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The package multe implements contamination bias diagnostics for regressions with multiple
treatments developed in Goldsmith-Pinkham et al. [2024]. This vignette illustrates the methods
using data from Fryer and Levitt [2013].

First, we fit a regression of test scores on a race dummy (treatment of interest) and a few controls,
weighting using sampling weights:

library("multe")
## Regression of IQ at 24 months on race indicators
## and baseline controls
r1 <- stats::lm(std_iq_24 ~ race + factor(age_24) + female +

SES_quintile, weight = W2C0, data = fl)
## Compute alternatives estimates free of
## contamination bias
m1 <- multe(r1, "race", cluster = NULL)
print(m1, digits = 3)
#> Estimates on full sample:
#> PL OWN ATE EW CW
#> Black -0.2574 -0.2482 -0.2655 -0.2550 -0.2604
#> SE 0.0281 0.0291 0.0298 0.0289 0.0292
#> Hispanic -0.2931 -0.2829 -0.2992 -0.2862 -0.2944
#> SE 0.0260 0.0267 0.0299 0.0268 0.0279
#> Asian -0.2621 -0.2609 -0.2599 -0.2611 -0.2694
#> SE 0.0343 0.0343 0.0418 0.0343 0.0475
#> Other -0.1563 -0.1448 -0.1503 -0.1447 -0.1522
#> SE 0.0369 0.0370 0.0359 0.0368 0.0370
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#>
#> P-values for null hypothesis of no propensity score variation:
#> Wald test: 0, LM test: 0
#>
#> SD(estimated propensity score), maximum over treatment arms:
#> Full sample: 0.196

The package reports five different estimators:

1. PL: The uninteracted regression estimator based on the partially linear (PL) model.
2. OWN: The own-treatment effect component of the contamination bias decomposition. If

OWN is close to PL, as above, this indicates negligible contamination bias.
3. ATE: The unweighted average treatment effect, implemented using regression that interacts

the treatment dummies with the controls.
4. EW: Weighted ATE estimator based on easiest-to-estimate weighting (EW) scheme, imple-

mented by running one-treatment-at-a-time regressions.
5. CW: Weighted ATE estimator using easiest-to-estimate common weighting (CW) scheme

from Corollary 2 in Goldsmith-Pinkham et al. [2024], implemented using weighted regression.

Precise definitions of these estimators are given in the Methods section below.

In this example, the propensity score varies significantly with covariates, as indicated by the
p-values of the Wald and LM tests.

Including many controls may result in overlap failure, as the next example demonstrates:

r2 <- stats::lm(std_iq_24 ~ race + factor(age_24) + female +
SES_quintile + factor(siblings) + family_structure,
weight = W2C0, data = fl)

m2 <- multe(r2, treatment = "race")
#> For variable factor(siblings) the following levels fail overlap:
#> 6
#> Dropping observations with these levels
print(m2, digits = 3)
#> Estimates on full sample:
#> PL OWN ATE EW CW
#> Black -0.2438 -0.2043 -0.2482 -0.2180 -0.2408
#> SE 0.0308 0.0332 0.0355 0.0328 0.0389
#> Hispanic -0.2928 -0.2801 -0.2878 -0.2850 -0.2964
#> SE 0.0259 0.0267 0.0300 0.0267 0.0299
#> Asian -0.2739 -0.2836 -0.2742 -0.2839 -0.2916
#> SE 0.0342 0.0343 0.0420 0.0343 0.0459
#> Other -0.1520 -0.1277 NA -0.1295 -0.1459
#> SE 0.0369 0.0374 NA 0.0371 0.0385
#>
#> Estimates on overlap sample:
#> PL OWN ATE EW CW
#> Black -0.2444 -0.2049 -0.2505 -0.2191 -0.2426
#> SE 0.0309 0.0334 0.0357 0.0329 0.0388
#> Hispanic -0.2915 -0.2791 -0.2871 -0.2839 -0.2974
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#> SE 0.0259 0.0267 0.0300 0.0267 0.0299
#> Asian -0.2766 -0.2863 -0.2769 -0.2865 -0.2924
#> SE 0.0344 0.0345 0.0421 0.0345 0.0459
#> Other -0.1522 -0.1280 -0.1397 -0.1298 -0.1465
#> SE 0.0369 0.0374 0.0362 0.0371 0.0385
#>
#> P-values for null hypothesis of no propensity score variation:
#> Wald test: 0, LM test: 0
#>
#> SD(estimated propensity score), maximum over treatment arms:
#> Full sample: 0.211, Overlap sample: 0.21

The issue is that no observations with 6 siblings have race equal to other:

table(fl$race[fl$siblings == 6])
#>
#> White Black Hispanic Asian Other
#> 18 10 12 5 0

Thus, the ATE estimator comparing other to white is not identified. The package drops observa-
tions with 6 siblings from the sample to form an “overlap sample” (see Methods section below for
precise construction of this sample), where the all estimators are identified.

For a researcher who wants to check whether there is a significant difference between the PL
estimator and the other estimators, the data frame cb_f reports the difference between the estimates
in the full sample, along with the corresponding standard error. The data frame cb_o reports the
differences and standard errors for the overlap sample:

print(m2$cb_f, digits = 3)
#> PL OWN ATE EW CW
#> Black NA -0.03947 0.004397 -0.02573 -0.00292
#> pop_se NA 0.01204 0.017297 0.01027 0.02078
#> Hispanic NA -0.01269 -0.004962 -0.00783 0.00362
#> pop_se NA 0.00571 0.013143 0.00497 0.01274
#> Asian NA 0.00975 0.000265 0.01001 0.01769
#> pop_se NA 0.00487 0.024595 0.00480 0.02847
#> Other NA -0.02430 NA -0.02246 -0.00605
#> pop_se NA 0.00738 NA 0.00684 0.01334
print(m2$cb_o, digits = 3)
#> PL OWN ATE EW CW
#> Black NA -0.03951 0.006062 -0.02537 -0.00185
#> pop_se NA 0.01203 0.017395 0.01026 0.02060
#> Hispanic NA -0.01246 -0.004473 -0.00759 0.00589
#> pop_se NA 0.00569 0.013110 0.00494 0.01252
#> Asian NA 0.00963 0.000209 0.00984 0.01578
#> pop_se NA 0.00488 0.024687 0.00481 0.02840
#> Other NA -0.02423 -0.012490 -0.02240 -0.00573
#> pop_se NA 0.00738 0.010968 0.00683 0.01326

We see statistically significant difference between the OWN and PL estimate (i.e. significant con-
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tamination bias) for all races, both in the full sample and in the overlap sample.

Standard errors

The package also computes “oracle” standard errors, in addition to the usual standard errors
reported above. These can be accessed in the data frame est_f (or est_o for the overlap sample
results)

print(m1$est_f, digits = 3)
#> PL OWN ATE EW CW
#> Black -0.2574 -0.2482 -0.2655 -0.2550 -0.2604
#> pop_se 0.0281 0.0291 0.0298 0.0289 0.0292
#> oracle_se NA NA 0.0298 0.0288 0.0290
#> Hispanic -0.2931 -0.2829 -0.2992 -0.2862 -0.2944
#> pop_se 0.0260 0.0267 0.0299 0.0268 0.0279
#> oracle_se NA NA 0.0299 0.0268 0.0278
#> Asian -0.2621 -0.2609 -0.2599 -0.2611 -0.2694
#> pop_se 0.0343 0.0343 0.0418 0.0343 0.0475
#> oracle_se NA NA 0.0418 0.0344 0.0465
#> Other -0.1563 -0.1448 -0.1503 -0.1447 -0.1522
#> pop_se 0.0369 0.0370 0.0359 0.0368 0.0370
#> oracle_se NA NA 0.0359 0.0360 0.0366

These oracle standard errors (oracle_se) don’t account for estimation error in the propensity score,
in contrast to the default standard errors (pop_se), see Methods section below.

Specifying the cluster argument allows for computation of clustered standard errors:

## cluster in interviewer ID
m1alt <- multe(r1, "race", cluster = factor(factor(fl$interviewer_ID_24)))
print(m1alt, digits = 3)
#> Estimates on full sample:
#> PL OWN ATE EW CW
#> Black -0.2574 -0.2482 -0.2655 -0.2550 -0.2604
#> SE 0.0412 0.0425 0.0410 0.0422 0.0420
#> Hispanic -0.2931 -0.2829 -0.2992 -0.2862 -0.2944
#> SE 0.0441 0.0454 0.0495 0.0457 0.0474
#> Asian -0.2621 -0.2609 -0.2599 -0.2611 -0.2694
#> SE 0.0521 0.0523 0.0619 0.0523 0.0675
#> Other -0.1563 -0.1448 -0.1503 -0.1447 -0.1522
#> SE 0.0404 0.0416 0.0410 0.0414 0.0428
#>
#> P-values for null hypothesis of no propensity score variation:
#> Wald test: 0, LM test: 0
#>
#> SD(estimated propensity score), maximum over treatment arms:
#> Full sample: 0.196
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Methods

This section describes the implementation of the bias decomposition formula and the implemen-
tation of alternative estimators. Relative to Goldsmith-Pinkham et al. [2024], we generalize the
setup to allow for sampling weights ω2

i (setting the sampling weights to one recovers unweighted
formulas). We also explicitly deal with overlap issues.

We are interested in the effect of treatment Di ∈ {0, 1, . . . , K} on an outcome Yi. Let Xi = I{Di =
1, . . . , Di = K} denote a vector of treatment indicators, let Xi0 = I{Di = 0}, and let Zi = (1, W ′

i )
′

denote a vector of controls, including an intercept. We focus on the case where the controls enter
linearly, so that control functions take the form G = {z′γ : γ ∈ R1+dim(Wi)}.

We assume that µk(Wi) := E[Yi(k) | Wi] ∈ G, so that we may write µk(Wi) = W ′
i αk for some

vectors αk, k = 0, . . . , K. The average treatment effect (ATE) conditional on Wi is then given by
τ(Wi) = Z′

i(αk − α0), and αk correspond to the coefficients in the interacted regression

Yi =
K

∑
k=0

XikZ′
i αk + U̇i, (1)

with U̇i conditionally mean zero. The uninteracted partially linear (PL) estimator is given by
estimating

Yi =
K

∑
k=1

Xikβ + Z′
i ϕ + Ui, (2)

by weighted least squares (WLS), yielding β̂ = (∑i ω2
i ẊiẊ′

i)
−1 ∑i ω2

i ẊiYi, where Ẋ is the sample
residual from WLS regression of Xi onto Zi. By Proposition 1 in Goldsmith-Pinkham et al. [2024],
the population analog of β̂, β, has the decomposition

β = E[diag(Λi)τ(Wi)] + E[Λi − diag(Λi)τ(Wi)],

where Λi = E[X̃iX̃′
i ]
−1E[X̃iXi | Wi], and X̃i is the population analog of Ẋi, the population residual

from regressing Xi onto Wi. Let α̂k denote the WLS estimates based on (1). By construction, the
sample residuals from estimating (1) and Zi are both orthogonal to Ẋi. As a result, we obtain the
exact decomposition

β̂ = En[ẊiẊ′
i ]
−1En[ẊiYi] =

= En[diag(Λ̂i)Γ̂′Zi] + En[(Λ̂i − diag(Λ̂i))Γ̂′Zi] =: β̂Own + β̂CB,
(3)

where Γ̂ is a matrix with columns γ̂k = α̂k − α̂0, Λ̂i = En[ẊiẊ′
i ]
−1ẊiX′

i , and En[Ai] = ∑i ω2
i Ai/ ∑i ω2

i
denotes the weighted sample mean.

To compute this decomposition, we don’t need to explicitly compute Λ̂i. Instead, we use the
identity

β̂Own
k = e′kEn[ẊiẊ′

i ]
−1En[ẊiXikZ′

i γ̂k] = δ̂′kkγ̂k,

where δ̂kk is a WLS estimator of the system of regressions

ZiXik = δkkXik + ∑
ℓ ̸=k

δkℓXiℓ + ∆Z,kZi + ζik. (4)

Note this decomposition and associated standard errors, in the next subsection, are purely
regression-based, so they remain valid even if Xi is not a set of binary indicators. Likewise,
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misspecification of the interacted regression only affects the interpretation of the decomposition; if
µk is not linear, the decomposition will not consistently estimate the contamination bias.

The own treatment weights in this decomposition sum to one, and the contamination weights sum
to zero, since En[Λ̂i] = Ik, mimicking the population decomposition. If the propensity score doesn’t
satisfy pk ∈ G, the implied estimate of Λ(w),

Λ̂(w) =
1
n

n

∑
i=1

I{Wi = w}Λ̂i

may not be positive definite; in particular, the diagonal elements may not all be positive, in line
with Proposition 1 in Goldsmith-Pinkham et al. [2024].

In addition to this decomposition, the package also computes the following alternative estimators:

1. The unweighted ATE estimator, β̂ATE
k = En[Wi]

′γ̂k

2. The one-treatment-at-a time estimator β̂EW
k that fits (2) using only observations with Di ∈

{0, k}. In other words, it estimates the regression

Yi = ϕ̈k + Xik β̈k + W ′
i ϕ̈k + Üik, (5)

among observations with Di ∈ {0, k}. This estimator weights the treatment effects using the
variance-minimizing weighting scheme given in Corollary 1 in Goldsmith-Pinkham et al.
[2024]. Consequently, we refer to as the efficiently weighted ATE estimator.

3. The common weights estimator β̂CW, given by the WLS regression of Yi onto Xi, weighting
each observation by

ω2
i πDi(1 − πDi)

p̂Di(Wi)∑K
k=0 p̂k(Wi)−1

,

where, by default, the probabilities πk correspond to the marginal probability En[Xik]
in the dataset. The propensity scores p̂k(Wi) are based on fitting a multinomial logit
model for the treatments. This estimator estimates a weighted ATE with weights

λCW(Wi) =
(

∑K
k=0

πk(1−πk)
pk(Wi)

)−1
. By Corollary 2 in Goldsmith-Pinkham et al. [2024], this

weighting scheme minimizes the average variance, under homoskedasticity, across all
treatment comparisons—comparisons of outcomes under treatment k vs treatment ℓ, if
we draw the treatments k and ℓ independently from the marginal treatment distribution
(π0, . . . , πK). Option cw_uniform=TRUE in the multe function sets these probabilities to 1/K;
setting the option to its default, FALSE, sets them to (En[Xi0], . . . , En[XiK]).

Standard errors

To compute cluster-robust standard errors for an asymptotically linear estimator with influence
function ψi, we use the formula

ŝe(ψ)2 =
G

G − 1 ∑
g

(
∑

Gi=g
ψi

)(
∑

Gi=g
ψi

)′

.

Here Gi denotes cluster membership, as specified by the multe argument cluster, and G the
number of clusters. Specifying cluster=NULL assumes independent data, setting each observation
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to be in its own cluster (Gi = i and G = N), so the reported standard errors are robust to
heteroskedasticity, but not clustering.

We now describe the form of the influence function for the estimators above. For a generic WLS
regression of A onto B, let (Q1, Q2)

(
R S
0 0

)
Π′ denote the QR decomposition of diag(ωi)B. If B has

rank r, then R has dimension r × r, Q has dimension N × r, where r is the rank of the regressor
matrix, and Π is a permutation matrix. The WLS estimator is then given by b = Π

(
R−1Q′

1 diag(ωi)A
NA

)
.

Denoting the regression residual by ϵ̂i, the influence function is thus given by

ψi(b) = Π
(

R−1Q1iωi ϵ̂i
NA

)
. (6)

See the internal function multe:::reg_if for implementation. The influence function for the inner
product of linear estimators a and b, is by the delta method given by

ψi(a′b) = a′ψi(b) + b′ψi(a),

while for scalars s1, s2, ψ(s1a + s2b) = s1ψ(a) + s2β(b).

We use (6) to compute ψ(α̂k), as well as

ψi(Z̄) =
ω2

i (Zi − Z̄)
∑i ω2

i

ψi(δ̂kk) =
ω2

i ζ̂ikẌik

∑i ω2
i Ẍ2

ik
,

where ζ̂ik is the WLS residual based on (4), and Ẍik is the residual from regressing Xik onto Xi,−k
and Zi. It then follows from (6) and the influence function formulas above, that

ψi(β̂Own
k ) = δ̂′kkψi(γ̂k) + γ̂′

kψi(δ̂kk)

ψi(β̂) =

(
∑

i
ω2

i ẊiẊ′
i

)−1

ω2
i ẊiÛi

ψi(β̂EW
k ) =

I{Di ∈ {0, k}}ω2
i X̂ikÛik

∑i I{Di ∈ {0, k}}ω2
i X̂2

ik

ψi(β̂ATE
k ) = Z̄′ψi(α̂k − α̂0) + ψi(Z̄)(α̂k − α̂0).

where X̂ik is the residual from regressing Xik onto Z in the subset with Di ∈ {0, k}, and Ûik the
residual from regressing Yi onto Xik and Zi in this subsample.

When the treatment is binary and overlap holds, the formula for ψi(β̂ATE
k ) is similar to that discussed

on page 29 in Imbens and Wooldridge [2009], except we don’t assume that the regression error Vi
in (1) is conditionally mean zero, so that the standard error is robust to misspecification.

Derivations in the last section show that the influence function for the common weights estimator
is given by ψ̂i(β̂CW

k ) = ψ̂i(α̂
CW
k − α̂CW

k ), where

ψ̂i(α̂
CW
k ) =

1
∑i λCW(Wi)

(
λCW(Wi)Xik

πk(Wi; θ̂)
(Yi − α̂CW

k ) + ai(θ̂)

)
. (7)

with the formula for ai given in (12) below, θ corresponds to the parameters in the multinomial
logit model, πk(Wi; θ̂) to the fitted probabilities in this model, and α̂CW

k is the estimate based on (11)
below.
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Oracle standard errors

The package also reports “oracle” standard errors, which interprets the alternative estimators as
estimates of the contrasts

βλ,k =
∑N

i=1 λ(Wi)(µk(Wi)− µ0(Wi))

∑N
i=1 λ(Wi)

,

with λ(Wi) = 1 for the unweighted ATE, λ(Wi) = λCW(Wi) for the common weights estimator and
λ(Wi) =

pk(Wi)p0(Wi)
pk(Wi)+p0(Wi)

for the efficiently weighted ATE estimator. In contrast, the standard errors
in the previous subsection set the estimands to be the population counterparts to these weighted
averages, replacing the sums in the above display with population expectations. In addition, the
oracle standard errors don’t account for estimation error in the propensity score p(Wi).

For the unweighted ATE, the oracle standard error is based on the influence function ψ̃i(β̂ATE
k ) =

Z̄′ψi(α̂k − α̂0). From the derivation in the last section, it follows that the oracle standard error for
β̂EW

k is given by

ψi(β̂EW
k ) =

I{Di ∈ {0, k}}ω2
i X̂ik

ˆ̇Ui

∑i I{Di ∈ {0, k}}ω2
i X̂2

ik
, (8)

where ˆ̇Ui is the interacted regression residual based on (1).

Finally, the oracle standard errors for β̂CW
k are based on the influence function ψ̃i(β̂CW

k ) = ψ̃i(α̂
CW
k )−

ψ̃i(α̂
CW
0 ), where

ψ̃i(α̂
CW
k ) =

ω2
i λCW(Wi; θ̂)

∑i ω2
i λCW(Wi; θ̂)

Xik

πk(Wi; θ̂)
ˆ̇Ui. (9)

Overlap sample

The package applies the above formulas to the full sample. In cases with poor overlap, this may
not yield well-defined estimates or bias decomposition for all treatments. For components of the
decomposition and alternative estimators that are not identified, the package returns NA. In such
cases, the package also returns results for a trimmed “overlap sample”, where the decomposition
and alternative estimators are all identified. The overlap sample is constructed as follows:

1. Find a factor variable among the controls with the greatest number of levels. If there are no
factor variables, skip this step. If for some levels of this variable, we don’t see observations
that take on one or more of the K + 1 possible treatments, drop observations with these levels.

2. For the remaining controls, if a control doesn’t display any variation in the subset of the data
with treatment k = 0, . . . , K, drop the control.

Wald and LM tests

We now give the form of the Wald and LM tests for variation in the propensity score. First, we give
a general derivation of these tests in a likelihood context when the Hessian may be reduced rank.
We then specialize the formulas to the case where the likelihood corresponds to the that for the
multinomial logit model.

Consider a log-likelihood ℓn(θ) for a p-dimensional parameter θ, with score function S that’s
approximately normal with covariance matrix Ω, and Hessian H. We’re interested in testing the
hypothesis that last r elements of θ are zero, H0 : θ2 = 0. We assume that the submatrix H11 of the
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Hessian corresponding to the restricted model is full rank, but the full matrices Ω or H may not be
invertible.

The score evaluated at the unrestricted estimator θ̂ satisfies

0 =

(
S1(θ̂1, θ̂2)
S2(θ̂1, θ̂2)

)
=

(
S1(θ1, 0)
S2(θ1, 0)

)
+

(
H11(θ̂1 − θ1) + H12θ̂2

H21(θ̂1 − θ1) + H22θ̂2,

)
ignoring in the notation that the Hessian evaluated needs to be evaluated at intermediate values.
Rearranging, (

θ̂1 − θ1

(H22 − H21H−1
11 H12)θ̂2

)
=

(
−H−1

11 S1(θ1, 0)− H−1
11 H12θ̂2

H21H−1
11 S1(θ)− S2(θ)

)
This yields the Wald statistic

W = θ̂′2(H22 − H21H−1
11 H12)

′ var(S2(θ1, 0)− H21H−1
11 S1(θ1, 0))+(H22 − H21H−1

11 H12)θ̂2,

where A+ denotes a generalized inverse. By Lemma 9.7 in Newey and McFadden [1994], the
statistic has an asymptotic χ2 distribution with degrees of freedom equal to the rank of the variance.

The score evaluated at the restricted estimator θ̄1 satisfies(
0

S2(θ̄1, 0)

)
=

(
S1(θ1, 0)
S2(θ1, 0)

)
+

(
H11(θ̄1 − θ1)
H21(θ̄1 − θ1)

)
,

which implies θ̄1 − θ1 = −H−1
11 S1(θ1, 0), and hence

S2(θ̄1, 0) = S2(θ1, 0)− H21H−1
11 S1(θ1, 0).

Thus the statistic

LM = S2(θ̄1, 0)′ var(S2(θ1, 0)− H21H−1
11 S1(θ1, 0))+S2(θ̄1, 0)

will again have a χ2 distribution.

To apply these formulas in the context of a multinomial logit model, we use the score and the
Hessian

S(θ) = ∑
i

ω2
i (Xi − π(Zi; θ))⊗ Zi, H(θ) = −∑

i
ω2

i (diag(π(Zi; θ))− π(Zi; )π(Zi)
′)⊗ ZiZ′

i

Derivations

We first derive (7). Observe first that the common weights estimator is identical to the two-step
GMM estimator that in the first step, fits a multinomial logit model

P(Di = k | Wi) =
eZ′

i θk

∑K
k′=0 eZ′

i θk′
=: πk(Wi, θ), (10)

with the normalization θ0 = 0. In the second step, we use the moment condition

E
[

λCW(Wi; θ)Xik

πk(Wi; θ)
(Yi − αCW

k )

]
= 0. (11)
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to obtain estimates α̂CW
k , and set β̂CW

k = α̂CW
k − α̂CW

0 .

Let

ζk(Wi; θ̂) =
λCW(Wi; θ̂)

πk(Wi, θ̂)
=

e−Z′
i θ̂k

∑K
j=0 πj(1 − πj)e−Z′

i θ̂j

By equation (6.6) in Newey and McFadden [1994], the influence function of this two-step estimator
is given by

ψi(α̂
CW
k ) =

1
E[λCW(Wi)]

(
λCW(Wi)Xik

πk(Wi)
(Yi − αCW

k ) + Mk(θ)ψi(θ)

)
,

where ψi(θ) is the influence function of the multinomial logit estimator θ̂, and Mk(θ) is the deriva-
tive of (11) wrt θ.

Since ∂ζk(Wi; θ)/∂θj = Ziζk(Wi; θ)[πj(1 − πj)ζk(Wi; θ)− I{k = j > 0}], it follows that

Mk(θ) = E[(η − ek)⊗ Zi · ζkXik(Yi − αλC ,k)], η = (πj(1 − πj)ζ j, . . . , πK(1 − πK)ζK)
′.

Since the multinomial logit log-likelihood is given by ℓi = ∑K
k=0 Xk log(πk) = ∑K

k=0 XkZ′
i θk −

log(∑K
k=0 eZ′

i θk), the score and the Hessian are

Si(θ) = (Xi − π(Wi; θ))⊗ Zi, H(θ) = −En[(diag(π(Wi))− π(Wi)π(Wi)
′)⊗ ZiZ′

i ],

Since ψi(θ) = −H(θ)−1Si(θ), this yields

ai(θ) = M̂k(θ̂)Ĥ(θ̂)−1Si(θ), Si(θ) = (Xi − π(Wi; θ))⊗ Zi, (12)

with M̂k(θ) =
(
∑i(ζ − ek)⊗ Zi · ζkXik(Yi − αλC ,k)

)
, and Ĥ(θ) = ∑i(diag(π(Wi))−π(Wi)π(Wi)

′)⊗
ZiZ′

i . When πk = 1/(K + 1) this formula reduces to that in Theorem 1 in Li and Li [2019].

Next, we show (8). Note that it follows from Proposition 2 in Goldsmith-Pinkham et al. [2024] that
the efficient influence function is given by

ψi(αλk ,k0) =
λ(Wi)

E[λ(Wi)]

(
Xik

pk(Wi)
(Yi − µk(Wi))−

Xi0

p0(Wi)
(Yi − µ0(Wi))

)
=

Xik + Xi0

E[λ(Wi)]
(Xik − rk)Vi =

(Xik + Xi0)(Xik − rk)Vi

E[(Xik + Xi0)(Xik − rk)2]
,

where rk = rk(Wi) = E[Xik | Wi, Xik + Xi0 = 1]. The result then follows since X̂ik is an estimator of
Xik − rk(Wi).

Finally, we show (9). The derivative of the moment condition (11) with respect to πk = pk (assuming
correct specification of the propensity score) is given by

−E[λ
Xik

p2
k(Wi)

(µk − αCW
k ) ṗk(Wi)],

where we write λ for λCW(Wi). Since pk is a projection, by Proposition 4 in Newey [1994], the
influence function for α̂CW

k is given by

1
E[λ]

(
λ

Xik

pk(Wi)
(Yi − αCW

k )− λ

pk(Wi)
(µk(Wi)− αCW

k )(Xik − pk(Wi))

)
=

1
E[λ]

(
λ

Xik

pk(Wi)
(Yi − µk(Wi)) + λ(µk(Wi)− αCW

k )

)
.

10



Next, as noted in Abadie et al. [2014], we can view α̃CW
k = ∑i λµk(Wi)/ ∑i λ as an estimator of

αCW
k based on the moment condition E[λ(µk(Wi)− αCW

k )] = 0, which by standard arguments has
influence function given by λ

E[λ] (µk(Wi)− αCW
k ). Since α̂CW

k − αCW
k = (α̂CW

k − αCW
k )− (αCW

k − α̃CW
k ),

we subtract this influence function from the preceding display to obtain (9).
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