR A matrix of extraneous error correlations between traits. If not specified and
extraneous variation is simulated, a diagonal matrix is constructed.
Note: the same correlation between traits is used for the column and row errors.
Currently only implemented when ext.ord = "random".

spatial.model A character string defining the model used to simulate spatial trend. Use ’Bi-
variate’ for bivariate interpolation (default) or ’AR1’ for a separable first-order
autoregressive process. Bivariate interpolation is implemented with the interp
function of the R package ‘interp‘.

complexity A vector defining the complexity of the simulated spatial trend in each envi-
ronment when spatial.model = "Bivariate". If only one value is specified,
all environments will be assigned the same complexity. If not specified and
spatial.model = "Bivariate", the complexity is set to half the maximum
number of columns and rows in each environment.

plot.length A vector of plot lengths for each environment (column direction). If only one
value is specified, all environments will be assigned the same plot length. Only
required when spatial.model = "Bivariate".

plot.width A vector of plot widths for each environment (row direction). If only one value is
specified, all environments will be assigned the same plot width. Only required
when spatial.model = "Bivariate".

col.cor A vector of column autocorrelations for each environment. If only one value is
specified, all environments will be assigned the same column autocorrelation.
Only required when spatial.model = "AR1".

row.cor A vector of row autocorrelations for each environment. If only one value is
specified, all environments will be assigned the same row autocorrelation. Only
required when spatial.model = "AR1".

prop.spatial A vector defining the proportion of spatial trend for each environment-within-
trait combination. If only one value is specified, all combinations will be as-
signed the proportion.

https://CRAN.R-project.org/package=interp

10 field_trial_error

ext.ord A character string defining the method used to simulate extraneous variation.
Use ’random’ (default) for random variation between neighbouring columns
and/or rows or ’zig-zag’ for alternating positive and negative values.

ext.dir A vector defining the direction of extraneous variation for each environment.
Use ’row’ (default) for row variation, ’col’ for column variation, ’both’ for vari-
ation in both directions, or NA if no extraneous variation is simulated. When
ext.dir = "both", half the variance is assigned to the columns and half is as-
signed to the rows. If only one value is specified, all environments will be as-
signed the same direction.

prop.ext A vector defining the proportion of extraneous variation for each environment-
within-trait combination. If only one value is specified, all combinations will be
assigned the same proportion.

return.effects When TRUE (default is FALSE), a list is returned with additional entries contain-
ing the spatial, random, and extraneous error terms for each trait.

Value

A data frame with columns ’env’, ’block’, ’col’, and ’row’, followed by the simulated plot errors
for each trait. When return.effects = TRUE, a list is returned with additional entries containing
the spatial, random, and extraneous error terms for each trait.

Examples

Simulate plot errors for two traits in two environments using an AR1 model
for spatial variation.

Error variances for the four environment-within-trait combinations.
varR <- c(0.2, 0.4, 10, 15) # Trait 1 x 2 environments, Trait 2 x 2 environments

Spatial error correlations between the two simulated traits.
ScorR <- matrix(c(

1.0, 0.2,
0.2, 1.0

), ncol = 2)

error_ls <- field_trial_error(
ntraits = 2,
nenvs = 2,
nblocks = 2,
block.dir = "row",
ncols = 10,
nrows = 20,
varR = varR,
ScorR = ScorR,
spatial.model = "AR1",
col.cor = 0.5,
row.cor = 0.7,
prop.spatial = 0.4,
ext.ord = "zig-zag",
ext.dir = "row",

group_cor_mat 11

prop.ext = 0.2,
return.effects = TRUE

)

group_cor_mat Simulate a reduced rank correlation matrix with multiple groups

Description

Creates a symmetric correlation matrix with user-defined structure, rank and groupings.

Usage

group_cor_mat(
n = c(5, 5),
within.cor = 0.5,
between.cor = 0.2,
range = NULL,
rank = 4,
skew = 0,
pos.def = FALSE,
small.positive = NULL,
return.groups = FALSE

)

Arguments

n A vector defining the size of each group.
within.cor A vector defining the baseline correlation within each group. If only one value

is supplied, all groups will be assigned the same correlation.
Note: -1 < within.cor < 1.

between.cor A scalar defining the baseline correlation between groups.
Note: between.cor <= within.cor.

range A scalar defining the range of correlations around the baseline. By default,
range = 1 - max(within.cor) which ensures the matrix is positive semi-definite.
Note: max(within.cor) + range <= 1.

rank A scalar defining the rank of the correlation matrix.
skew A scalar defining the skewness imposed on the correlations. Note: -1 < skew <

1.
pos.def When TRUE (default is FALSE), the function bend of the R package ‘mbend‘ is

used to bend a non-positive (semi)-definite matrix to be positive (semi)-definite.
small.positive Argument passed to bend when pos.def = TRUE (default is 1e-8). Eigenvalues

smaller than small.positive are replaced by this.
Note: 0 < small.positive < 0.1.

return.groups When TRUE (default is FALSE), a list is returned with additional entries contain-
ing the members of each group.

https://cran.r-project.org/package=mbend

12 gv_df_unstr

Value

A symmetric correlation matrix with defined rank and groupings. When pos.def = TRUE, the cor-
relation matrix is guaranteed to be positive (semi)-definite. When return.groups = TRUE, a list is
returned with additional entries containing the group members.

Examples

Simulate and visualise a correlation matrix with 2 groups containing 5 and 10 members,
correlations of 0.4 within groups and 0 between groups and rank equal to 4
cor_ls <- group_cor_mat(

n = c(5, 10),
within.cor = 0.4,
between.cor = 0,
rank = 4,
return.groups = TRUE

)

plot_matrix(
mat = cor_ls$cor.mat,
group.df = cor_ls$group.df,
order = TRUE

)

gv_df_unstr Genetic values - Example data frame

Description

An example data frame with simulated genetic values of 100 genotypes for two traits in three
environments. Environments 1 and 2 comprise two replicates of each genotype, while Environ-
ment 3 comprises three replicates. The data frame was generated using the wrapper functions
unstr_asr_input and unstr_asr_output, which simulate correlated genetic values with ‘AlphaSimR‘.
The simulation is demonstrated in the vignette Simulation of genetic values based on an unstruc-
tured model for GxE interaction.

Usage

gv_df_unstr

Format

A data frame with 700 rows and 5 columns:

env Environment number
id Genotype identifier
rep Replicate number
gv.Trait1 Simulated genetic values for Trait 1
gv.Trait2 Simulated genetic values for Trait 2

https://CRAN.R-project.org/package=AlphaSimR
https://crwerner.github.io/fieldsimr/articles/unstructured_GxE_demo.html
https://crwerner.github.io/fieldsimr/articles/unstructured_GxE_demo.html

make_phenotypes 13

make_phenotypes Generate phenotypes - Combine genetic values and plot errors

Description

Creates a data frame of phenotypes by combining genetic values with plot errors generated with the
function field_trial_error. Requires genetic values generated with the functions compsym_asr_output
or unstr_asr_output, or any data frame matching the description below.

Usage

make_phenotypes(
gv.df,
error.df,
design.df = NULL,
randomise = TRUE,
return.effects = FALSE

)

Arguments

gv.df A data frame of genetic values. Must contain the columns ’env’, genotype ’id’,
’rep’, and the genetic values for each trait.

error.df A data frame of plot errors. Must contain the columns ’env’, ’block’, ’col’,
’row’, and the plot errors for each trait.

design.df A optional data frame of frequencies for generating incomplete block designs.
Must contain the columns ’env’, ’id’, and ’nreps’ indicating the number of repli-
cates per individual for each environment.

randomise When TRUE (default), genotypes are randomly allocated to plots according to a
randomized complete (or incomplete) block design.
Note: Other experimental designs are being implemented and should be gener-
ated externally.

return.effects When TRUE (default is FALSE), a list is returned with additional entries contain-
ing the genetic values and plot errors for each trait.

Value

A data frame with columns ’env’, ’block’, ’column’, ’row’, genotype ’id’, ’rep’, and the phenotypes
for each trait. When return.effects = TRUE, a list is returned with additional entries containing
the genetic values and plot errors for each trait.

Examples

Generate and visualise phenotypes by combining the genetic values and plot errors provided
in the two example data frames gv_df_unstr and error_df_bivar.

14 multi_asr_input

pheno_ls <- make_phenotypes(
gv.df = gv_df_unstr,
error.df = error_df_bivar,
randomise = TRUE,
return.effects = TRUE

)

plot_effects(
df = pheno_ls$pheno.df[pheno_ls$pheno.df$env == 1,],
effect = "y.Trait1",
labels = TRUE,

)

multi_asr_input Simulate genetic values based on a multiplicative model for GxE in-
teraction - ‘AlphaSimR‘ input parameters

Description

Creates a list of input parameters for ‘AlphaSimR‘ to simulate genetic values in multiple envi-
ronments for one or more traits based on a (reduced rank) multiplicative model for genotype-by-
environment (GxE) interaction.
This function utilises the ability of ‘AlphaSimR‘ to simulate correlated traits. The wrapper func-
tion multi_asr_input() is used to specify the input parameters required in ‘AlphaSimR‘. After
simulating the genetic values, the wrapper function multi_asr_output can be used to generate a data
frame with output values.

Usage

multi_asr_input(
ntraits = 1,
nenvs = 2,
mean = 0,
var = 1,
corA = NULL,
nterms = NULL

)

Arguments

ntraits Number of traits to be simulated.

nenvs Number of environments to be simulated (minimum of two).

mean A vector of mean genetic values for each trait or each environment-within-trait
combination. If only one value is specified, all combinations will be assigned
the same mean.

https://CRAN.R-project.org/package=AlphaSimR

multi_asr_input 15

var A vector of additive genetic variances for each trait or each environment-within-
trait combination. If only one value is specified, all combinations will be as-
signed the same variance.

corA A matrix of additive genetic correlations between environment-within-trait com-
binations. By default, a diagonal matrix is constructed.

nterms A scalar defining the number of multiplicative terms to be simulated. By default,
the number of terms is set to the number of environment-within-trait combina-
tions. Note: when nterms is less than the number of environment-within-trait
combinations, the values in mean will be approximated.

Details

Currently supports additive traits only, but other (non-additive) traits are being implemented.

Value

A list with input parameters for ‘AlphaSimR‘, which are used to simulate correlated genetic val-
ues based on a multiplicative model for GxE interaction. Covariates are also supplied for use in
multi_asr_output.

Examples

Simulate genetic values with 'AlphaSimR' for two additive traits in two
environments based on a multiplicative model with three terms.

1. Define the genetic architecture of the simulated traits.
Mean genetic values.
mean <- c(5, 240) # Trait 1, Trait 2

Additive genetic variances.
var <- c(0.086, 0.12, 15.1, 8.5) # Trait 1 x 2 environments, Trait 2 x 2 environments

Additive genetic correlations between the two simulated traits.
TcorA <- matrix(c(

1.0, 0.6,
0.6, 1.0

), ncol = 2)

Additive genetic correlations between the two simulated environments.
EcorA <- matrix(c(

1.0, 0.2,
0.2, 1.0

), ncol = 2)

Construct separable additive genetic correlation matrix.
corA <- kronecker(TcorA, EcorA)

input_asr <- multi_asr_input(
ntraits = 2,
nenvs = 2,
mean = mean,

16 multi_asr_output

var = var,
corA = corA,
nterms = 3

)

multi_asr_output Simulate genetic values based on a multiplicative model for GxE in-
teraction - Simulation with ‘AlphaSimR‘

Description

Creates a data frame of simulated genetic values in multiple environments for one or more traits
based on a (reduced rank) multiplicative model for genotype-by-environment (GxE) interaction.
This function requires an ‘AlphaSimR‘ population object generated with multi_asr_input.

Usage

multi_asr_output(
pop,
ntraits = 1,
nenvs,
nreps = 1,
cov.mat,
return.effects = FALSE

)

Arguments

pop An ‘AlphaSimR‘ population object (Pop-class or HybridPop-class) generated
with multi_asr_input.

ntraits Number of traits specified in multi_asr_input.

nenvs Number of environments specified in multi_asr_input.

nreps A vector defining the number of replicates in each environment. If only one
value is specified, all environments will be assigned the same number.

cov.mat A matrix of covariates that will be used to construct the genetic values, typically
generated with multi_asr_input.

return.effects When TRUE (default is FALSE), a list is returned with additional entries contain-
ing the genotype slopes for each multiplicative term.

Value

A data frame with columns ’env’, genotype ’id’, and ’rep’, followed by the simulated genetic values
for each trait. When return.effects = TRUE, a list is returned with additional entries containing
the genotype slopes for each multiplicative term.

https://CRAN.R-project.org/package=AlphaSimR
https://CRAN.R-project.org/package=AlphaSimR
https://gaynorr.github.io/AlphaSimR/reference/Pop-class.html
https://gaynorr.github.io/AlphaSimR/reference/HybridPop-class.html

multi_asr_output 17

Examples

Simulate genetic values with 'AlphaSimR' for two additive traits in two
environments based on a multiplicative model with three terms.

1. Define the genetic architecture of the simulated traits.
Mean genetic values.
mean <- c(5, 240) # Trait 1, Trait 2

Additive genetic variances.
var <- c(0.086, 0.12, 15.1, 8.5) # Trait 1 x 2 environments, Trait 2 x 2 environments

Additive genetic correlations between the two simulated traits.
TcorA <- matrix(c(

1.0, 0.6,
0.6, 1.0

), ncol = 2)

Additive genetic correlations between the two simulated environments.
EcorA <- matrix(c(

1.0, 0.2,
0.2, 1.0

), ncol = 2)

Construct separable additive genetic correlation matrix
corA <- kronecker(TcorA, EcorA)

input_asr <- multi_asr_input(
ntraits = 2,
nenvs = 2,
mean = mean,
var = var,
corA = corA,
nterms = 3

)

2. Use input_asr to simulate genetic values in 'AlphaSimR' based on a
multiplicative model with three terms.

library("AlphaSimR")
FOUNDERPOP <- quickHaplo(

nInd = 10,
nChr = 1,
segSites = 20

)

SP <- SimParam$new(FOUNDERPOP)

SP$addTraitA(
nQtlPerChr = 20,

18 plot_effects

mean = input_asr$mean,
var = input_asr$var,
corA = input_asr$corA

)

pop <- newPop(FOUNDERPOP)

3. Create a data frame with simulated genetic values for the two traits in the two
environments, with two replicates of each genotype.

The covariates are obtained from input_asr.

gv_ls <- multi_asr_output(
pop = pop,
ntraits = 2,
nenvs = 2,
nreps = 2,
cov.mat = input_asr$cov.mat,
return.effects = TRUE

)

plot_effects Graphics for plot effects

Description

Creates a graphical field array for a set of plot effects (e.g., phenotypes, genetic values, or plot
errors). Requires a data frame generated with the functions field_trial_error or make_phenotypes,
or any data frame matching the description below.

Usage

plot_effects(df, effect, blocks = TRUE, labels = TRUE)

Arguments

df A data frame with the columns ’col’, ’row’, and the effects to be plotted.

effect The name of the effects to be plotted.

blocks When TRUE (default), the field array is split into blocks. This requires an addi-
tional column ’block’ in the data frame.

labels When TRUE (default), column and row labels are displayed.

Value

A graphical field array with x- and y-axes displaying the column and row numbers, and colour
gradient ranging from red (low value) to green (high value).

plot_hist 19

Examples

Display the simulated plot errors in the example data frame 'error_df_bivar'
for Trait 1 in Environment 1.

error_df <- error_df_bivar[error_df_bivar$env == 1,]

plot_effects(
df = error_df,
effect = "e.Trait1",
labels = TRUE,

)

plot_hist Histogram of values

Description

Creates a histogram of user-defined values (e.g., effects, correlations, or covariances).

Usage

plot_hist(df, value = NULL, bins = 30, density = FALSE)

Arguments

df A data frame or vector with the values to be plotted.
value The name of the values to be plotted. Ignored when ’df’ is a vector.
bins Argument passed to ggplot2 (default is 30). Controls the number of bins in the

histogram.
density When TRUE (default is FALSE), a density curve is superimposed onto the his-

togram.

Value

A histogram with x- and y-axes displaying the values and their frequency, respectively. When
density = TRUE, a density curve is superimposed onto the histogram.

Examples

Histogram of the simulated plot errors in the example data frame 'error_df_bivar'
for Trait 1 in Environment 1.
error_df <- error_df_bivar[error_df_bivar$env == 1,]
plot_hist(

df = error_df,
value = "e.Trait1",
density = TRUE

)

20 plot_matrix

plot_matrix Graphics for matrices

Description

Creates a heatmap of a symmetric matrix (e.g., correlation or covariance matrix).

Usage

plot_matrix(mat, order = FALSE, group.df = NULL, labels = TRUE)

Arguments

mat A symmetric matrix.

order When TRUE (default is FALSE), the function agnes of the R package ‘cluster‘ is
used with default arguments to order the matrix based on a dendrogram.

group.df An optional data frame with columns containing the variable names followed by
the group numbers. When supplied, the heatmap is split into groups and then
ordered (when order = TRUE).

labels When TRUE (default), variable labels are displayed.

Value

A heatmap with x- and y-axes displaying the variable numbers, and colour gradient ranging from
blue (low value) to red (high value).

Examples

Display a random correlation matrix.

cor_mat <- rand_cor_mat(
n = 10,
min.cor = -1,
max.cor = 1

)

Define groups.
group_df <- data.frame(variable = 1:10, group = c(1, 1, 1, 1, 2, 2, 2, 3, 3, 4))

plot_matrix(
mat = cor_mat,
group.df = group_df,
order = TRUE,
labels = TRUE

)

https://cran.r-project.org/package=cluster

qq_plot 21

qq_plot Q-Q plot

Description

Creates a normal quantile-quantile (Q-Q) plot for a set of effects (e.g., phenotypes, genetic values,
or plot errors).

Usage

qq_plot(df, effect, labels = FALSE)

Arguments

df A data frame or vector with the effects to be plotted.

effect The name of the effects to be plotted. Ignored when ’df’ is a vector.

labels When TRUE (default is FALSE), column and row labels are displayed. This re-
quires additional columns ’col’ and ’row’ in the data frame.

Value

A Q-Q plot with x- and y-axes displaying the theoretical and sample quantiles of the effects, re-
spectively.

Examples

Q-Q plot of the simulated plot errors in the example data frame 'error_df_bivar'
for Trait 1 in Environment 1.

error_df <- error_df_bivar[error_df_bivar$env == 1,]

qq <- qq_plot(
df = error_df,
effect = "e.Trait1",
labels = TRUE

)

Q-Q plot
qq

Extract the data frame with the theoretical and sample quantiles of the
user-defined effects.
qq_df <- qq$data

22 rand_cor_mat

rand_cor_mat Simulate a random correlation matrix

Description

Creates a symmetric n x n correlation matrix with user-defined minimum and maximum correlations
based on a continuous uniform distribution.

Usage

rand_cor_mat(
n = 5,
min.cor = -1,
max.cor = 1,
pos.def = FALSE,
small.positive = NULL

)

Arguments

n A scalar defining the dimensions of the correlation matrix.

min.cor A scalar defining the minimum correlation.

max.cor A scalar defining the maximum correlation.
Note: -1 < min.cor < max.cor < 1.

pos.def When TRUE (default is FALSE), the function bend of the R package ‘mbend‘ is
used to bend a non-positive (semi)-definite matrix to be positive (semi)-definite.

small.positive Argument passed to bend when pos.def = TRUE (default is 1e-8). Eigenvalues
smaller than small.positive are replaced by this.
Note: 0 < small.positive < 0.1.

Value

A symmetric n x n correlation matrix. When pos.def = TRUE, the correlation matrix is guaranteed
to be positive (semi)-definite.

Examples

Simulate and visualise a random correlation matrix with 10 columns and rows.
cor_mat <- rand_cor_mat(

n = 10,
min.cor = -0.2,
max.cor = 0.8,
pos.def = TRUE

)

plot_matrix(
mat = cor_mat,

https://cran.r-project.org/package=mbend

rand_diag_mat 23

order = TRUE
)

rand_diag_mat Simulate a random diagonal variance matrix

Description

Creates a diagonal n x n variance matrix with user-defined minimum and maximum variances based
on a continuous uniform distribution.

Usage

rand_diag_mat(n = 5, min.var = 0, max.var = 1)

Arguments

n A scalar defining the dimensions of the variance matrix.

min.var A scalar defining the minimum variance.

max.var A scalar defining the maximum variance.
Note: 0 < min.var < max.var.

Value

A diagonal n x n variance matrix.

Examples

Simulate a random diagonal matrix with 10 columns and rows.
diag_mat <- rand_diag_mat(

n = 10,
min.var = 0,
max.var = 0.2

)

24 sample_met

sample_met Sample environments from a target population

Description

Creates a list of environments sampled from a population with user-defined sample size.

Usage

sample_met(
ntraits = 1,
nenvs = 1000,
nsamples = 10,
sample.size = 20,
replace = TRUE,
cov.mat = NULL

)

Arguments

ntraits A scalar defining the number of traits.

nenvs A scalar defining the number of environments in the target population.

nsamples A scalar defining the number of samples to be taken.

sample.size A vector defining the number of environments in each sample. When only one
value is specified, all samples will be assigned the same number.

replace When TRUE (default), samples are taken with replacement. Ignored when nsamples
= 1.

cov.mat An optional matrix of environmental covariates for one or more traits. When
supplied, the covariates are sampled and printed.

Value

A list with elements given by the sample of environments taken from the target population. When
cov.mat is supplied, additional entries are given containing the sampled environmental covariates
for each trait.

Examples

Sample environments from a target population of 1000, with each sample containing 20 environments.
cov_ls <- sample_met(

nenvs = 1000,
nsamples = 10,
sample.size = 20,
replace = TRUE

)

sample_variogram 25

sample_variogram Sample variogram

Description

Creates a sample variogram for a set of effects (e.g., plot errors).

Usage

sample_variogram(df, effect, min.np = 30)

Arguments

df A data frame with the columns ’col’, ’row’, and the effects to be plotted.

effect The name of the effects to be plotted.

min.np Minimum number of pairs for which semivariances are displayed (default is 30).

Value

A sample variogram with x- and y-axes displaying the row and column displacements, and the
z-axis displaying the average semivariances (variogram ordinates) for the effects.

Examples

Sample variogram of plot errors simulated using a separable first order
autoregressive (AR1) process.

error_df <- field_trial_error(
ntraits = 1,
nenvs = 1,
spatial.model = "AR1"

)

variogram <- sample_variogram(
df = error_df,
effect = "e.Trait1"

)

Sample variogram
variogram

Extract the data frame with the column and row displacements, and the
average semivariances.
variogram_df <- variogram$data

26 skew_diag_mat

skew_diag_mat Simulate a skewed diagonal variance matrix

Description

Creates a diagonal n x n variance matrix with user-defined skewness based on a gamma or inverse
gamma distribution.

Usage

skew_diag_mat(n = 5, shape = 1.5, scale = 1, inverse = FALSE, mean.var = NULL)

Arguments

n A scalar defining the dimensions of the variance matrix.

shape A scalar defining the shape of the distribution.

scale A scalar defining the scale of the distribution.

inverse When TRUE (default is FALSE), the variances are sampled from the inverse gamma
distribution instead of the gamma distribution.

mean.var An optional scalar defining the mean variance. . When supplied, the variances
are scaled to achieve the defined mean.

Value

A diagonal n x n variance matrix.

Examples

Simulate a random diagonal matrix with 10 columns and rows, and negatively skewed variances
scaled to a mean of 0.1.
diag_mat <- skew_diag_mat(

n = 10,
shape = 1.5,
scale = 1,
mean.var = 0.1

)

struc_cor_mat 27

struc_cor_mat Simulate a structured correlation matrix with reduced rank

Description

Creates a symmetric n x n correlation matrix with user-defined structure and rank.

Usage

struc_cor_mat(
n = 5,
base.cor = 0.5,
range = NULL,
rank = 3,
skew = 0,
base.mat = NULL,
pos.def = FALSE,
small.positive = NULL

)

Arguments

n A scalar defining the dimensions of the correlation matrix.

base.cor A scalar defining the baseline correlation.
Note: -1 < base.cor < 1.

range A scalar defining the range of correlations around the baseline. By default,
range = 1 - base.cor which ensures the matrix is positive semi-definite with
defined rank. Note: base.cor + range <= 1.

rank A scalar defining the rank of the correlation matrix.

skew A scalar defining the skewness imposed on the correlations. Note: -1 < skew <
1.

base.mat An optional n x n base correlation matrix. When supplied, base.cor and skew
are ignored and noise is simulated based on rank.

pos.def When TRUE (default is FALSE), the function bend of the R package ‘mbend‘ is
used to bend a non-positive (semi)-definite matrix to be positive (semi)-definite.

small.positive Argument passed to bend when pos.def = TRUE (default is 1e-8). Eigenvalues
smaller than small.positive are replaced by this.
Note: 0 < small.positive < 0.1.

Value

A symmetric n x n correlation matrix with defined rank. When pos.def = TRUE, the correlation
matrix is guaranteed to be positive (semi)-definite.

https://cran.r-project.org/package=mbend

28 theoretical_variogram

Examples

Simulate and visualise a correlation matrix with 10 columns and rows, rank equal to 4 and
negatively skewed correlations.
cor_mat <- struc_cor_mat(

n = 10,
base.cor = 0.3,
range = 0.7,
rank = 4,
skew = -0.5

)

plot_matrix(
mat = cor_mat,
order = TRUE

)

theoretical_variogram Theoretical variogram

Description

Creates a theoretical variogram for a separable first order autoregressive (AR1) process.

Usage

theoretical_variogram(
ncols = 10,
nrows = 20,
varR = 1,
col.cor = 0.5,
row.cor = 0.7,
prop.spatial = 1

)

Arguments

ncols A scalar defining the number of columns.
nrows A scalar defining the number of rows.
varR A scalar defining the error variance.
col.cor A scalar defining the column autocorrelation,
row.cor A scalar defining the row autocorrelation.
prop.spatial A scalar defining the proportion of spatial trend.

Value

A theoretical variogram with x- and y-axes displaying the row and column displacements, and the
z-axis displaying the semivariances (variogram ordinates) for a separable autoregressive process.

unstr_asr_input 29

Examples

Theoretical variogram for a field trial with 10 columns and 20 rows, based
on column and row autocorrelations of 0.5 and 0.7, and a proportion of
spatial trend of 0.5. The remaining proportion represents random error.

variogram <- theoretical_variogram(
ncols = 10,
nrows = 20,
varR = 1,
col.cor = 0.5,
row.cor = 0.7,
prop.spatial = 0.5

)

Theoretical variogram
variogram

Extract the data frame with the column and row displacements, and the
theoretical semivariances.
variogram_df <- variogram$data

unstr_asr_input Simulate genetic values based on an unstructured model for GxE in-
teraction - ‘AlphaSimR‘ input parameters

Description

Creates a list of input parameters for ‘AlphaSimR‘ to simulate genetic values in multiple environ-
ments for one or more traits based on an unstructured model for genotype-by-environment (GxE)
interaction.
This function utilises the ability of ‘AlphaSimR‘ to simulate correlated traits. The wrapper func-
tion unstr_asr_input() is used to specify the input parameters required in ‘AlphaSimR‘, and can
handle separable and non-separable structures between traits and environments (see below). After
simulating the genetic values, the wrapper function unstr_asr_output can be used to generate a data
frame with output values.

Usage

unstr_asr_input(
ntraits = 1,
nenvs = 2,
mean = 0,
var = 1,
Tvar = NULL,
Evar = NULL,
corA = NULL,
TcorA = NULL,

https://CRAN.R-project.org/package=AlphaSimR

30 unstr_asr_input

EcorA = NULL,
meanDD = NULL,
varDD = NULL,
TvarDD = NULL,
EvarDD = NULL,
corDD = NULL,
TcorDD = NULL,
EcorDD = NULL,
relAA = NULL,
TrelAA = NULL,
ErelAA = NULL,
corAA = NULL,
TcorAA = NULL,
EcorAA = NULL

)

Arguments

ntraits Number of traits to be simulated.

nenvs Number of environments to be simulated (minimum of two).

mean A vector of mean genetic values for each environment-within-trait combination.
If only one value is specified, all combinations will be assigned the same mean.

var A vector of genetic variances for each environment-within-trait combination. If
only one value is specified, all combinations will be assigned the same variance.
Alternatively, if a separable structure between traits and environments is de-
sired, Tvar and Evar can be specified.

Tvar A vector of genetic variances for each trait. Must be provided in combination
with Evar.
Alternatively, var can be specified.

Evar A vector of genetic variances for each environment. Must be provided in com-
bination with Tvar.
Alternatively, var can be specified.

corA A matrix of additive genetic correlations between environment-within-trait com-
binations. By default, a diagonal matrix is constructed.
Alternatively, TcorA and EcorA can be specified.

TcorA A matrix of additive genetic correlations between traits. Must be provided in
combination with EcorA.
Alternatively, corA can be specified.

EcorA A matrix of additive genetic correlations between environments. Must be pro-
vided in combination with TcorA.
Alternatively, corA can be specified.

meanDD A vector of mean dominance degrees for each environment-within-trait combi-
nation (similar to mean). If only one value is specified, all combinations will
be assigned the same mean. By default, meanDD = NULL and dominance is not
simulated.

unstr_asr_input 31

varDD A vector of dominance degree variances for each environment-within-trait com-
bination (similar to var). If only one value is specified, all combinations will be
assigned the same variance.
Alternatively, if a separable structure between traits and environments is de-
sired, TvarDD and EvarDD can be specified.

TvarDD A vector of dominance degree variances for each trait (similar to Tvar). Must
be provided in combination with EvarDD.
Alternatively, varDD can be specified.

EvarDD A vector of dominance degree variances for each environment (similar to Evar).
Must be provided in combination with TvarDD.
Alternatively, varDD can be specified.

corDD A matrix of dominance degree correlations between environment-within-trait
combinations (similar to corA). If not specified and dominance is simulated, a
diagonal matrix is constructed.
Alternatively, TcorDD and EcorDD can be specified.

TcorDD A matrix of dominance degree correlations between traits (similar to TcorA).
Must be provided in combination with EcorDD.
Alternatively, corDD can be specified.

EcorDD A matrix of dominance degree correlations between environments (similar to
EcorA). Must be provided in combination with TcorDD.
Alternatively, corDD can be specified.

relAA A vector defining the relative magnitude of additive-by-additive (epistatic) vari-
ance to additive genetic variance for each environment-within-trait combination,
that is in a diploid organism with allele frequency of 0.5. If only one value is
specified, all environment-within-trait combinations will be assigned the same
value. By default, relAA = NULL and epistasis is not simulated.
Alternatively, if a separable structure between traits and environments is de-
sired, TrelAA and ErelAA can be specified.

TrelAA A vector defining the relative magnitude of epistatic variance to additive genetic
variance for each trait. Must be provided in combination with ErelAA.
Alternatively, relAA can be specified.

ErelAA A vector defining the relative magnitude of epistatic variance to additive genetic
variance for each environment. Must be provided in combination with TrelAA.
Alternatively, relAA can be specified.

corAA A matrix of epistatic correlations between environment-within-trait combina-
tions (similar to corA). If not specified and epistasis is simulated, a diagonal
matrix is constructed.
Alternatively, TcorAA and EcorAA can be specified.

TcorAA A matrix of epistatic correlations between traits (similar to TcorA). Must be
provided in combination with EcorAA.
Alternatively, corAA can be specified.

EcorAA A matrix of epistatic correlations between environments (similar to EcorA).
Must be provided in combination with TcorAA.
Alternatively, corAA can be specified.

32 unstr_asr_input

Details

unstr_asr_input can handle separable and non-separable structures between traits and environ-
ments.

• For separable structures, provide (1) Tvar & Evar, and (2) TcorA & EcorA.

• For non-separable structures, provide (1) var, and (2) corA.

Note: ‘AlphaSimR‘ can simulate different biological effects (see: SimParam).

• For additive traits use addTraitA().

• For additive + dominance traits use addTraitAD().

• For additive + epistatic traits use addTraitAE().

• For additive + dominance + epistatic traits use addTraitADE().

Check the useVarA argument of these functions when simulating non-additive traits.

Value

A list with input parameters for ‘AlphaSimR‘, which are used to simulate correlated genetic values
based on an unstructured model for GxE interaction.

Examples

Simulate genetic values with 'AlphaSimR' for two additive + dominance traits
in two environments based on an unstructured model.

1. Define the genetic architecture of the simulated traits.
Mean genetic values and mean dominance degrees.
mean <- c(4.9, 5.4, 235.2, 228.5) # Trait 1 x 2 environments, Trait 2 x 2 environments
meanDD <- c(0.4, 0.4, 0.1, 0.1) # Trait 1 and 2, same value for both environments

Additive genetic variances and dominance degree variances.
var <- c(0.086, 0.12, 15.1, 8.5) # Trait 1 x 2 environments, Trait 2 x 2 environments
varDD <- 0.2 # Same value for all environment-within-trait combinations

Additive genetic correlations between the two simulated traits.
TcorA <- matrix(c(

1.0, 0.6,
0.6, 1.0

), ncol = 2)

Additive genetic correlations between the two simulated environments.
EcorA <- matrix(c(

1.0, 0.2,
0.2, 1.0

), ncol = 2)

Dominance degree correlations between the four environment-within-trait combinations.
corDD <- diag(4) # Assuming independence

https://gaynorr.github.io/AlphaSimR/reference/SimParam.html

unstr_asr_output 33

input_asr <- unstr_asr_input(
ntraits = 2,
nenvs = 2,
mean = mean,
var = var,
TcorA = TcorA,
EcorA = EcorA,
meanDD = meanDD,
varDD = varDD,
corDD = corDD

)

unstr_asr_output Simulate genetic values based on an unstructured model for GxE in-
teraction - Simulation with ‘AlphaSimR‘

Description

Creates a data frame of simulated genetic values in multiple environments for one or more traits
based on an unstructured model for genotype-by-environment (GxE) interaction. The wrapper func-
tion unstr_asr_output requires an ‘AlphaSimR‘ population object generated with unstr_asr_input.

Usage

unstr_asr_output(pop, ntraits = 1, nenvs, nreps = 1)

Arguments

pop An ‘AlphaSimR‘ population object (Pop-class or HybridPop-class) generated
with unstr_asr_input.

ntraits Number of simulated traits specified in unstr_asr_input.

nenvs Number of simulated environments specified in unstr_asr_input.

nreps A vector defining the number of replicates in each environment. If only one
value is specified, all environments will be assigned the same number.

Value

A data frame with columns ’env’, genotype ’id’, and ’rep’, followed by the simulated genetic values
for each trait.

Examples

Simulate genetic values with 'AlphaSimR' for two additive + dominance traits
in two environments based on an unstructured model.

1. Define the genetic architecture of the simulated traits.
Mean genetic values and mean dominance degrees.

https://CRAN.R-project.org/package=AlphaSimR
https://CRAN.R-project.org/package=AlphaSimR
https://gaynorr.github.io/AlphaSimR/reference/Pop-class.html
https://gaynorr.github.io/AlphaSimR/reference/HybridPop-class.html

34 unstr_asr_output

mean <- c(4.9, 5.4, 235.2, 228.5) # Trait 1 x 2 environments, Trait 2 x 2 environments
meanDD <- c(0.4, 0.4, 0.1, 0.1) # Trait 1 and 2, same value for both environments

Additive genetic variances and dominance degree variances.
var <- c(0.086, 0.12, 15.1, 8.5) # Trait 1 x 2 environments, Trait 2 x 2 environments
varDD <- 0.2 # Same value for all environment-within-trait combinations

Additive genetic correlations between the two simulated traits.
TcorA <- matrix(c(

1.0, 0.6,
0.6, 1.0

), ncol = 2)

Additive genetic correlations between the two simulated environments.
EcorA <- matrix(c(

1.0, 0.2,
0.2, 1.0

), ncol = 2)

Dominance degree correlations between the four environment-within-trait combinations.
corDD <- diag(4) # Assuming independence

input_asr <- unstr_asr_input(
ntraits = 2,
nenvs = 2,
mean = mean,
var = var,
TcorA = TcorA,
EcorA = EcorA,
meanDD = meanDD,
varDD = varDD,
corDD = corDD

)

2. Use input_asr to simulate genetic values with 'AlphaSimR' based on an
unstructured model.

library("AlphaSimR")
FOUNDERPOP <- quickHaplo(

nInd = 10,
nChr = 1,
segSites = 20

)

SP <- SimParam$new(FOUNDERPOP)

SP$addTraitAD(
nQtlPerChr = 20,
mean = input_asr$mean,
var = input_asr$var,

unstr_asr_output 35

corA = input_asr$corA,
meanDD = input_asr$meanDD,
varDD = input_asr$varDD,
corDD = input_asr$corDD,
useVarA = TRUE

)

By default, the variances in 'var' represent additive genetic variances.
When useVarA = FALSE, the values represent total genetic variances.

pop <- newPop(FOUNDERPOP)

3. Create a data frame with simulated genetic values for the two traits in
the two environments, with two replicates of each genotype.

gv_df <- unstr_asr_output(
pop = pop,
ntraits = 2,
nenvs = 2,
nreps = 2

)

Index

∗ datasets
error_df_bivar, 7
gv_df_unstr, 12

compsym_asr_input, 2, 5
compsym_asr_output, 2, 5, 13

error_df_bivar, 7

field_trial_error, 7, 8, 13, 18

group_cor_mat, 11
gv_df_unstr, 12

make_phenotypes, 13, 18
multi_asr_input, 14, 16
multi_asr_output, 14, 15, 16

plot_effects, 18
plot_hist, 19
plot_matrix, 20

qq_plot, 21

rand_cor_mat, 22
rand_diag_mat, 23

sample_met, 24
sample_variogram, 25
skew_diag_mat, 26
struc_cor_mat, 27

theoretical_variogram, 28

unstr_asr_input, 12, 29, 33
unstr_asr_output, 4, 12, 13, 29, 33

36

	compsym_asr_input
	compsym_asr_output
	error_df_bivar
	field_trial_error
	group_cor_mat
	gv_df_unstr
	make_phenotypes
	multi_asr_input
	multi_asr_output
	plot_effects
	plot_hist
	plot_matrix
	qq_plot
	rand_cor_mat
	rand_diag_mat
	sample_met
	sample_variogram
	skew_diag_mat
	struc_cor_mat
	theoretical_variogram
	unstr_asr_input
	unstr_asr_output
	Index

