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checkBounded checkBounded

Description

Checks whether x is defined and lies within the specified bound, stop otherwise.

Usage

checkBounded(x, message = NULL, bound = c(0, 1), inclusive = FALSE)

Arguments

x x

message identifier for x

bound the boundaries, array of size two

inclusive whether x might lie on boundary
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checkComparisonModel checkComparisonModel

Description

Checks whether comparison is one of 'restricted' or 'saturated' (or respective shortcuts),
stop otherwise.

Usage

checkComparisonModel(comparison)

Arguments

comparison comparison

Value

Returns cleaned comparison

checkDataGenerationTypes

checkDataGenerationTypes

Description

Checks whether data generation type is one of 'normal', 'IG', 'mnonr', 'RK', or 'VM', stop
otherwise.

Usage

checkDataGenerationTypes(type)

Arguments

type type

Value

Returns cleaned data generation type
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checkEllipsis checkEllipsis

Description

Checks whether ... contains arguments related to loadings and to power, stop otherwise.

Usage

checkEllipsis(...)

Arguments

... the parameters to search.

checkMissingTypes checkMissingTypes

Description

Checks whether missing generation type is one of 'mcar', 'mar', or 'nmar', stop otherwise.

Usage

checkMissingTypes(type)

Arguments

type type

Value

Returns cleaned data generation type



6 checkPositive

checkNullEffect checkNullEffect

Description

Checks whether nullEffect is one of the valid effects, stop otherwise.

Usage

checkNullEffect(nullEffect, valid, message = NULL)

Arguments

nullEffect nullEffect

valid vector of valid effects

message message

Value

Returns cleaned nullEffect

checkPositive checkPositive

Description

Checks whether x is defined and a positive number, stop otherwise.

Usage

checkPositive(x, message = NULL)

Arguments

x x

message identifier for x
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checkPositiveDefinite checkPositiveDefinite

Description

Checks whether x is positive definite, stop otherwise.

Usage

checkPositiveDefinite(x, message = NULL, stop = TRUE)

Arguments

x x

message identifier for x

stop whether to stop or to throw a warning

checkPowerTypes checkPowerTypes

Description

Checks whether type is one of 'a-priori', 'post-hoc', or 'compromise' (or respective short-
cuts), stop otherwise.

Usage

checkPowerTypes(type)

Arguments

type type

Value

Returns cleaned type
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checkSquare checkSquare

Description

Checks whether x is a square matrix, stop otherwise.

Usage

checkSquare(x, message = NULL)

Arguments

x x

message identifier for x

checkSymmetricSquare checkSymmetricSquare

Description

Checks whether x is a symmetric square matrix, stop otherwise.

Usage

checkSymmetricSquare(x, message = NULL)

Arguments

x x

message identifier for x
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doSim doSim

Description

Generates random data from population variance-covariance matrix and population means, either
from a multivariate normal distribution, or using one of various approaches to generate non-normal
data.

Usage

doSim(
r,
simData,
isMultigroup = FALSE,
modelH0,
modelH1,
lavOptions,
lavOptionsH1

)

Arguments

r replication id

simData list of datafiles

isMultigroup multigroup flag

modelH0 lavaan model string defining the (incorrect) analysis model.

modelH1 lavaan model string defining the comparison model. If omitted, the saturated
model is the comparison model.

lavOptions a list of additional options passed to lavaan, e. g., list(estimator = 'mlm')
to request robust ML estimation

lavOptionsH1 lavoptions when fitting modelH1. If NULL, the same as lavOptions.

Value

list
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genData genData

Description

Generates random data from population variance-covariance matrix and population means, either
from a multivariate normal distribution, or using one of various approaches to generate non-normal
data.

Usage

genData(
N = NULL,
Sigma = NULL,
mu = NULL,
nSets = 1,
gIdx = NULL,
modelH0 = NULL,
simOptions = NULL

)

Arguments

N sample size.

Sigma population covariance matrix.

mu population means.

nSets number of data sets to generate

gIdx if not NULL, add gIdx as numeric group index as additional variable to generated
data

modelH0 a lavaan model string, only used to determine the number of factors when type
= 'RK'

simOptions additional arguments specifying the data generation routine

Value

Returns the generated data

Examples

## Not run:
gen <- semPower.genSigma(Phi = .2, loadings = list(rep(.5, 3), rep(.7, 3)))
data <- genData(N = 500, Sigma = gen$Sigma)

## End(Not run)
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genData.IG genData.IG

Description

Generates random data conforming to a population variance-covariance matrix using the indepen-
dent generator approach (IG, Foldnes & Olsson, 2016) approach specifying third and fourth mo-
ments of the marginals.

Usage

genData.IG(N = NULL, Sigma = NULL, nSets = 1, skewness = NULL, kurtosis = NULL)

Arguments

N sample size.

Sigma population covariance matrix.

nSets number of data sets to generate

skewness vector specifying skewness for each variable

kurtosis vector specifying excess kurtosis for each variable

Details

This function is a wrapper for the respective function of the covsim package.

For details, see Foldnes, N. & Olsson, U. H. (2016) A Simple Simulation Technique for Nonnor-
mal Data with Prespecified Skewness, Kurtosis, and Covariance Matrix. Multivariate Behavioral
Research, 51, 207-219. 10.1080/00273171.2015.1133274

Value

Returns the generated data

genData.mnonr genData.mnonr

Description

Generates random data conforming to a population variance-covariance matrix using the approach
by Qu, Liu, & Zhang (2020) specifying Mardia’s multivariate skewness and kurtosis.
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Usage

genData.mnonr(
N = NULL,
Sigma = NULL,
nSets = 1,
skewness = NULL,
kurtosis = NULL

)

Arguments

N sample size.

Sigma population covariance matrix.

nSets number of data sets to generate

skewness multivariate skewness. May not be negative.

kurtosis multivariate kurtosis. Must be >= 1.641 skewness + p (p + 0.774), where p is
the number of variables.

Details

This function is a wrapper for the respective function of the mnonr package.

For details, see Qu, W., Liu, H., & Zhang, Z. (2020). A method of generating multivariate non-
normal random numbers with desired multivariate skewness and kurtosis. Behavior Research Meth-
ods, 52, 939-946. doi: 10.3758/s13428-019-01291-5

Value

Returns the generated data

genData.normal genData.normal

Description

Generates multivariate normal random data conforming to a population variance-covariance matrix.

Usage

genData.normal(N = NULL, Sigma = NULL, nSets = 1)

Arguments

N sample size.

Sigma population covariance matrix.

nSets number of data sets to generate
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Value

Returns the generated data

genData.RK genData.RK

Description

Generates random data conforming to a population variance-covariance matrix using the approach
by Ruscio & Kaczetow (2008) specifying distributions for the marginals.

Usage

genData.RK(
N = NULL,
Sigma = NULL,
nSets = 1,
distributions = NULL,
modelH0 = NULL,
maxIter = 10

)

Arguments

N sample size.

Sigma population covariance matrix.

nSets number of data sets to generate

distributions a list specifying the population distribution and additional arguments in a list
either to apply to all variables (e.g. list(rchisq, list(df = 2))) or a list of
lists specifying the distributions for each variable. See examples.

modelH0 a lavaan model string, only used to determine the number of factors.

maxIter maximum number of iterations, defaults to 10.

Details

This function is based on the implementation by Ruscio & Kaczetow (2008).

For details, see Ruscio, J., & Kaczetow, W. (2008). Simulating multivariate nonnormal data using
an iterative algorithm. Multivariate Behavioral Research, 43, 355-381.

Value

Returns the generated data
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Examples

## Not run:
distributions <- list(

list('rchisq', list(df = 2)),
list('runif', list(min = 0, max = 1)),
list('rexp', list(rate = 1))

)
data <- genData.ruscio(N = 100, Sigma = diag(3),

distributions = distributions,
modelH0 = 'f =~ x1 + x2 + x3')

distributions <- list(
list('rnorm', list(mean = 0, sd = 10)),
list('runif', list(min = 0, max = 1)),
list('rbeta', list(shape1 = 1, shape2 = 2)),
list('rexp', list(rate = 1)),
list('rpois', list(lambda = 4)),
list('rbinom', list(size = 1, prob = .5))

)
data <- genData.ruscio(N = 100, Sigma = diag(6),

distributions = distributions,
modelH0 = 'f1=~x1+x2+x3\nf2=~x4+x5+x6')

## End(Not run)

genData.VM genData.VM

Description

Generates random data conforming to a population variance-covariance matrix using the third-order
polynomial method (Vale & Maurelli, 1983) specifying third and fourth moments of the marginals.

Usage

genData.VM(N = NULL, Sigma = NULL, nSets = 1, skewness = NULL, kurtosis = NULL)

Arguments

N sample size.

Sigma population covariance matrix.

nSets number of data sets to generate

skewness vector specifying skewness for each variable

kurtosis vector specifying excess kurtosis for each variable
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Details

This function is a slightly adapted copy of lavaan’s ValeMaurelli1983 implementation that avoids
computing the intermediate correlation for each data sets and uses Sigma as input.

For details, see Vale, C. & Maurelli, V. (1983). Simulating multivariate nonnormal distributions.
Psychometrika, 48, 465-471.

Value

Returns the generated data

genLambda genLambda

Description

Generate a loading matrix Lambda from various shortcuts, each assuming a simple structure. Either
define loadings, or define nIndicator and loadM (and optionally loadSD), or define nIndicator
and loadMinMax.

Usage

genLambda(
loadings = NULL,
nIndicator = NULL,
loadM = NULL,
loadSD = NULL,
loadMinMax = NULL

)

Arguments

loadings A list providing the loadings by factor, e. g. list(c(.4, .5, .6), c(7, .8,
.8)) to define two factors with three indicators each with the specified loadings.
The vectors must not contain secondary loadings.

nIndicator Vector indicating the number of indicators for each factor, e. g. c(4, 6) to
define two factors with 4 and 6 indicators, respectively

loadM Either a vector giving the mean loadings for each factor or a single number to
use for every loading.

loadSD Either a vector giving the standard deviation of loadings for each factor or a
single number, for use in conjunction with loadM. If NULL, SDs are set to zero.
Otherwise, loadings are sampled from a normal distribution.

loadMinMax A list giving the minimum and maximum loading for each factor or a vector to
apply to all factors. If set, loadings are sampled from a uniform distribution.

Value

The loading matrix Lambda.
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genModelString genModelString

Description

Creates lavaan model strings from model matrices.

Usage

genModelString(
Lambda = NULL,
Phi = NULL,
Beta = NULL,
Psi = NULL,
Theta = NULL,
tau = NULL,
Alpha = NULL,
useReferenceIndicator = !is.null(Beta),
metricInvariance = NULL,
nGroups = 1

)

Arguments

Lambda Factor loading matrix.

Phi Factor correlation (or covariance) matrix. If NULL, all factors are orthogonal.

Beta Regression slopes between latent variables (all-y notation).

Psi Variance-covariance matrix of latent residuals when Beta is specified. If NULL,
a diagonal matrix is assumed.

Theta Variance-covariance matrix of manifest residuals. If NULL and Lambda is not a
square matrix, Theta is diagonal so that the manifest variances are 1. If NULL
and Lambda is square, Theta is 0.

tau Intercepts. If NULL and Alpha is set, these are assumed to be zero.

Alpha Factor means. If NULL and tau is set, these are assumed to be zero.
useReferenceIndicator

Whether to identify factors in accompanying model strings by a reference indi-
cator (TRUE) or by setting their variance to 1 (FALSE). When Beta is defined, a
reference indicator is used by default, otherwise the variance approach.

metricInvariance

A list containing the factor indices for which the accompanying model strings
should apply metric invariance labels, e.g. list(c(1, 2), c(3, 4)) to assume
invariance for f1 and f2 as well as f3 and f4.

nGroups (defaults to 1) If > 1 and metricInvariance = TRUE, group specific labels will
be used in the measurement model.
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Value

A list containing the following lavaan model strings:

modelPop population model

modelTrue "true" analysis model freely estimating all non-zero parameters.

modelTrueCFA similar to modelTrue, but purely CFA based and thus omitting any regression
relationships.

getAGFI.F getAGFI.F

Description

Computes AGFI from the minimum of the ML-fit-function.

Usage

getAGFI.F(Fmin, df, p)

Arguments

Fmin minimum of the ML-fit-function

df model degrees of freedom

p number of observed variables

Value

Returns AGFI

getBetadiff getBetadiff

Description

get squared difference between requested and achieved beta on a logscale
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Usage

getBetadiff(
cN,
critChi,
logBetaTarget,
fmin,
df,
weights = NULL,
simulatedPower = FALSE,
pkgEnv = NULL,
...

)

Arguments

cN current N

critChi critical chi-square associated with chosen alpha error

logBetaTarget log(desired beta)

fmin minimum of the ML fit function

df the model degrees of freedom

weights sample weights for multiple group models

simulatedPower whether to perform a simulated (TRUE) (rather than analytical, FALSE) power
analysis.

pkgEnv local pkgEnv containing iterationCounter.

... other parameter passed to simulate()

Value

squared difference requested and achieved beta on a log scale

getCFI.Sigma getCFI.Sigma

Description

Computes CFI given the model-implied and the observed (or population) covariance matrix: CFI =
(F_null - F_hyp) / F_null.

Usage

getCFI.Sigma(SigmaHat, S, muHat = NULL, mu = NULL, fittingFunction = "ML")
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Arguments

SigmaHat model implied covariance matrix

S observed (or population) covariance matrix

muHat model implied mean vector

mu observed (or population) mean vector
fittingFunction

whether to use ML or WLS

Value

Returns CFI

getCFI.Sigma.mgroups getCFI.Sigma.mgroups

Description

Computes CFI given the model-implied and the observed (or population) covariance matrix for mul-
tiple group models. CFI = (F_null - F_hyp) / F_null applying multiple group sampling weights
to F_hyp and F_null.

Usage

getCFI.Sigma.mgroups(
SigmaHat,
S,
muHat = NULL,
mu = NULL,
N,
fittingFunction = "ML"

)

Arguments

SigmaHat a list of model implied covariance matrix

S a list of observed (or population) covariance matrix

muHat model implied mean vector

mu observed (or population) mean vector

N a list of group weights
fittingFunction

whether to use ML or WLS

Value

Returns CFI
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getChiSquare.F getChiSquare.F

Description

Computes the (Wishart-) chi-square from the population minimum of the fit-function: chi-square
= (N - 1) * F0 + df = ncp + df. Note that F0 is the population minimum. Using F_hat would give
chi-square = (N - 1) * F_hat.

Usage

getChiSquare.F(Fmin, n, df)

Arguments

Fmin population minimum of the fit-function (can be a list for multiple group models).

n number of observations (can be a list for multiple group models).

df model degrees of freedom

Value

Returns chi-square

getChiSquare.NCP getChiSquare.NCP

Description

Computes chi-square from the non-centrality parameter: chi-square = ncp + df.

Usage

getChiSquare.NCP(NCP, df)

Arguments

NCP non-centrality parameter

df model degrees of freedom

Value

Returns chi-square
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getDiscrepancyFunctionFromFittingFunction

getDiscrepancyFunctionFromFittingFunction

Description

get proper discrepancy function (to measure F0) from fitting function (to obtain SigmaHat)

Usage

getDiscrepancyFunctionFromFittingFunction(fittingFunction)

Arguments

fittingFunction

fittingFunction

Value

discrepancy function

getErrorDiff getErrorDiff

Description

Determine the squared log-difference between alpha and beta error given a certain chi-square value
from central chi-square(df) and a non-central chi-square(df, ncp) distribution.

Usage

getErrorDiff(critChiSquare, df, ncp, log.abratio)

Arguments

critChiSquare evaluated chi-squared value

df the model degrees of freedom

ncp the non-centrality parameter

log.abratio log(alpha/beta)

Value

squared difference between alpha and beta on a log scale
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getF getF

Description

Computes the minimum of the ML-fit-function from known fit indices.

Usage

getF(
effect,
effect.measure,
df = NULL,
p = NULL,
SigmaHat = NULL,
Sigma = NULL,
muHat = NULL,
mu = NULL,
fittingFunction = "ML"

)

Arguments

effect magnitude of effect

effect.measure measure of effect, one of 'fmin', 'rmsea', 'agfi', 'gfi', 'mc'

df model degrees of freedom

p number of observed variables

SigmaHat model implied covariance matrix

Sigma observed (or population) covariance matrix

muHat model implied mean vector

mu observed (or population) mean vector

fittingFunction

one of ML (default), WLS, DWLS, ULS

Value

Returns Fmin
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getF.AGFI getF.AGFI

Description

Computes the minimum of the ML-fit-function from AGFI.

Usage

getF.AGFI(AGFI, df, p)

Arguments

AGFI AGFI

df model degrees of freedom

p number of observed variables

Value

Returns Fmin

getF.GFI getF.GFI

Description

Computes the minimum of the ML-fit-function from GFI.

Usage

getF.GFI(GFI, p)

Arguments

GFI GFI

p number of observed variables

Value

Returns Fmin
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getF.Mc getF.Mc

Description

Computes the minimum of the ML-fit-function from Mc.

Usage

getF.Mc(Mc)

Arguments

Mc Mc

Value

Returns Fmin

getF.RMSEA getF.RMSEA

Description

Computes the minimum of the ML-fit-function from RMSEA: F_min = rmsea^2 * df.

Usage

getF.RMSEA(RMSEA, df)

Arguments

RMSEA RMSEA

df model degrees of freedom

Value

Returns Fmin
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getF.Sigma getF.Sigma

Description

Computes the minimum of the chosen fitting-function given the model-implied and the observed (or
population) covariance matrix. The ML fitting function is: F_min = tr(S %*% SigmaHat^-1) - p +
ln(det(SigmaHat)) - ln(det(S)). When a meanstructure is included, (mu - muHat)' SigmaHat^-1 (mu - muHat)
is added. The WLS fitting function is: F_min = (Sij - SijHat)' V (Sij - SijHat) where
V is the inverse of N times the asymptotic covariance matrix of the sample statistics (Gamma;
N x ACOV(mu, vech(S))). For DWLS, V is the diagonal of the inverse of diag(NACOV), i.e.
diag(solve(diag(Gamma))). For ULS, V = I. ULS has an unknown asymptotic distribution, so it
is actually irrelevant, but provided for the sake of completeness.

Usage

getF.Sigma(SigmaHat, S, muHat = NULL, mu = NULL, fittingFunction = "ML")

Arguments

SigmaHat model implied covariance matrix

S observed (or population) covariance matrix

muHat model implied mean vector

mu observed (or population) mean vector
fittingFunction

one of ML (default), WLS, DWLS, ULS

Value

Returns Fmin

getFittingFunctionFromEstimator

getFittingFunctionFromEstimator

Description

get proper fitting function (to obtain sigmaHat) for chosen estimator

Usage

getFittingFunctionFromEstimator(lavOptions)
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Arguments

lavOptions lavOptions

Value

fitting function

getFormattedResults getFormattedResults

Description

Return data.frame containing formatted results.

Usage

getFormattedResults(type, result, digits = 6)

Arguments

type type of power analysis
result result object (list)
digits number of significant digits

Value

data.frame

getFormattedSimulationResults

getFormattedResults

Description

Return data.frame containing formatted results.

Usage

getFormattedSimulationResults(object, digits = 2)

Arguments

object result object (list)
digits number of significant digits

Value

data.frame
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getGFI.F getGFI.F

Description

Computes GFI from the minimum of the ML-fit-function.

Usage

getGFI.F(Fmin, p)

Arguments

Fmin minimum of the ML-fit-function

p number of observed variables

Value

Returns GFI

getIndices.F getIndices.F

Description

Computes known indices from the minimum of the ML-fit-function.

Usage

getIndices.F(
fmin,
df,
p = NULL,
SigmaHat = NULL,
Sigma = NULL,
muHat = NULL,
mu = NULL,
N = NULL

)
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Arguments

fmin minimum of the ML-fit-function

df model degrees of freedom

p number of observed variables

SigmaHat model implied covariance matrix

Sigma population covariance matrix

muHat model implied means

mu population means

N list of sample weights

Value

list of indices

getKSdistance getKSdistance

Description

computes average absulute KS-distance between empirical and asympotic chi-square reference dis-
tribution.

Usage

getKSdistance(chi, df, ncp = 0)

Arguments

chi empirical distribution

df df of reference distribution

ncp ncp of reference distribution

Value

average absolute distance
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getLavOptions getLavOptions

Description

returns lavaan options including defaults as set in sem() as a list to be passed to lavaan()

Usage

getLavOptions(lavOptions = NULL, isCovarianceMatrix = TRUE, nGroups = 1)

Arguments

lavOptions additional options to be added to (or overwriting) the defaults
isCovarianceMatrix

if TRUE, also adds sample.nobs = 1000 and sample.cov.rescale = FALSE to
lavoptions

nGroups the number of groups, 1 by default

Value

a list of lavaan defaults

getMc.F getMc.F

Description

Computes Mc from the minimum of the ML-fit-function.

Usage

getMc.F(Fmin)

Arguments

Fmin minimum of the ML-fit-function

Value

Returns Mc
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getNCP getNCP

Description

Computes the non-centrality parameter from the population minimum of the fit-function (dividing
by N - 1 following the Wishart likelihood): ncp = (N - 1) * F0.

Usage

getNCP(Fmin, n)

Arguments

Fmin population minimum of the fit-function (can be a list for multiple group models).

n number of observations (can be a list for multiple group models).

Value

Returns the implied NCP.

getPhi.B getPhi.B

Description

Computes implied correlations (completely standardized) from Beta matrix, disallowing recursive
paths.

Usage

getPhi.B(B, lPsi = NULL)

Arguments

B matrix of regression coefficients (all-y notation). Must only contain non-zero
lower-triangular elements, so the first row only includes zeros.

lPsi (lesser) matrix of residual correlations. This is not the Psi matrix, but a lesser
version ignoring all variances and containing correlations off the diagonal. Can
be omitted for no correlations beyond those implied by B.

Value

Returns the implied correlation matrix
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Examples

## Not run:
# mediation model
B <- matrix(c(

c(.00, .00, .00),
c(.10, .00, .00),
c(.20, .30, .00)

), byrow = TRUE, ncol = 3)
Phi <- getPhi.B(B)

# CLPM with residual correlations
B <- matrix(c(

c(.00, .00, .00, .00),
c(.30, .00, .00, .00),
c(.70, .10, .00, .00),
c(.20, .70, .00, .00)

), byrow = TRUE, ncol = 4)
lPsi <- matrix(c(

c(.00, .00, .00, .00),
c(.00, .00, .00, .00),
c(.00, .00, .00, .30),
c(.00, .00, .30, .00)

), byrow = TRUE, ncol = 4)
Phi <- getPhi.B(B, lPsi)

## End(Not run)

getPsi.B getPsi.B

Description

Computes the implied Psi matrix from Beta, when all coefficients in Beta should be standardized.

Usage

getPsi.B(B, sPsi = NULL, standResCov = TRUE)

Arguments

B matrix of regression coefficients (all-y notation). May only contain non-zero
values either above or below the diagonal.

sPsi matrix of (residual) correlations/covariances. This is not the Psi matrix, but
defines the desired correlations/covariances beyond those implied by B. Can
be NULL for no correlations. Standardized and unstandardized residual covari-
ances (between endogenous variables) cannot have the same value, so standResCov
defines whether to treat these as unstandardized or as standardized.

standResCov whether elements in sPsi referring to residual covariances (between endoge-
nous variables) shall treated as correlation or as covariance.
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Value

Psi

Examples

## Not run:
# mediation model
B <- matrix(c(

c(.00, .00, .00),
c(.10, .00, .00),
c(.20, .30, .00)

), byrow = TRUE, ncol = 3)
Psi <- getPsi.B(B)

# CLPM with residual correlations
B <- matrix(c(

c(.00, .00, .00, .00),
c(.30, .00, .00, .00),
c(.70, .10, .00, .00),
c(.20, .70, .00, .00)

), byrow = TRUE, ncol = 4)
sPsi <- matrix(c(

c(1, .00, .00, .00),
c(.00, 1, .00, .00),
c(.00, .00, 1, .30),
c(.00, .00, .30, 1)

), byrow = TRUE, ncol = 4)
# so that residual cor is std
Psi <- getPsi.B(B, sPsi, standResCov = TRUE)
# so that residual cor is unsstd
Psi <- getPsi.B(B, sPsi, standResCov = FALSE)

## End(Not run)

getRMSEA.F getRMSEA.F

Description

Computes RMSEA from the minimum of the ML-fit-function F_min = rmsea^2 * df.

Usage

getRMSEA.F(Fmin, df, nGroups = 1)

Arguments

Fmin minimum of the ML-fit-function
df model degrees of freedom
nGroups the number of groups
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Value

Returns RMSEA

getSRMR.Sigma getSRMR.Sigma

Description

Computes SRMR given the model-implied and the observed (or population) covariance matrix,
using the Hu & Bentler approach to standardization.

Usage

getSRMR.Sigma(SigmaHat, S, muHat = NULL, mu = NULL)

Arguments

SigmaHat model implied covariance matrix
S observed (or population) covariance matrix
muHat model implied mean vector
mu observed (or population) mean vector

Value

Returns SRMR

getSRMR.Sigma.mgroups getSRMR.Sigma.mgroups

Description

Computes SRMR given the model-implied and the observed (or population) covariance matrix for
multiple group models using the Hu & Bentler approach to standardization and the MPlus approach
to multiple group sampling weights (weight squared sums of residuals).

Usage

getSRMR.Sigma.mgroups(SigmaHat, S, muHat = NULL, mu = NULL, N)

Arguments

SigmaHat a list of model implied covariance matrices
S a list of observed (or population) covariance matrices
muHat model implied mean vector
mu observed (or population) mean vector
N a list of group weights
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Value

Returns SRMR

getWLSv getWLSv

Description

Computes the WLS weight matrix as the asymptotic covariance matrix of the sample statistics

Usage

getWLSv(S, mu = NULL, diag = FALSE)

Arguments

S observed (or population) covariance matrix
mu observed (or population) mean vector
diag weight matrix for DWLS

Value

Returns V

makeRestrictionsLavFriendly

makeRestrictionsLavFriendly

Description

This function is currently orphaned, but we keep it just in case.

Usage

makeRestrictionsLavFriendly(model)

Arguments

model lavaan model string

Details

This function transforms a lavaan model string into a model string that works reliably when both
equality constrains and value constrains are imposed on the same parameters. lavaan cannot reli-
ably handle this case, e. g., "a == b \\n a == 0" will not always work. The solution is to drop the
equality constraint and rather apply the value constraint on each equality constrained parameter, e.
g. "a == 0 \n b == 0" will work.
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Value

model with lavaan-friendly constrains

orderLavCov orderLavCov

Description

returns lavaan implied covariance matrix in correct order.

Usage

orderLavCov(lavCov = NULL)

Arguments

lavCov model implied covariance matrix

Value

cov in correct order

orderLavMu orderLavMu

Description

returns lavaan implied means in correct order.

Usage

orderLavMu(lavMu = NULL)

Arguments

lavMu model implied means

Value

mu in correct order
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orderLavResults orderLavResults

Description

returns lavaan implied covariance matrix or mean vector in correct order.

Usage

orderLavResults(lavCov = NULL, lavMu = NULL)

Arguments

lavCov model implied covariance matrix

lavMu model implied means

Value

either cov or mu in correct order

powerPrepare powerPrepare

Description

Performs some preparations common to all types of power analyses.

Usage

powerPrepare(
type = NULL,
effect = NULL,
effect.measure = NULL,
alpha = NULL,
beta = NULL,
power = NULL,
abratio = NULL,
N = NULL,
df = NULL,
p = NULL,
SigmaHat = NULL,
Sigma = NULL,
muHat = NULL,
mu = NULL,
fittingFunction = "ML",
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simulatedPower = FALSE,
modelH0 = NULL,
nReplications = NULL,
minConvergenceRate = NULL,
lavOptions = NULL

)

Arguments

type type of power analysis

effect effect size specifying the discrepancy between H0 and H1 (a list for multiple
group models; a vector of length 2 for effect-size differences)

effect.measure type of effect, one of "F0", "RMSEA", "Mc", "GFI", "AGFI"

alpha alpha error

beta beta error; set either beta or power

power power (=1 - beta); set either beta or power

abratio the ratio of alpha to beta

N the number of observations (a list for multiple group models)

df the model degrees of freedom

p the number of observed variables, required for effect.measure = "GFI" and
effect.measure = "AGFI"

SigmaHat model implied covariance matrix (a list for multiple group models). Use in
conjunction with Sigma to define effect and effect.measure.

Sigma observed (or population) covariance matrix (a list for multiple group models).
Use in conjunction with SigmaHat to define effect and effect.measure.

muHat model implied mean vector

mu observed (or population) mean vector
fittingFunction

one of 'ML' (default), 'WLS', 'DWLS', 'ULS'. Defines the discrepancy function
used to obtain Fmin.

simulatedPower whether to perform a simulated (TRUE) (rather than analytical, FALSE) power
analysis.

modelH0 for simulated power: lavaan model string defining the (incorrect) analysis model.

nReplications for simulated power: number of random samples drawn.
minConvergenceRate

for simulated power: the minimum convergence rate required

lavOptions for simulated power: a list of additional options passed to lavaan, e. g., list(estimator
= 'mlm') to request robust ML estimation.

Value

list
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semPower semPower: Power analyses for structural equation models (SEM).

Description

semPower allows for performing a-priori, post-hoc, and compromise power-analyses for structural
equation models (SEM).

Perform a power analysis. This is a wrapper function for a-priori, post-hoc, and compromise power
analyses.

Usage

semPower(type, ...)

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.

... other parameters related to the specific type of power analysis requested.

Details

• A-priori power analysis semPower.aPriori computes the required N, given an effect, alpha,
power, and the model df

• Post-hoc power analysis semPower.postHoc computes the achieved power, given an effect,
alpha, N, and the model df

• Compromise power analysis semPower.compromise computes the implied alpha and power,
given an effect, the alpha/beta ratio, N, and the model df

In SEM, the discrepancy between H0 and H1 (the magnitude of effect) refers to the difference in
fit between two models. If only one model is defined (which is the default), power refers to the
global chi-square test. If both models are explicitly defined, power is computed for nested model
tests. semPower allows for expressing the magnitude of effect by one of the following measures:
F0, RMSEA, Mc, GFI, or AGFI.

Alternatively, the implied effect can also be computed from the discrepancy between the population
(or a certain model-implied) covariance matrix defining H0 and the hypothesized (model-implied)
covariance matrix from a nested model defining H1. See the examples below how to use this feature
in conjunction with lavaan.

Value

list

Author(s)

Morten Moshagen <morten.moshagen@uni-ulm.de>
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See Also

Useful links:

• https://github.com/moshagen/semPower

• Report bugs at https://github.com/moshagen/semPower/issues

semPower.aPriori(), semPower.postHoc(), semPower.compromise()

Examples

# a-priori power analyses using rmsea = .05 a target power (1-beta) of .80
ap1 <- semPower.aPriori(0.05, 'RMSEA', alpha = .05, beta = .20, df = 200)
summary(ap1)
# generic version
gap1 <- semPower(type = 'a-priori', 0.05, 'RMSEA', alpha = .05, beta = .20, df = 200)
summary(gap1)
# a-priori power analyses using f0 = .75 and a target power of .95
ap2 <- semPower.aPriori(0.75, 'F0', alpha = .05, power = .95, df = 200)
summary(ap2)
# create a plot showing how power varies by N (given a certain effect)
semPower.powerPlot.byN(.05, 'RMSEA', alpha=.05, df=200, power.min=.05, power.max=.99)
# post-hoc power analyses using rmsea = .08
ph <- semPower.postHoc(.08, 'RMSEA', alpha = .05, N = 250, df = 50)
summary(ph)
# generic version
gph1 <- semPower(type = 'post-hoc', .08, 'RMSEA', alpha = .05, N = 250, df = 50)
summary(gph1)
# create a plot showing how power varies by the magnitude of effect (given a certain N)
semPower.powerPlot.byEffect('RMSEA', alpha=.05, N = 100, df=200, effect.min=.001, effect.max=.10)
# compromise power analyses using rmsea = .08 and an abratio of 2
cp <- semPower.compromise(.08, 'RMSEA', abratio = 2, N = 1000, df = 200)
summary(cp)
# generic version
gcp <- semPower(type = 'compromise', .08, 'RMSEA', abratio = 2, N = 1000, df = 200)
summary(gcp)

# use lavaan to define effect through covariance matrices:
## Not run:
library(lavaan)

# define population model (= H1)
model.pop <- '
f1 =~ .8*x1 + .7*x2 + .6*x3
f2 =~ .7*x4 + .6*x5 + .5*x6
f1 ~~ 1*f1
f2 ~~ 1*f2
f1 ~~ 0.5*f2
'
# define (wrong) H0 model
model.h0 <- '
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6

https://github.com/moshagen/semPower
https://github.com/moshagen/semPower/issues
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f1 ~~ 0*f2
'

# get population covariance matrix; equivalent to a perfectly fitting H1 model
cov.h1 <- fitted(sem(model.pop))$cov
# get covariance matrix as implied by H0 model
res.h0 <- sem(model.h0, sample.cov = cov.h1, sample.nobs = 1000,

likelihood='wishart', sample.cov.rescale = F)
df <- res.h0@test[[1]]$df
cov.h0 <- fitted(res.h0)$cov

## do power analyses

# post-hoc
ph <- semPower.postHoc(SigmaHat = cov.h0, Sigma = cov.h1, alpha = .05, N = 1000, df = df)
summary(ph)
# => Power to reject the H1 model is > .9999 (1-beta = 1-1.347826e-08) with N = 1000 at alpha=.05

# compare:
ph$fmin * (ph$N-1)
fitmeasures(res.h1, 'chisq')
# => expected chi-square matches empirical chi-square

# a-priori
ap <- semPower.aPriori(SigmaHat = cov.h0, Sigma = cov.h1, alpha = .05, power = .80, df = df)
summary(ap)
# => N = 194 gives a power of ~80% to reject the H1 model at alpha = .05

# compromise
cp <- semPower.compromise(SigmaHat = cov.h0, Sigma = cov.h1, abratio = 1, N = 1000, df = df)
summary(cp)
# => A critical Chi-Squared of 33.999 gives balanced alpha-beta
# error probabilities of alpha=beta=0.000089 with N = 1000.

## End(Not run)

## Not run:

ap <- semPower(type = 'a-priori',
effect = .08, effect.measure = "RMSEA",
alpha = .05, beta = .05, df = 200)

summary(ph)

ph <- semPower(type = 'post-hoc',
effect = .08, effect.measure = "RMSEA",
alpha = .05, N = 250, df = 200)

summary(ph)

cp <- semPower(type = 'compromise',
effect = .08, effect.measure = "RMSEA",
abratio = 1, N = 250, df = 200)

summary(ph)
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## End(Not run)

semPower.aPriori semPower.aPriori

Description

Performs an a-priori power analysis, i. e., determines the required sample size given alpha, beta (or
power: 1 - beta), df, and a measure of effect.

Usage

semPower.aPriori(
effect = NULL,
effect.measure = NULL,
alpha,
beta = NULL,
power = NULL,
N = NULL,
df = NULL,
p = NULL,
SigmaHat = NULL,
Sigma = NULL,
muHat = NULL,
mu = NULL,
fittingFunction = "ML",
simulatedPower = FALSE,
modelH0 = NULL,
modelH1 = NULL,
simOptions = NULL,
lavOptions = NULL,
lavOptionsH1 = lavOptions,
...

)

Arguments

effect effect size specifying the discrepancy between the null hypothesis (H0) and the
alternative hypothesis (H1). A list for multiple group models; a vector of length
2 for effect-size differences. Can be NULL if Sigma and SigmaHat are set.

effect.measure type of effect, one of "F0", "RMSEA", "Mc", "GFI", "AGFI". Can be NULL if
Sigma and SigmaHat are set.

alpha alpha error

beta beta error; set either beta or power.

power power (= 1 - beta); set either beta or power.
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N a list of sample weights for multiple group power analyses, e.g. list(1, 2) to
make the second group twice as large as the first one.

df the model degrees of freedom. See semPower.getDf() for a way to obtain the
df of a specific model.

p the number of observed variables, only required for effect.measure = "GFI"
and effect.measure = "AGFI".

SigmaHat can be used instead of effect and effect.measure: model implied covariance
matrix (a list for multiple group models). Used in conjunction with Sigma to
define the effect.

Sigma can be used instead of effect and effect.measure: population covariance
matrix (a list for multiple group models). Used in conjunction with SigmaHat
to define effect.

muHat can be used instead of effect and effect.measure: model implied mean vec-
tor. Used in conjunction with mu. If NULL, no meanstructure is involved.

mu can be used instead of effect and effect.measure: observed (or population)
mean vector. Use in conjunction with muHat. If NULL, no meanstructure is
involved.

fittingFunction

one of 'ML' (default), 'WLS', 'DWLS', 'ULS'. Defines the discrepancy function
used to obtain Fmin.

simulatedPower whether to perform a simulated (TRUE, rather than analytical, FALSE) power anal-
ysis. Only available if Sigma and modelH0 are defined.

modelH0 for simulated power: lavaan model string defining the (incorrect) analysis model.

modelH1 for simulated power: lavaan model string defining the comparison model. If
omitted, the saturated model is the comparison model.

simOptions a list of additional options specifying simulation details, see simulate() for
details.

lavOptions a list of additional options passed to lavaan, e. g., list(estimator = 'mlm')
to request robust ML estimation.

lavOptionsH1 alternative options passed to lavaan that are only used for the H1 model. If
NULL, identical to lavOptions. Probably only useful for multigroup models.

... other parameters related to plots, notably plotShow, plotShowLabels, and plotLinewidth.

Value

Returns a list. Use summary() to obtain formatted results.

See Also

semPower.postHoc() semPower.compromise()
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Examples

## Not run:
# determine the required sample size to reject a model showing misspecifications
# amounting to RMSEA >= .05 on 200 df with a power of 95 % on alpha = .05
ap <- semPower.aPriori(effect = .05, effect.measure = "RMSEA",

alpha = .05, beta = .05, df = 200)
summary(ap)

# use f0 as effect size metric
ap <- semPower.aPriori(effect = .15, effect.measure = "F0",

alpha = .05, power = .80, df = 200)
summary(ap)

# power analysis for to detect the difference between a model (with df = 200) exhibiting RMSEA = .05
# and a model (with df = 210) exhibiting RMSEA = .06.
ap <- semPower.aPriori(effect = c(.05, .06), effect.measure = "RMSEA",

alpha = .05, power = .80, df = c(200, 210))
summary(ap)

# power analysis based on SigmaHat and Sigma (nonsense example)
ap <- semPower.aPriori(alpha = .05, beta = .05, df = 5,

SigmaHat = diag(4), Sigma = cov(matrix(rnorm(4*1000), ncol=4)))
summary(ap)

# multiple group example
ap <- semPower.aPriori(effect = list(.05, .10), effect.measure = "F0",

alpha = .05, power = .80, df = 100,
N = list(1, 1))

summary(ap)

# simulated power analysis (nonsense example)
ap <- semPower.aPriori(alpha = .05, beta = .05, df = 200,

SigmaHat = list(diag(4), diag(4)),
Sigma = list(cov(matrix(rnorm(4*1000), ncol=4)),

cov(matrix(rnorm(4*1000), ncol=4))),
simulatedPower = TRUE, nReplications = 100)

summary(ap)

## End(Not run)

semPower.compromise semPower.compromise

Description

Performs a compromise power analysis, i. e., determines the critical chi-square along with the
implied alpha error and beta error , given the alpha/beta ratio, a measure of effect, N, and df
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Usage

semPower.compromise(
effect = NULL,
effect.measure = NULL,
abratio = 1,
N,
df = NULL,
p = NULL,
SigmaHat = NULL,
Sigma = NULL,
muHat = NULL,
mu = NULL,
fittingFunction = "ML",
...

)

Arguments

effect effect size specifying the discrepancy between the null hypothesis (H0) and the
alternative hypothesis (H1). A list for multiple group models; a vector of length
2 for effect-size differences. Can be NULL if Sigma and SigmaHat are set.

effect.measure type of effect, one of "F0", "RMSEA", "Mc", "GFI", "AGFI". Can be NULL if
Sigma and SigmaHat are set.

abratio the ratio of alpha to beta

N the number of observations (a list for multiple group models)

df the model degrees of freedom. See semPower.getDf() for a way to obtain the
df of a specific model.

p the number of observed variables, only required for effect.measure = "GFI"
and effect.measure = "AGFI".

SigmaHat can be used instead of effect and effect.measure: model implied covariance
matrix (a list for multiple group models). Used in conjunction with Sigma to
define the effect.

Sigma can be used instead of effect and effect.measure: population covariance
matrix (a list for multiple group models). Used in conjunction with SigmaHat
to define effect.

muHat can be used instead of effect and effect.measure: model implied mean vec-
tor. Used in conjunction with mu. If NULL, no meanstructure is involved.

mu can be used instead of effect and effect.measure: observed (or population)
mean vector. Use in conjunction with muHat. If NULL, no meanstructure is
involved.

fittingFunction

one of 'ML' (default), 'WLS', 'DWLS', 'ULS'. Defines the discrepancy function
used to obtain Fmin.

... other parameters related to plots, notably plotShow, plotShowLabels, and plotLinewidth.
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Value

Returns a list. Use summary() to obtain formatted results.

See Also

semPower.aPriori() semPower.postHoc()

Examples

## Not run:

# determine the critical value such that alpha = beta when distinguishing a model
# involving 200 df exhibiting an RMSEA >= .08 from a perfectly fitting model.
cp <- semPower.compromise(effect = .08, effect.measure = "RMSEA",

abratio = 1, N = 250, df = 200)
summary(cp)

## End(Not run)

semPower.genSigma semPower.genSigma

Description

Generate a covariance matrix (and a mean vector) and associated lavaan model strings based on
CFA or SEM model matrices.

Usage

semPower.genSigma(
Lambda = NULL,
Phi = NULL,
Beta = NULL,
Psi = NULL,
Theta = NULL,
tau = NULL,
Alpha = NULL,
...

)

Arguments

Lambda factor loading matrix. A list for multiple group models. Can also be specified
using various shortcuts, see genLambda().

Phi for CFA models, factor correlation (or covariance) matrix or single number giv-
ing the correlation between all factors or NULL for uncorrelated factors. A list
for multiple group models.
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Beta for SEM models, matrix of regression slopes between latent variables (all-y no-
tation). A list for multiple group models.

Psi for SEM models, variance-covariance matrix of latent residuals when Beta is
specified. If NULL, a diagonal matrix is assumed. A list for multiple group
models.

Theta variance-covariance matrix between manifest residuals. If NULL and Lambda is
not a square matrix, Theta is diagonal so that the manifest variances are 1. If
NULL and Lambda is square, Theta is 0. A list for multiple group models.

tau vector of intercepts. If NULL and Alpha is set, these are assumed to be zero. If
both Alpha and tau are NULL, no means are returned. A list for multiple group
models.

Alpha vector of factor means. If NULL and tau is set, these are assumed to be zero. If
both Alpha and tau are NULL, no means are returned. A list for multiple group
models.

... other

Details

This function generates the variance-covariance matrix of the p observed variables Σ and their
means µ via a confirmatory factor (CFA) model or a more general structural equation model.

In the CFA model,
Σ = ΛΦΛ′ +Θ

where Λ is the p ·m loading matrix, Φ is the variance-covariance matrix of the m factors, and Θ is
the residual variance-covariance matrix of the observed variables. The means are

µ = τ + Λα

with the p indicator intercepts τ and the m factor means α.

In the structural equation model,

Σ = Λ(I −B)−1Ψ[(I −B)−1]′Λ′ +Θ

where B is the m · m matrix containing the regression slopes and Ψ is the (residual) variance-
covariance matrix of the m factors. The means are

µ = τ + Λ(I −B)−1α

In either model, the meanstructure can be omitted, leading to factors with zero means and zero
intercepts.

When Λ = I , the models above do not contain any factors and reduce to ordinary regression or path
models.

If Phi is defined, a CFA model is used, if Beta is defined, a structural equation model. When both
Phi and Beta are NULL, a CFA model is used with Φ = I , i. e., uncorrelated factors. When Phi is a
single number, all factor correlations are equal to this number.

When Beta is defined and Psi is NULL, Ψ = I .
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When Theta is NULL, Θ is a diagonal matrix with all elements such that the variances of the observed
variables are 1. When there is only a single observed indicator for a factor, the corresponding
element in Θ is set to zero.

Instead of providing the loading matrix Λ via Lambda, there are several shortcuts (see genLambda()):

• loadings: defines the primary loadings for each factor in a list structure, e. g. loadings =
list(c(.5, .4, .6), c(.8, .6, .6, .4)) defines a two factor model with three indicators
loading on the first factor by .5, , 4., and .6, and four indicators loading in the second factor
by .8, .6, .6, and .4.

• nIndicator: used in conjunction with loadM or loadMinmax, defines the number of indicators
by factor, e. g., nIndicator = c(3, 4) defines a two factor model with three and four indica-
tors for the first and second factor, respectively. nIndicator can also be a single number to
define the same number of indicators for each factor.

• loadM: defines the mean loading either for all indicators (if a single number is provided) or
separately for each factor (if a vector is provided), e. g. loadM = c(.5, .6) defines the mean
loadings of the first factor to equal .5 and those of the second factor do equal .6

• loadSD: used in conjunction with loadM, defines the standard deviations of the loadings. If
omitted or NULL, the standard deviations are zero. Otherwise, the loadings are sampled from
a normal distribution with N(loadM, loadSD) for each factor.

• loadMinMax: defines the minimum and maximum loading either for all factors or separately
for each factor (as a list). The loadings are then sampled from a uniform distribution. For
example, loadMinMax = list(c(.4, .6), c(.4, .8)) defines the loadings for the first factor
lying between .4 and .6, and those for the second factor between .4 and .8.

Value

Returns a list (or list of lists for multiple group models) containing the following components:

Sigma implied variance-covariance matrix.

mu implied means

Lambda loading matrix

Phi covariance matrix of latent variables

Beta matrix of regression slopes

Psi residual covariance matrix of latent variables

Theta residual covariance matrix of observed variables

tau intercepts

Alpha factor means

modelPop lavaan model string defining the population model

modelTrue lavaan model string defining the "true" analysis model freely estimating all
non-zero parameters.

modelTrueCFA lavaan model string defining a model similar to modelTrue, but purely CFA
based and thus omitting any regression relationships.
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Examples

## Not run:
# single factor model with five indicators each loading by .5
gen <- semPower.genSigma(nIndicator = 5, loadM = .5)
gen$Sigma # implied covariance matrix
gen$modelTrue # analysis model string
gen$modelPop # population model string

# orthogonal two factor model with four and five indicators each loading by .5
gen <- semPower.genSigma(nIndicator = c(4, 5), loadM = .5)

# correlated (r = .25) two factor model with
# four indicators loading by .7 on the first factor
# and five indicators loading by .6 on the second factor
gen <- semPower.genSigma(Phi = .25, nIndicator = c(4, 5), loadM = c(.7, .6))

# correlated three factor model with variying indicators and loadings,
# factor correlations according to Phi
Phi <- matrix(c(

c(1.0, 0.2, 0.5),
c(0.2, 1.0, 0.3),
c(0.5, 0.3, 1.0)

), byrow = TRUE, ncol = 3)
gen <- semPower.genSigma(Phi = Phi, nIndicator = c(3, 4, 5),

loadM = c(.7, .6, .5))

# same as above, but using a factor loadings matrix
Lambda <- matrix(c(

c(0.8, 0.0, 0.0),
c(0.7, 0.0, 0.0),
c(0.6, 0.0, 0.0),
c(0.0, 0.7, 0.0),
c(0.0, 0.8, 0.0),
c(0.0, 0.5, 0.0),
c(0.0, 0.4, 0.0),
c(0.0, 0.0, 0.5),
c(0.0, 0.0, 0.4),
c(0.0, 0.0, 0.6),
c(0.0, 0.0, 0.4),
c(0.0, 0.0, 0.5)

), byrow = TRUE, ncol = 3)
gen <- semPower.genSigma(Phi = Phi, Lambda = Lambda)

# same as above, but using a reduced loading matrix, i. e.
# only define the primary loadings for each factor
loadings <- list(

c(0.8, 0.7, 0.6),
c(0.7, 0.8, 0.5, 0.4),
c(0.5, 0.4, 0.6, 0.4, 0.5)

)
gen <- semPower.genSigma(Phi = Phi, loadings = loadings)
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# Provide Beta for a three factor model
# with 3, 4, and 5 indicators
# loading by .6, 5, and .4, respectively.
Beta <- matrix(c(

c(0.0, 0.0, 0.0),
c(0.3, 0.0, 0.0), # f2 = .3*f1
c(0.2, 0.4, 0.0) # f3 = .2*f1 + .4*f2
), byrow = TRUE, ncol = 3)

gen <- semPower.genSigma(Beta = Beta, nIndicator = c(3, 4, 5),
loadM = c(.6, .5, .4))

# two group example:
# correlated two factor model (r = .25 and .35 in the first and second group,
# respectively)
# the first factor is indicated by four indicators loading by .7 in the first
# and .5 in the second group,
# the second factor is indicated by five indicators loading by .6 in the first
# and .8 in the second group,
# all item intercepts are zero in both groups,
# the latent means are zero in the first group
# and .25 and .10 in the second group.
gen <- semPower.genSigma(Phi = list(.25, .35),

nIndicator = list(c(4, 5), c(4, 5)),
loadM = list(c(.7, .6), c(.5, .8)),
tau = list(rep(0, 9), rep(0, 9)),
Alpha = list(c(0, 0), c(.25, .10))
)

gen[[1]]$Sigma # implied covariance matrix group 1
gen[[2]]$Sigma # implied covariance matrix group 2
gen[[1]]$mu # implied means group 1
gen[[2]]$mu # implied means group 2

## End(Not run)

semPower.getDf semPower.getDf

Description

Determines the degrees of freedom of a given model provided as lavaan model string. This only
returns the regular df and does not account for approaches using scaled df. This requires the lavaan
package.

Usage

semPower.getDf(lavModel, nGroups = NULL, group.equal = NULL)
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Arguments

lavModel the lavaan model string. Can also include (restrictions on) defined parameters.

nGroups for multigroup models: the number of groups.

group.equal for multigroup models: vector defining the type(s) of cross-group equality con-
straints following the lavaan conventions (loadings, intercepts, means, residuals,
residual.covariances, lv.variances, lv.covariances, regressions).

Value

Returns the df of the model.

Examples

## Not run:
lavModel <- '
f1 =~ x1 + x2 + x3 + x4
f2 =~ x5 + x6 + x7 + x8
f3 =~ y1 + y2 + y3
f3 ~ f1 + f2
'
semPower.getDf(lavModel)

# multigroup version
semPower.getDf(lavModel, nGroups = 3)
semPower.getDf(lavModel, nGroups = 3, group.equal = c('loadings'))
semPower.getDf(lavModel, nGroups = 3, group.equal = c('loadings', 'intercepts'))

## End(Not run)

semPower.postHoc semPower.postHoc

Description

Performs a post-hoc power analysis, i. e., determines power (= 1 - beta) given alpha, df, and and a
measure of effect.

Usage

semPower.postHoc(
effect = NULL,
effect.measure = NULL,
alpha,
N,
df = NULL,
p = NULL,
SigmaHat = NULL,
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Sigma = NULL,
muHat = NULL,
mu = NULL,
fittingFunction = "ML",
simulatedPower = FALSE,
modelH0 = NULL,
modelH1 = NULL,
simOptions = NULL,
lavOptions = NULL,
lavOptionsH1 = lavOptions,
...

)

Arguments

effect effect size specifying the discrepancy between the null hypothesis (H0) and the
alternative hypothesis (H1). A list for multiple group models; a vector of length
2 for effect-size differences. Can be NULL if Sigma and SigmaHat are set.

effect.measure type of effect, one of "F0", "RMSEA", "Mc", "GFI", "AGFI". Can be NULL if
Sigma and SigmaHat are set.

alpha alpha error

N the number of observations (a list for multiple group models)

df the model degrees of freedom. See semPower.getDf() for a way to obtain the
df of a specific model.

p the number of observed variables, only required for effect.measure = "GFI"
and effect.measure = "AGFI".

SigmaHat can be used instead of effect and effect.measure: model implied covariance
matrix (a list for multiple group models). Used in conjunction with Sigma to
define the effect.

Sigma can be used instead of effect and effect.measure: population covariance
matrix (a list for multiple group models). Used in conjunction with SigmaHat
to define effect.

muHat can be used instead of effect and effect.measure: model implied mean vec-
tor. Used in conjunction with mu. If NULL, no meanstructure is involved.

mu can be used instead of effect and effect.measure: observed (or population)
mean vector. Use in conjunction with muHat. If NULL, no meanstructure is
involved.

fittingFunction

one of 'ML' (default), 'WLS', 'DWLS', 'ULS'. Defines the discrepancy function
used to obtain Fmin.

simulatedPower whether to perform a simulated (TRUE, rather than analytical, FALSE) power anal-
ysis. Only available if Sigma and modelH0 are defined.

modelH0 for simulated power: lavaan model string defining the (incorrect) analysis model.

modelH1 for simulated power: lavaan model string defining the comparison model. If
omitted, the saturated model is the comparison model.
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simOptions a list of additional options specifying simulation details, see simulate() for
details.

lavOptions a list of additional options passed to lavaan, e. g., list(estimator = 'mlm')
to request robust ML estimation.

lavOptionsH1 alternative options passed to lavaan that are only used for the H1 model. If
NULL, identical to lavOptions. Probably only useful for multigroup models.

... other parameters related to plots, notably plotShow, plotShowLabels, and plotLinewidth.

Value

Returns a list. Use summary() to obtain formatted results.

See Also

semPower.aPriori() semPower.compromise()

Examples

## Not run:
# achieved power with a sample of N = 250 to detect misspecifications corresponding
# to RMSEA >= .05 on 200 df on alpha = .05.
ph <- semPower.postHoc(effect = .05, effect.measure = "RMSEA",

alpha = .05, N = 250, df = 200)
summary(ph)

# power analysis for to detect the difference between a model (with df = 200) exhibiting RMSEA = .05
# and a model (with df = 210) exhibiting RMSEA = .06.
ph <- semPower.postHoc(effect = c(.05, .06), effect.measure = "RMSEA",

alpha = .05, N = 500, df = c(200, 210))
summary(ph)

# multigroup example
ph <- semPower.postHoc(effect = list(.02, .01), effect.measure = "F0",

alpha = .05, N = list(250, 350), df = 200)
summary(ph)

# power analysis based on SigmaHat and Sigma (nonsense example)
ph <- semPower.postHoc(alpha = .05, N = 1000, df = 5,

SigmaHat = diag(4),
Sigma = cov(matrix(rnorm(4*1000), ncol=4)))

summary(ph)

# simulated power analysis (nonsense example)
ph <- semPower.aPriori(alpha = .05, N = 500, df = 200,

SigmaHat = list(diag(4), diag(4)),
Sigma = list(cov(matrix(rnorm(4*1000), ncol=4)),

cov(matrix(rnorm(4*1000), ncol=4))),
simulatedPower = TRUE, nReplications = 100)

summary(ph)

## End(Not run)
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semPower.powerARMA semPower.powerARMA

Description

Convenience function for performing power analysis on effects in an ARMA model. This requires
the lavaan package.

Usage

semPower.powerARMA(
type,
comparison = "restricted",
nWaves = NULL,
autoregEffects = NULL,
autoregLag1 = autoregEffects,
autoregLag2 = NULL,
autoregLag3 = NULL,
mvAvgLag1 = NULL,
mvAvgLag2 = NULL,
mvAvgLag3 = NULL,
means = NULL,
variances = NULL,
waveEqual = NULL,
groupEqual = NULL,
nullEffect = NULL,
nullWhich = NULL,
nullWhichGroups = NULL,
invariance = TRUE,
autocorResiduals = TRUE,
...

)

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.

comparison comparison model, one of 'saturated' or 'restricted' (the default). This
determines the df for power analyses. 'saturated' provides power to reject
the model when compared to the saturated model, so the df equal the one of
the hypothesized model. 'restricted' provides power to reject the hypothe-
sized model when compared to an otherwise identical model that just omits the
restrictions defined in nullEffect, so the df equal the number of restrictions.

nWaves number of waves, must be >= 2.

autoregEffects vector of the lag-1 autoregressive effects, e.g. c(.7, .6) for autoregressive ef-
fects of .7 for X1 -> X2 and .6 for X2 -> X3. Must be a list for multiple groups
models.
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autoregLag1 alternative name for autoregEffects.

autoregLag2 vector of lag-2 effects, e.g. c(.2, .1) for lag-2 effects of .2 for X1 -> X3 and .1
for X2 -> X4.

autoregLag3 vector of lag-3 effects, e.g. c(.2) for a lag-3 effect of .2 for X1 -> X4.

mvAvgLag1 vector of the lag-1 moving average parameters, e.g. c(.4, .3) for moving aver-
age parameters of .4 for N1 -> X2 and .3 for N2 -> X3. Must be a list for multiple
groups models.

mvAvgLag2 vector of the lag-2 moving average parameters, e.g. c(.3, .2) for moving av-
erage parameters effects of .2 for N1 -> X3 and .2 for N2 -> X4. Must be a list
for multiple groups models.

mvAvgLag3 vector of the lag-3 moving average parameters, e.g. c(.2) for a moving average
parameter of .2 for N1 -> X4. Must be a list for multiple groups models.

means vector of means of X. May be NULL for no meanstructure.

variances vector of variances of the noise factors N (= residual variances of X).

waveEqual parameters that are assumed to be equal across waves in both the H0 and the
H1 model. Because ARMA models are likely not identified when no such con-
straints are imposed, this may not be empty. Valid are 'autoreg', 'autoregLag2',
and 'autoregLag3' for autoregressive effects, 'mvAvg', 'mvAvgLag2', and
'mvAvgLag3' for moving average effects, var for the variance of the noise fac-
tors (starting at wave 2), mean for the conditional means of X (starting at wave
2).

groupEqual parameters that are restricted across groups in both the H0 and the H1 model,
when nullEffect implies a multiple group model. Valid are autoreg, mvAvg,
var, mean.

nullEffect defines the hypothesis of interest. Valid are the same arguments as in waveEqual
and additionally 'autoreg = 0', 'autoregLag2 = 0', 'autoregLag3 = 0', 'mvAvg
= 0', 'mvAvgLag2 = 0', 'mvAvgLag3 = 0', to constrain the autoregressive or
moving average effects to zero, and 'autoregA = autoregB', 'mvAvgA = mvAvgB',
'varA = varB', 'meanA = meanB' to constrain the autoregressive (lag-1) effects,
moving average (lag-1) effects, variances of the noise factors, or means of the X
to be equal across groups.

nullWhich used in conjunction with nullEffect to identify which parameter to constrain
when there are multiple waves and parameters are not constant across waves. For
example, nullEffect = 'autoreg = 0' with nullWhich = 2 would constrain
the second autoregressive effect for X to zero.

nullWhichGroups

for hypothesis involving cross-groups comparisons, vector indicating the groups
for which equality constrains should be applied, e.g. c(1, 3) to constrain the
relevant parameters of the first and the third group. If NULL, all groups are con-
strained to equality.

invariance whether metric invariance over waves is assumed (TRUE, the default) or not
(FALSE). When means are part of the model, invariant intercepts are also as-
sumed. This affects the df when the comparison model is the saturated model
and generally affects power (also for comparisons to the restricted model).
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autocorResiduals

whether the residuals of the indicators of latent variables are autocorrelated over
waves (TRUE, the default) or not (FALSE). This affects the df when the compari-
son model is the saturated model and generally affects power (also for compar-
isons to the restricted model).

... mandatory further parameters related to the specific type of power analysis re-
quested, see semPower.aPriori(), semPower.postHoc(), and semPower.compromise(),
and parameters specifying the factor model. The order of factors is (X1, X2, ...,
X_nWaves). See details.

Details

This function performs a power analysis to reject various hypotheses arising in models with au-
toregressive and moving average parameters (ARMA models), where one variable X is repeatedly
assessed at different time points (nWaves), and autoregressive (lag-1 effects; X1 -> X2 -> X3, and
optionally lag-2 and lag-3) effects, and moving average parameters (N1 -> X2, or equivalently for
lag-2 and lag-3 effects) are assumed.

Relevant hypotheses in arising in an ARMA model are:

• autoreg: Tests the hypothesis that the autoregressive lag-1 effects are equal across waves
(stationarity of autoregressive lag-1 effects).

• autoregLag2: Tests the hypothesis that the autoregressive lag-2 effects are equal across waves
(stationarity of autoregressive lag-2 effects).

• autoregLag3: Tests the hypothesis that the autoregressive lag-3 effects are equal across waves
(stationarity of autoregressive lag-3 effects).

• mvAvg: Tests the hypothesis that the moving average lag-1 parameters are equal across waves
(stationarity of moving average lag-1 effects).

• mvAvgLag2: Tests the hypothesis that the moving average lag-2 parameters are equal across
waves (stationarity of moving average lag-2 effects).

• mvAvgLag3: Tests the hypothesis that the moving average lag-3 parameters are equal across
waves (stationarity of moving average lag-3 effects).

• var: Tests the hypothesis that the variances of the noise factors N (= the residual variances of
X) are equal across waves 2 to nWaves (stationarity of variance).

• mean: Tests the hypothesis that the conditional means of X are equal across waves 2 to nWaves
(stationarity of means).

• autoreg = 0, autoregLag2 = 0, autoregLag3 = 0: Tests the hypothesis that the autoregres-
sive effects of the specified lag is zero.

• mvAvg = 0, mvAvgLag2 = 0, mvAvgLag3 = 0: Tests the hypothesis that the moving average pa-
rameter of the specified lag is zero.

• autoregA = autoregB: Tests the hypothesis that the autoregressive lag-1 effect is equal across
groups.

• mvAvgA = mvAvgB: Tests the hypothesis that the moving average lag-1 parameter is equal across
groups.

• varA = varB: Tests the hypothesis that the variance of the noise factors are equal across groups.

• meanA = meanB: Tests the hypothesis that latent means are equal across groups.
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For hypotheses regarding a simple autoregression, see semPower.powerAutoreg(). For hypotheses
regarding a CLPM structure, see semPower.powerCLPM(). For hypotheses regarding longitudinal
measurement invariance, see semPower.powerLI().

Beyond the arguments explicitly contained in the function call, additional arguments are required
specifying the factor model and the requested type of power analysis.

Additional arguments related to the definition of the factor model:

• Lambda: The factor loading matrix (with the number of columns equaling the number of
factors).

• loadings: Can be used instead of Lambda: Defines the primary loadings for each factor in
a list structure, e. g. loadings = list(c(.5, .4, .6), c(.8, .6, .6, .4)) defines a two
factor model with three indicators loading on the first factor by .5, , 4., and .6, and four
indicators loading on the second factor by .8, .6, .6, and .4.

• nIndicator: Can be used instead of Lambda: Used in conjunction with loadM. Defines the
number of indicators by factor, e. g., nIndicator = c(3, 4) defines a two factor model with
three and four indicators for the first and second factor, respectively. nIndicator can also be
a single number to define the same number of indicators for each factor.

• loadM: Can be used instead of Lambda: Used in conjunction with nIndicator. Defines the
loading either for all indicators (if a single number is provided) or separately for each factor
(if a vector is provided), e. g. loadM = c(.5, .6) defines the loadings of the first factor to
equal .5 and those of the second factor do equal .6.

So either Lambda, or loadings, or nIndicator and loadM need to be defined. Note that neither
may contain the noise factors. If the model contains observed variables only, use Lambda = diag(x)
where x is the number of variables.

The order of the factors is (X1, X2, ..., X_nWaves).

Additional arguments related to the requested type of power analysis:

• alpha: The alpha error probability. Required for type = 'a-priori' and type = 'post-hoc'.

• Either beta or power: The beta error probability and the statistical power (1 - beta), respec-
tively. Only for type = 'a-priori'.

• N: The sample size. Always required for type = 'post-hoc' and type = 'compromise'. For
type = 'a-priori' and multiple group analysis, N is a list of group weights.

• abratio: The ratio of alpha to beta. Only for type = 'compromise'.

If a simulated power analysis (simulatedPower = TRUE) is requested, optional arguments can be
provided as a list to simOptions:

• nReplications: The targeted number of simulation runs. Defaults to 250, but larger numbers
greatly improve accuracy at the expense of increased computation time.

• minConvergenceRate: The minimum convergence rate required, defaults to .5. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.

• type: specifies whether the data should be generated from a population assuming multivari-
ate normality ('normal'; the default), or based on an approach generating non-normal data
('IG', 'mnonr', 'RC', or 'VM'). The approaches generating non-normal data require addi-
tional arguments detailed below.



semPower.powerARMA 57

• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of MCAR (the default), MAR, or NMAR.

• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doSNOW package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.

type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.

type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors. This requires the semTools package.

Value

a list. Use the summary method to obtain formatted results. Beyond the results of the power analysis
and a number of effect size measures, the list contains the following components:

Sigma the population covariance matrix. A list for multiple group models.

mu the population mean vector or NULL when no meanstructure is involved. A list
for multiple group models.

SigmaHat the H0 model implied covariance matrix. A list for multiple group models.

muHat the H0 model implied mean vector or NULL when no meanstructure is involved.
A list for multiple group models.

modelH0 lavaan H0 model string.

modelH1 lavaan H1 model string or NULL when the comparison refers to the saturated
model.

simRes detailed simulation results when a simulated power analysis (simulatedPower
= TRUE) was performed.

See Also

semPower.genSigma() semPower.aPriori() semPower.postHoc() semPower.compromise()
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Examples

## Not run:
# Determine required N in a 10-wave ARMA model
# to detect that the autoregressive effects differ across waves
# with a power of 80% on alpha = 5%, where
# X is measured by 3 indicators loading by .5 each (at each wave), and
# the autoregressive effects vary between .5 and .7, and
# the moving average parameters are .3 at each wave and
# are assumed to be constant across waves (in both the H0 and the H1 model) and
# there are no lagged effects, and
# metric invariance and autocorrelated residuals are assumed
powerARMA <- semPower.powerARMA(

'a-priori', alpha = .05, power = .80,
nWaves = 10,
autoregLag1 = c(.5, .7, .6, .5, .7, .6, .6, .5, .6),
mvAvgLag1 = rep(.3, 9),
variances = rep(1, 10),
waveEqual = c('mvAvg'),
nullEffect = 'autoreg',
nIndicator = rep(3, 10), loadM = .5,
invariance = TRUE,
autocorResiduals = TRUE

)

# show summary
summary(powerARMA)
# optionally use lavaan to verify the model was set-up as intended
lavaan::sem(powerARMA$modelH1, sample.cov = powerARMA$Sigma,

sample.nobs = powerARMA$requiredN,
sample.cov.rescale = FALSE)

lavaan::sem(powerARMA$modelH0, sample.cov = powerARMA$Sigma,
sample.nobs = powerARMA$requiredN,
sample.cov.rescale = FALSE)

# same as above, but determine power with N = 250 on alpha = .05
powerARMA <- semPower.powerARMA(

'post-hoc', alpha = .05, N = 250,
nWaves = 10,
autoregLag1 = c(.5, .7, .6, .5, .7, .6, .6, .5, .6),
mvAvgLag1 = rep(.3, 9),
variances = rep(1, 10),
waveEqual = c('mvAvg'),
nullEffect = 'autoreg',
nIndicator = rep(3, 10), loadM = .5,
invariance = TRUE,
autocorResiduals = TRUE

)

# same as above, but determine the critical chi-square with N = 250 so that alpha = beta
powerARMA <- semPower.powerARMA(

'compromise', abratio = 1, N = 250,
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nWaves = 10,
autoregLag1 = c(.5, .7, .6, .5, .7, .6, .6, .5, .6),
mvAvgLag1 = rep(.3, 9),
variances = rep(1, 10),
waveEqual = c('mvAvg'),
nullEffect = 'autoreg',
nIndicator = rep(3, 10), loadM = .5,
invariance = TRUE,
autocorResiduals = TRUE

)

# same as above, but compare to the saturated model
# (rather than to the less restricted model)
powerARMA <- semPower.powerARMA(

'a-priori', alpha = .05, power = .80, comparison = 'saturated',
nWaves = 10,
autoregLag1 = c(.5, .7, .6, .5, .7, .6, .6, .5, .6),
mvAvgLag1 = rep(.3, 9),
variances = rep(1, 10),
waveEqual = c('mvAvg'),
nullEffect = 'autoreg',
nIndicator = rep(3, 10), loadM = .5,
invariance = TRUE,
autocorResiduals = TRUE

)

# same as above, but assume only observed variables
powerARMA <- semPower.powerARMA(

'a-priori', alpha = .05, power = .80,
nWaves = 10,
autoregLag1 = c(.5, .7, .6, .5, .7, .6, .6, .5, .6),
mvAvgLag1 = rep(.3, 9),
variances = rep(1, 10),
waveEqual = c('mvAvg'),
nullEffect = 'autoreg',
Lambda = diag(1, 10),
invariance = TRUE,
autocorResiduals = TRUE

)

# same as above, but provide reduced loadings matrix to define that
# X is measured by 3 indicators each loading by .5, .6, .4 (at each wave)
powerARMA <- semPower.powerARMA(

'a-priori', alpha = .05, power = .80,
nWaves = 10,
autoregLag1 = c(.5, .7, .6, .5, .7, .6, .6, .5, .6),
mvAvgLag1 = rep(.3, 9),
variances = rep(1, 10),
waveEqual = c('mvAvg'),
nullEffect = 'autoreg',
loadings = list(
c(.5, .6, .4), # X1
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c(.5, .6, .4), # X2
c(.5, .6, .4), # X3
c(.5, .6, .4), # X4
c(.5, .6, .4), # X5
c(.5, .6, .4), # X6
c(.5, .6, .4), # X7
c(.5, .6, .4), # X8
c(.5, .6, .4), # X9
c(.5, .6, .4) # X10

),
invariance = TRUE,
autocorResiduals = TRUE

)

# same as above, but detect that the moving average parameters differ across waves
# with a power of 80% on alpha = 5%, where
# the moving average parameters vary between .05 and .4, and
# the autoregressive effects are .5 at each wave and
# are assumed to be constant across waves (in both the H0 and the H1 model)
powerARMA <- semPower.powerARMA(

'a-priori', alpha = .05, power = .80,
nWaves = 10,
autoregLag1 = rep(.5, 9),
mvAvgLag1 = c(.1, .05, .2, .1, .1, .3, .4, .4, .4),
variances = rep(1, 10),
waveEqual = c('autoreg'),
nullEffect = 'mvAvg',
nIndicator = rep(3, 10), loadM = .5,
invariance = TRUE,
autocorResiduals = TRUE

)

# same as above, but detect that the (noise) variances differ across waves
# with a power of 80% on alpha = 5%, where
# the variances vary between 0.5 and 2, and
# the autoregressive effects are .5 at each wave and
# the moving average parameters are .3 at each wave and
# bothj are assumed to be constant across waves (in both the H0 and the H1 model)
powerARMA <- semPower.powerARMA(

'a-priori', alpha = .05, power = .80,
nWaves = 10,
autoregLag1 = rep(.5, 9),
mvAvgLag1 = rep(.3, 9),
variances = c(1, .5, .7, .6, .7, .9, 1.2, 1.7, 2.0, 1.5),
waveEqual = c('autoreg', 'mvAvg'),
nullEffect = 'var',
nIndicator = rep(3, 10), loadM = .5,
invariance = TRUE,
autocorResiduals = TRUE

)
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# same as above, but include a meanstructure and
# detect that the means differ across waves
# with a power of 80% on alpha = 5%, where
# the means vary between 0 and .5, and
# the autoregressive effects are .5 at each wave and
# the moving average parameters are .3 at each wave and
# the variances are 1 at each wave and
# all are assumed to be constant across waves (in both the H0 and the H1 model) and
# metric and scalar invariance is assumed
powerARMA <- semPower.powerARMA(

'a-priori', alpha = .05, power = .80,
nWaves = 10,
autoregLag1 = rep(.5, 9),
mvAvgLag1 = rep(.3, 9),
variances = rep(1, 10),
means = c(0, .1, .2, .3, .4, .5, .3, .4, .5, .5),
waveEqual = c('autoreg', 'mvAvg', 'var'),
nullEffect = 'mean',
nIndicator = rep(3, 10), loadM = .5,
invariance = TRUE,
autocorResiduals = TRUE

)

# Determine required N in a 10-wave ARMA model
# to detect that the autoregressive lag-2 effects differ from zero
# with a power of 80% on alpha = 5%, where
# the lag-2 autoregressive effects are .2 at each wave and
# the lag-2 autoregressive effects are .1 at each wave and
# the autoregressive effects are .5 at each wave and
# the moving average parameters are .3 at each wave and
# the noise variances are equal to 1 in each wave,
# and all are assumed to be constant across waves (in both the H0 and the H1 model) and
# metric invariance and autocorrelated residuals are assumed, and
# the autoregressive lag2- and lag3-effects are estimated
powerARMA <- semPower.powerARMA(

'a-priori', alpha = .05, power = .80,
nWaves = 10,
autoregLag1 = rep(.5, 9),
autoregLag2 = rep(.2, 8),
autoregLag3 = rep(.1, 7),
mvAvgLag1 = rep(.3, 9),
variances = rep(1, 10),
waveEqual = c('mvAvg', 'autoreg', 'var', 'autoreglag2', 'autoreglag3'),
nullEffect = 'autoreglag2 = 0',
nIndicator = rep(3, 10), loadM = .5,
invariance = TRUE,
autocorResiduals = TRUE

)

# similar as above, but get required N to detect that
# lag-2 moving average parameters are constant across waves
powerARMA <- semPower.powerARMA(

'a-priori', alpha = .05, power = .80,
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nWaves = 10,
autoregLag1 = rep(.5, 9),
autoregLag2 = rep(.2, 8),
mvAvgLag1 = rep(.3, 9),
mvAvgLag2 = c(.1, .2, .3, .1, .2, .3, .1, .1),
variances = rep(1, 10),
waveEqual = c('mvAvg', 'autoreg', 'var', 'autoreglag2'),
nullEffect = 'mvAvgLag2',
nIndicator = rep(3, 10), loadM = .5,
invariance = TRUE

)

# Determine required N in a 5-wave ARMA model
# to detect that the autoregressive effects in group 1
# differ from the ones in group 2, where
# both groups are equal-sized
# with a power of 80% on alpha = 5%, where
# X is measured by 3 indicators loading by .5 each (at each wave and in each group), and
# the autoregressive effects in group 1 are .5 (constant across waves) and
# the autoregressive effects in group 2 are .6 (constant across waves) and
# the moving average parameters are .25 at each wave and in both groups and
# the variances are 1 at each wave and in both groups and
# all are assumed to be constant across waves (in both the H0 and the H1 model)
# metric invariance (across both waves and groups) and
# autocorrelated residuals are assumed
powerARMA <- semPower.powerARMA(

'a-priori', alpha = .05, power = .80, N = list(1, 1),
nWaves = 5,
autoregLag1 = list(

c(.5, .5, .5, .5), # group 1
c(.6, .6, .6, .6)), # group 2

mvAvgLag1 = rep(.25, 4),
variances = rep(1, 5),
waveEqual = c('autoreg', 'var', 'mvavg'),
nullEffect = 'autoregA = autoregB',
nIndicator = rep(3, 5), loadM = .5,
invariance = TRUE,
autocorResiduals = TRUE

)

# Determine required N in a 5-wave ARMA model
# to detect that the means in group 1
# differ from the means in group 2, where
# both groups are equal-sized
# with a power of 80% on alpha = 5%, where
# X is measured by 3 indicators loading by .5 each (at each wave and in each group), and
# the autoregressive effects are .5 at each wave and in both groups and
# the moving average parameters are .25 at each wave and in both groups and
# the variances are 1 at each wave and in both groups and
# all are assumed to be constant across waves (in both the H0 and the H1 model) and
# invariance of variances, autoregressive effects, and moving average parameters
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# across groups as well as
# metric and scalar invariance (across both waves and groups) and
# autocorrelated residuals are assumed
powerARMA <- semPower.powerARMA(

'a-priori', alpha = .05, power = .80, N = list(1, 1),
nWaves = 5,
autoregLag1 = list(

c(.5, .5, .5, .5), # group 1
c(.5, .5, .5, .5)), # group 2

mvAvgLag1 = rep(.25, 4),
variances = rep(1, 5),
means = list(

c(0, .1, .1, .1, .1), # group 1
c(0, .4, .4, .4, .4) # group 2

),
waveEqual = c('autoreg', 'var', 'mvavg', 'mean'),
groupEqual = c('var', 'autoreg', 'mvavg'),
nullEffect = 'meanA = meanB',
nIndicator = rep(3, 5), loadM = .5,
invariance = TRUE,
autocorResiduals = TRUE

)

# perform a simulated post-hoc power analysis
# with 250 replications
set.seed(300121)
powerARMA <- semPower.powerARMA(

'post-hoc', alpha = .05, N = 500,
nWaves = 5,
autoregLag1 = c(.3, .7, .6, .3),
mvAvgLag1 = rep(.3, 4),
variances = rep(1, 5),
waveEqual = c('mvAvg'),
nullEffect = 'autoreg',
nIndicator = rep(3, 5), loadM = .5,
invariance = TRUE,
autocorResiduals = TRUE,
simulatedPower = TRUE,
simOptions = list(nReplications = 250)

)

## End(Not run)

semPower.powerAutoreg semPower.powerAutoreg

Description

Convenience function for performing power analysis on effects in an autoregressive model. This
requires the lavaan package.
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Usage

semPower.powerAutoreg(
type,
comparison = "restricted",
nWaves = NULL,
autoregEffects = NULL,
lag1Effects = autoregEffects,
lag2Effects = NULL,
lag3Effects = NULL,
means = NULL,
variances = NULL,
waveEqual = NULL,
nullEffect = NULL,
nullWhich = NULL,
nullWhichGroups = NULL,
standardized = TRUE,
invariance = TRUE,
autocorResiduals = TRUE,
...

)

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.

comparison comparison model, one of 'saturated' or 'restricted' (the default). This
determines the df for power analyses. 'saturated' provides power to reject
the model when compared to the saturated model, so the df equal the one of
the hypothesized model. 'restricted' provides power to reject the hypothe-
sized model when compared to an otherwise identical model that just omits the
restrictions defined in nullEffect, so the df equal the number of restrictions.

nWaves number of waves, must be >= 2.

autoregEffects vector of the autoregressive effects, e.g. c(.7, .6) for autoregressive effects of
.7 for X1 -> X2 and .6 for X2 -> X3. Must be a list for multiple groups models.

lag1Effects alternative name for autoregEffects.

lag2Effects vector of lag-2 effects, e.g. c(.2, .1) for lag-2 effects of .2 for X1 -> X3 and .1
for X2 -> X4.

lag3Effects vector of lag-3 effects, e.g. c(.2) for a lag-3 effect of .2 for X1 -> X4.

means vector of means for X. Can be omitted for no meanstructure.

variances vector of (residual-)variances for X. When omitted and standardized = FALSE,
all (residual-)variances are equal to 1. When omitted and standardized = TRUE,
the (residual-)variances are determined so that all variances are 1, and will thus
typically differ from each other. When provided, standardized must be FALSE.

waveEqual parameters that are assumed to be equal across waves in both the H0 and the H1
model. Valid are 'lag1' (or equivalently 'autoreg'), 'lag2', and 'lag3', or
NULL for none (so that all parameters are freely estimated, subject to the con-
straints defined in nullEffect).
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nullEffect defines the hypothesis of interest. Valid are the same arguments as in waveEqual
and additionally 'lag1 = 0' (or equivalently 'autoregX = 0') 'lag2 = 0', 'lag3
= 0' to constrain the autoregressive, lag-2, or lag-3 effects to zero, and 'autoregA
= autoregB' to the autoregressive effects be equal across groups.

nullWhich used in conjunction with nullEffect to identify which parameter to constrain
when there are > 2 waves and parameters are not constant across waves. For ex-
ample, nullEffect = 'lag1 = 0' with nullWhich = 2 would constrain the sec-
ond autoregressive effect for X to zero.

nullWhichGroups

for hypothesis involving cross-groups comparisons, vector indicating the groups
for which equality constrains should be applied, e.g. c(1, 3) to constrain the
relevant parameters of the first and the third group. If NULL, all groups are con-
strained to equality.

standardized whether all parameters should be standardized (TRUE, the default). If FALSE, all
regression relations are unstandardized.

invariance whether metric invariance over waves is assumed (TRUE, the default) or not
(FALSE). When means are part of the model, invariant intercepts are also as-
sumed. This affects the df when the comparison model is the saturated model
and generally affects power (also for comparisons to the restricted model).

autocorResiduals

whether the residuals of the indicators of latent variables are autocorrelated over
waves (TRUE, the default) or not (FALSE). This affects the df when the compari-
son model is the saturated model and generally affects power (also for compar-
isons to the restricted model).

... mandatory further parameters related to the specific type of power analysis re-
quested, see semPower.aPriori(), semPower.postHoc(), and semPower.compromise(),
and parameters specifying the factor model. The order of factors is (X1, X2, ...,
X_nWaves). See details.

Details

This function performs a power analysis to reject various hypotheses arising in simple autoregres-
sive (simplex) models, where one variable is repeatedly assessed at two or more different time
points (nWaves), yielding autoregressive effects (aka lag-1 effects or stabilities, ; X1 -> X2 -> X3),
and optionally lagged effects (X1 -> X3), variances, and means.

Relevant hypotheses in arising in an autogressive model are:

• autoreg or lag1: Tests the hypothesis that the autoregressive (lag-1) effects are equal across
waves (stationarity of autoregressive parameters).

• lag2: Tests the hypothesis that the lag-2 effects are equal across waves (stationarity of lag-2
effects).

• lag3: Tests the hypothesis that the lag-3 effects are equal across waves (stationarity of lag-3
effects).

• var: Tests the hypothesis that the residual-variances of X (i.e., X_2, ..., X_nWaves) are equal
across waves (stationarity of variance).
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• mean: Tests the hypothesis that the conditional means of X (i.e., X_2, ..., X_nWaves) are equal
across waves (stationarity of means).

• autoreg = 0 or lag1 = 0: Tests the hypothesis that the autoregressive (lag-1) effect of X is
zero.

• lag2 = 0 and lag3 = 0: Tests the hypothesis that a lag-2 or a lag-3 effect is zero.

• autoregA = autoregB or lag1A = lag1B: : Tests the hypothesis that the autoregressive effect
of X is equal across groups.

For hypotheses in an ARMA model, see semPower.powerARMA(). For hypotheses regarding a
CLPM structure, see semPower.powerCLPM(). For hypotheses regarding longitudinal measurement
invariance, see semPower.powerLI().

Beyond the arguments explicitly contained in the function call, additional arguments are required
specifying the factor model and the requested type of power analysis.

Additional arguments related to the definition of the factor model:

• Lambda: The factor loading matrix (with the number of columns equaling the number of
factors).

• loadings: Can be used instead of Lambda: Defines the primary loadings for each factor in
a list structure, e. g. loadings = list(c(.5, .4, .6), c(.8, .6, .6, .4)) defines a two
factor model with three indicators loading on the first factor by .5, , 4., and .6, and four
indicators loading on the second factor by .8, .6, .6, and .4.

• nIndicator: Can be used instead of Lambda: Used in conjunction with loadM. Defines the
number of indicators by factor, e. g., nIndicator = c(3, 4) defines a two factor model with
three and four indicators for the first and second factor, respectively. nIndicator can also be
a single number to define the same number of indicators for each factor.

• loadM: Can be used instead of Lambda: Used in conjunction with nIndicator. Defines the
loading either for all indicators (if a single number is provided) or separately for each factor
(if a vector is provided), e. g. loadM = c(.5, .6) defines the loadings of the first factor to
equal .5 and those of the second factor do equal .6.

So either Lambda, or loadings, or nIndicator and loadM need to be defined. If the model contains
observed variables only, use Lambda = diag(x) where x is the number of variables.

Note that the order of the factors is (X1, X2, ..., X_nWaves).

Additional arguments related to the requested type of power analysis:

• alpha: The alpha error probability. Required for type = 'a-priori' and type = 'post-hoc'.

• Either beta or power: The beta error probability and the statistical power (1 - beta), respec-
tively. Only for type = 'a-priori'.

• N: The sample size. Always required for type = 'post-hoc' and type = 'compromise'. For
type = 'a-priori' and multiple group analysis, N is a list of group weights.

• abratio: The ratio of alpha to beta. Only for type = 'compromise'.

If a simulated power analysis (simulatedPower = TRUE) is requested, optional arguments can be
provided as a list to simOptions:

• nReplications: The targeted number of simulation runs. Defaults to 250, but larger numbers
greatly improve accuracy at the expense of increased computation time.
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• minConvergenceRate: The minimum convergence rate required, defaults to .5. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.

• type: specifies whether the data should be generated from a population assuming multivari-
ate normality ('normal'; the default), or based on an approach generating non-normal data
('IG', 'mnonr', 'RC', or 'VM'). The approaches generating non-normal data require addi-
tional arguments detailed below.

• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of MCAR (the default), MAR, or NMAR.

• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doSNOW package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.

type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.

type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors. This requires the semTools package.

Value

a list. Use the summary method to obtain formatted results. Beyond the results of the power analysis
and a number of effect size measures, the list contains the following components:

Sigma the population covariance matrix. A list for multiple group models.

mu the population mean vector or NULL when no meanstructure is involved. A list
for multiple group models.

SigmaHat the H0 model implied covariance matrix. A list for multiple group models.

muHat the H0 model implied mean vector or NULL when no meanstructure is involved.
A list for multiple group models.

modelH0 lavaan H0 model string.

modelH1 lavaan H1 model string or NULL when the comparison refers to the saturated
model.
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simRes detailed simulation results when a simulated power analysis (simulatedPower
= TRUE) was performed.

See Also

semPower.genSigma() semPower.aPriori() semPower.postHoc() semPower.compromise()

Examples

## Not run:
# Determine required N in a 4-wave autoregressive model
# to detect an autoregressive effect between X1 -> X2 of >= .5
# with a power of 80% on alpha = 5%, where
# X is measured by 3 indicators loading by .5 each (at each wave), and
# the autoregressive effecst are .5 (X1 -> X2), .7 (X2 -> X3), and .6 (X3 -> X4), and
# there are no lagged effects, and
# metric invariance and autocorrelated residuals are assumed
powerAutoreg <- semPower.powerAutoreg(

'a-priori', alpha = .05, power = .80,
nWaves = 4,
autoregEffects = c(.5, .7, .6),
nullEffect = 'autoreg=0',
nullWhich = 1,
nIndicator = rep(3, 4), loadM = .5,
invariance = TRUE, autocorResiduals = TRUE)

# show summary
summary(powerAutoreg)
# optionally use lavaan to verify the model was set-up as intended
lavaan::sem(powerAutoreg$modelH1, sample.cov = powerAutoreg$Sigma,

sample.nobs = powerAutoreg$requiredN,
sample.cov.rescale = FALSE)

lavaan::sem(powerAutoreg$modelH0, sample.cov = powerAutoreg$Sigma,
sample.nobs = powerAutoreg$requiredN,
sample.cov.rescale = FALSE)

# same as above, but determine power with N = 250 on alpha = .05
powerAutoreg <- semPower.powerAutoreg(

'post-hoc', alpha = .05, N = 250,
nWaves = 4,
autoregEffects = c(.5, .7, .6),
nullEffect = 'autoreg=0',
nullWhich = 1,
nIndicator = rep(3, 4), loadM = .5,
invariance = TRUE, autocorResiduals = TRUE)

# same as above, but determine the critical chi-square with N = 250 so that alpha = beta
powerAutoreg <- semPower.powerAutoreg(

'compromise', abratio = 1, N = 250,
nWaves = 4,
autoregEffects = c(.5, .7, .6),
nullEffect = 'autoreg=0',
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nullWhich = 1,
nIndicator = rep(3, 4), loadM = .5,
invariance = TRUE, autocorResiduals = TRUE)

# same as above, but compare to the saturated model
# (rather than to the less restricted model)
powerAutoreg <- semPower.powerAutoreg(

'post-hoc', alpha = .05, N = 250,
comparison = 'saturated',
nWaves = 4,
autoregEffects = c(.5, .7, .6),
nullEffect = 'autoreg=0',
nullWhich = 1,
nIndicator = rep(3, 4), loadM = .5,
invariance = TRUE, autocorResiduals = TRUE)

# same as above, but assume only observed variables
powerAutoreg <- semPower.powerAutoreg(

'post-hoc', alpha = .05, N = 250,
nWaves = 4,
autoregEffects = c(.5, .7, .6),
nullEffect = 'autoreg=0',
nullWhich = 1,
Lambda = diag(4))

# same as above, but provide reduced loadings matrix to define that
# X is measured by 3 indicators each loading by .8, .6, .7 (at each wave)
powerAutoreg <- semPower.powerAutoreg(

'post-hoc', alpha = .05, N = 250,
nWaves = 4,
autoregEffects = c(.5, .7, .6),
nullEffect = 'autoreg=0',
nullWhich = 1,
loadings = list(
c(.8, .6, .7), # X1
c(.8, .6, .7), # X2
c(.8, .6, .7), # X3
c(.8, .6, .7) # X4

),
invariance = TRUE, autocorResiduals = TRUE)

# same as above, but assume wave-constant autoregressive effects
powerAutoreg <- semPower.powerAutoreg(

'a-priori', alpha = .05, power = .80,
nWaves = 4,
autoregEffects = c(.6, .6, .6),
waveEqual = c('autoreg'),
nullEffect = 'autoreg=0',
nIndicator = rep(3, 4), loadM = .5,
invariance = TRUE, autocorResiduals = TRUE)

# same as above, but detect that autoregressive effects are not wave-constant
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powerAutoreg <- semPower.powerAutoreg(
'a-priori', alpha = .05, power = .80,
nWaves = 4,
autoregEffects = c(.6, .7, .8),
nullEffect = 'autoreg',
nIndicator = rep(3, 4), loadM = .5,
invariance = TRUE, autocorResiduals = TRUE)

# same as above, but include lag-2 and lag-3 effects
powerAutoreg <- semPower.powerAutoreg(

'a-priori', alpha = .05, power = .80,
nWaves = 4,
autoregEffects = c(.6, .6, .6),
lag2Effects = c(.25, .20),
lag3Effects = c(.15),
waveEqual = c('autoreg'),
nullEffect = 'autoreg=0',
nIndicator = rep(3, 4), loadM = .5,
invariance = TRUE, autocorResiduals = TRUE)

# same as above, but detect that first lag-2 effect differs from zero
powerAutoreg <- semPower.powerAutoreg(

'a-priori', alpha = .05, power = .80,
nWaves = 4,
autoregEffects = c(.6, .6, .6),
lag2Effects = c(.25, .20),
lag3Effects = c(.15),
waveEqual = c('autoreg'),
nullEffect = 'lag2=0',
nullWhich = 1,
nIndicator = rep(3, 4), loadM = .5,
invariance = TRUE, autocorResiduals = TRUE)

# same as above, but assume wave-constant lag2 effects
powerAutoreg <- semPower.powerAutoreg(

'a-priori', alpha = .05, power = .80,
nWaves = 4,
autoregEffects = c(.6, .6, .6),
lag2Effects = c(.25, .25),
lag3Effects = c(.15),
waveEqual = c('autoreg', 'lag2'),
nullEffect = 'lag2=0',
nIndicator = rep(3, 4), loadM = .5,
invariance = TRUE, autocorResiduals = TRUE)

# same as above, but detect that lag3 effect differs from zero
powerAutoreg <- semPower.powerAutoreg(

'a-priori', alpha = .05, power = .80,
nWaves = 4,
autoregEffects = c(.6, .6, .6),
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lag2Effects = c(.25, .25),
lag3Effects = c(.15),
waveEqual = c('autoreg', 'lag2'),
nullEffect = 'lag3=0',
nIndicator = rep(3, 4), loadM = .5,
invariance = TRUE, autocorResiduals = TRUE)

# Determine required N in a 3-wave autoregressive model
# assuming wave-constant autoregressive effects
# that the autoregressive effects in group 1
# differ from those in group 2
# with a power of 80% on alpha = 5%, where
# X is measured by 3 indicators loading by .5 each (at each wave and in each group), and
# the autoregressive effect is .7 in group 1 and
# the autoregressive effect is .5 in group 2 and
# there are no lagged effects, and
# metric invariance over both time and groups and autocorrelated residuals are assumed and
# the groups are equal-sized
powerAutoreg <- semPower.powerAutoreg(

'a-priori', alpha = .05, power = .80, N = list(1, 1),
nWaves = 3,
autoregEffects = list(

c(.7, .7),
c(.5, .5)

),
waveEqual = c('autoreg'),
nullEffect = 'autoregA = autoregB',
nullWhich = 1,
nIndicator = rep(3, 3), loadM = .5,
invariance = TRUE, autocorResiduals = TRUE)

# Determine required N in a 4-wave autoregressive model
# to detect that the factor residual-variances (X2, X3, X4) differ
# with a power of 80% on alpha = 5%, where
# the (residual-)variances are 1, .5, 1.5, and 1, respectively,
# X is measured by 3 indicators loading by .5 each (at each wave), and
# the autoregressive effects are .6, and
# both the H0 and the H1 assume wave-constant autoregressive effects, and
# there are no lagged effects, and
# metric invariance and autocorrelated residuals are assumed
powerAutoreg <- semPower.powerAutoreg(

'a-priori', alpha = .05, power = .80,
nWaves = 4,
autoregEffects = c(.6, .6, .6),
variances = c(1, .5, 1.5, 1),
waveEqual = c('autoreg'),
nullEffect = 'var',
nullWhich = 1,
nIndicator = rep(3, 4), loadM = .5,
standardized = FALSE,
invariance = TRUE,
autocorResiduals = TRUE)
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# same as above, but
# include latent means and
# detect that latent means differ and
# assume wave-constant variances and autoregressive parameters for both H0 and H1
powerAutoreg <- semPower.powerAutoreg(

'a-priori', alpha = .05, power = .80,
nWaves = 4,
autoregEffects = c(.6, .6, .6),
variances = c(1, 1, 1, 1),
means = c(0, .5, 1, .7),
waveEqual = c('autoreg', 'var'),
nullEffect = 'mean',
nullWhich = 1,
nIndicator = rep(3, 4), loadM = .5,
standardized = FALSE,
invariance = TRUE,
autocorResiduals = TRUE)

# request a simulated post-hoc power analysis with 500 replications
set.seed(300121)
powerAutoreg <- semPower.powerAutoreg(

'post-hoc', alpha = .05, N = 500,
nWaves = 3,
autoregEffects = c(.7, .7),
waveEqual = c('autoreg'),
nullEffect = 'autoreg = 0',
nullWhich = 1,
nIndicator = rep(3, 3), loadM = .5,
invariance = TRUE, autocorResiduals = TRUE,
simulatedPower = TRUE,
simOptions = list(nReplications = 500)
)

## End(Not run)

semPower.powerBifactor

semPower.powerBifactor

Description

Perform a power analysis for models including one or more bifactors to reject one of the following
hypotheses: (a) a zero correlation between two factors, (b) the equality of two correlations between
factors, or (c) the equality of a correlation between two factors across two or more groups. This
requires the lavaan package.
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Usage

semPower.powerBifactor(
type,
comparison = "restricted",
bfLoadings = NULL,
bfWhichFactors = NULL,
Phi = NULL,
nullEffect = "cor = 0",
nullWhich = NULL,
nullWhichGroups = NULL,
...

)

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.
comparison comparison model, one of 'saturated' or 'restricted' (the default). This

determines the df for power analyses. 'saturated' provides power to reject
the model when compared to the saturated model, so the df equal the one of
the hypothesized model. 'restricted' provides power to reject the hypothe-
sized model when compared to an otherwise identical model that just omits the
restrictions defined in nullEffect, so the df equal the number of restrictions.

bfLoadings a single vector or a list containing one or more vectors giving the loadings on
each bifactor. For example, list(rep(.6, 10), rep(.6, 10)) defines two bifactors
with 10 indicators each, loading by .6 each. Can be a list of lists for multiple
group models.

bfWhichFactors a list containing one or more vectors defining which (specific) factors defined in
the respective arguments in ... are part of the bifactor structure. See details.

Phi either a single number defining the correlation between exactly two factors or
the factor correlation matrix. Must only contain the bifactor(s) and the covari-
ate(s). Must be a list for multiple group models. Phi assumes the following order
(bifactor_1, bifactor_2, ..., bifactor_j, covariate_1, covariate_2, ..., covariate_k).
See details.

nullEffect defines the hypothesis of interest, must be one of 'cor = 0' (the default) to test
whether a correlation is zero, 'corX = corZ' to test for the equality of correla-
tions, and 'corA = corB' to test for the equality of a correlation across groups.
Define the correlations to be set to equality in nullWhich and the groups in
nullWhichGroups.

nullWhich vector of size 2 indicating which factor correlation in Phi is hypothesized to
equal zero when nullEffect = 'cor = 0', or to restrict to equality across groups
when nullEffect = 'corA = corB', or list of vectors defining which correla-
tions to restrict to equality when nullEffect = 'corX = corZ'. Can also con-
tain more than two correlations, e.g., list(c(1, 2), c(1, 3), c(2, 3)) to set
Phi[1, 2] = Phi[1, 3] = Phi[2, 3].

nullWhichGroups

for nullEffect = 'corA = corB', vector indicating the groups for which equal-
ity constrains should be applied, e.g. c(1, 3) to constrain the relevant param-
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eters of the first and the third group. If NULL, all groups are constrained to
equality.

... mandatory further parameters related to the specific type of power analysis re-
quested, see semPower.aPriori(), semPower.postHoc(), and semPower.compromise(),
and parameters specifying the factor model concerning the specific factors and
the covariate(s). See details.

Details

This function performs a power analysis to reject various hypotheses arising in a model including a
bifactor structure:

• nullEffect = 'cor = 0': Tests the hypothesis that the correlation between a bifactor and
another factor (which can also be a bifactor) is zero.

• nullEffect = 'corX = corZ': Tests the hypothesis that two or more correlations involving
one or more bifactors are equal to each other.

• nullEffect = 'corA = corB': Tests the hypothesis that the correlation between the bifactor
and another factor (which can also be a bifactor) is equal in two or more groups (always
assuming metric invariance).

A bifactor structure is defined by specifying the loadings on the general factor in bfLoadings, the
comprised specific factors in bfWhichFactors, and the loadings on the specific factors in either
Lambda, or loadings, or nIndicator and loadM. The latter arguments also include the loadings
defining the covariate(s).

The correlations betwen the bifactor(s) and the covariate(s) are defined in Phi, which must omit the
specific factors and only includes the bifactor(s) and the covariate(s) assuming the following order:
(bifactor_1, bifactor_2, ..., bifactor_j, covariate_1, covariate_2, ..., covariate_k).

For example, the following defines a single bifactor with 10 indicators loading by .5 each. The bi-
factor structure involves 3 specific factors measured by 3 indicators each, each loading by .3, .2, and
.1 on the respective specific factor (in addition to the loadings on the bifactor). Furthermore, two co-
variate with 5 indicators each, all loading by .7, are defined. The correlation between the covariates
is .5, the one between the bifactor and the first and second covariate are .3 and .2, respectively.

bfLoadings <- rep(.5, 10)
bfWhichFactors <- c(1, 2, 3)
loadings <- list(
rep(.3, 3), # specific factor 1
rep(.2, 3), # specific factor 2
rep(.1, 3), # specific factor 3
rep(.7, 5), # covariate 1
rep(.7, 5) # covariate 2

)
Phi <- matrix(c(
c(1, .3, .2), # bifactor
c(.3, 1, .5), # covariate 1
c(.2, .5, 1) # covariate 2

), ncol = 3, byrow = TRUE)
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Beyond the arguments explicitly contained in the function call, additional arguments are required
specifying the factor model and the requested type of power analysis.

Additional arguments related to the definition of the factor model concerning the specific factors
and the covariate(s). The loadings on the bifactor must be provided via bfLoadings.

• Lambda: The factor loading matrix (with the number of columns equaling the number of
specific factors and covariates).

• loadings: Can be used instead of Lambda: Defines the primary loadings for each factor in
a list structure, e. g. loadings = list(c(.5, .4, .6), c(.8, .6, .6, .4)) defines a two
factor model with three indicators loading on the first factor by .5, , 4., and .6, and four
indicators loading on the second factor by .8, .6, .6, and .4.

• nIndicator: Can be used instead of Lambda: Used in conjunction with loadM. Defines the
number of indicators by factor, e. g., nIndicator = c(3, 4) defines a two factor model with
three and four indicators for the first and second factor, respectively. nIndicator can also be
a single number to define the same number of indicators for each factor.

• loadM: Can be used instead of Lambda: Used in conjunction with nIndicator. Defines the
loading either for all indicators (if a single number is provided) or separately for each factor
(if a vector is provided), e. g. loadM = c(.5, .6) defines the loadings of the first factor to
equal .5 and those of the second factor do equal .6.

Additional arguments related to the requested type of power analysis:

• alpha: The alpha error probability. Required for type = 'a-priori' and type = 'post-hoc'.

• Either beta or power: The beta error probability and the statistical power (1 - beta), respec-
tively. Only for type = 'a-priori'.

• N: The sample size. Always required for type = 'post-hoc' and type = 'compromise'. For
type = 'a-priori' and multiple group analysis, N is a list of group weights.

• abratio: The ratio of alpha to beta. Only for type = 'compromise'.

If a simulated power analysis (simulatedPower = TRUE) is requested, optional arguments can be
provided as a list to simOptions:

• nReplications: The targeted number of simulation runs. Defaults to 250, but larger numbers
greatly improve accuracy at the expense of increased computation time.

• minConvergenceRate: The minimum convergence rate required, defaults to .5. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.

• type: specifies whether the data should be generated from a population assuming multivari-
ate normality ('normal'; the default), or based on an approach generating non-normal data
('IG', 'mnonr', 'RC', or 'VM'). The approaches generating non-normal data require addi-
tional arguments detailed below.

• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of MCAR (the default), MAR, or NMAR.
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• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doSNOW package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.

type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.

type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors. This requires the semTools package.

Value

a list. Use the summary method to obtain formatted results. Beyond the results of the power analysis
and a number of effect size measures, the list contains the following components:

Sigma the population covariance matrix. A list for multiple group models.

mu the population mean vector or NULL when no meanstructure is involved. A list
for multiple group models.

SigmaHat the H0 model implied covariance matrix. A list for multiple group models.

muHat the H0 model implied mean vector or NULL when no meanstructure is involved.
A list for multiple group models.

modelH0 lavaan H0 model string.

modelH1 lavaan H1 model string or NULL when the comparison refers to the saturated
model.

simRes detailed simulation results when a simulated power analysis (simulatedPower
= TRUE) was performed.

See Also

semPower.genSigma() semPower.aPriori() semPower.postHoc() semPower.compromise()

Examples

## Not run:
# get required N to detect a correlation of >= .3 between
# a single bifactor with 11 indicators all loadings by .6
# spanning the indicators of 3 specific factors
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# with three indicators each, loading by .2, .15, and .25, respectively
# and a covariate measured by 4 indicators loading by .7 each,
# with a power of 95% on alpha = 5%
bfLoadings <- rep(.6, 11)
bfWhichFactors <- c(1, 2, 3)
loadings <- list(

# specific factors
rep(.2, 3),
rep(.15, 3),
rep(.25, 3),
# covariate
rep(.7, 4)

)
Phi <- .3 # bifactor - covariate
powerbifactor <- semPower.powerBifactor(type = 'a-priori',

bfLoadings = bfLoadings,
bfWhichFactors = bfWhichFactors,
Phi = Phi,
nullWhich = c(1, 2),
loadings = loadings,
alpha = .05, beta = .05)

# show summary
summary(powerbifactor)
# optionally use lavaan to verify the model was set-up as intended
lavaan::sem(powerbifactor$modelH1, sample.cov = powerbifactor$Sigma,

sample.nobs = powerbifactor$requiredN,
sample.cov.rescale = FALSE)

lavaan::sem(powerbifactor$modelH0, sample.cov = powerbifactor$Sigma,
sample.nobs = powerbifactor$requiredN,
sample.cov.rescale = FALSE)

# same as above, but determine power with N = 500 on alpha = .05
powerbifactor <- semPower.powerBifactor(type = 'post-hoc',

bfLoadings = bfLoadings,
bfWhichFactors = bfWhichFactors,
Phi = Phi,
nullWhich = c(1, 2),
loadings = loadings,
alpha = .05, N = 500)

# same as above, but determine the critical chi-square with N = 500 so that alpha = beta
powerbifactor <- semPower.powerBifactor(type = 'compromise',

bfLoadings = bfLoadings,
bfWhichFactors = bfWhichFactors,
Phi = Phi,
nullWhich = c(1, 2),
loadings = loadings,
abratio = 1, N = 500)

# same as above, but compare to the saturated model
# (rather than to the less restricted model)
powerbifactor <- semPower.powerBifactor(type = 'a-priori',

comparison = 'saturated',
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bfLoadings = bfLoadings,
bfWhichFactors = bfWhichFactors,
Phi = Phi,
nullWhich = c(1, 2),
loadings = loadings,
alpha = .05, beta = .05)

# define two bifactors with 10 indicators each, where
# all loadings are .6 on the first and .5 on the second bifactor.
# the first bifactor spans the indicators of specific factors 1-3,
# the second bifactor spans the indicators of specific factors 4-6,
# all specific factors are measured by three indicators each,
# loadings are .2, .15, .25, .1, .15., and.2, respectively.
# define an additional covariate measured by 4 indicators loading by .6 each.
# get required N to detect a correlation of >= .3 between the bifactors
# with a power of 95% on alpha = 5%
bfLoadings <- list(rep(.6, 10),

rep(.6, 10))
bfWhichFactors <- list(c(1, 2, 3),

c(4, 5, 6))
loadings <- list(

# specific factors for bf1
rep(.2, 3),
rep(.15, 3),
rep(.25, 3),
# specific factors bf2
rep(.1, 3),
rep(.15, 3),
rep(.2, 3),
# covariate
rep(.6, 4)

)
Phi <- diag(3)
Phi[1, 2] <- Phi[2, 1] <- .3 # bifactor1 - bifactor2
Phi[1, 3] <- Phi[3, 1] <- .5 # bifactor1 - covariate
Phi[2, 3] <- Phi[3, 2] <- .1 # bifactor2 - covariate

powerbifactor <- semPower.powerBifactor(type = 'a-priori',
bfLoadings = bfLoadings,
bfWhichFactors = bfWhichFactors,
Phi = Phi,
nullWhich = c(1, 2),
loadings = loadings,
alpha = .05, beta = .05)

# same as above, but get required N to detect that
# the correlation between the first bifactor and the covariate (of r=.5) differs from
# the correlation between the second bifactor and the covariate (of r=.1)
powerbifactor <- semPower.powerBifactor(type = 'a-priori',

bfLoadings = bfLoadings,
bfWhichFactors = bfWhichFactors,
Phi = Phi,
nullEffect = 'corx = corz',



semPower.powerBifactor 79

nullWhich = list(c(1, 3), c(2, 3)),
loadings = loadings,
alpha = .05, beta = .05)

# multiple group example: get required N to detect that
# the correlation of a bifactor with 10 indicators
# spanning three specific factors with 3 indicators each
# to a covariate in group 1 (of r = .3)
# differs from the one in group 2 (of r = .1)
bfLoadings <- rep(.6, 10)
bfWhichFactors <- c(1, 2, 3)
loadings <- list(

# specific factors
rep(.2, 3),
rep(.15, 3),
rep(.25, 3),
# covariate
rep(.7, 4)

)
Phi1 <- Phi2 <- diag(2)
Phi1[1, 2] <- Phi1[2, 1] <- .3 # bifactor - covariate
Phi2[1, 2] <- Phi2[2, 1] <- .1 # bifactor - covariate
Phi <- list(Phi1, Phi2)
powerbifactor <- semPower.powerBifactor(type = 'a-priori',

bfLoadings = bfLoadings,
bfWhichFactors = bfWhichFactors,
Phi = Phi,
nullEffect = 'corA = corB',
nullWhich = c(1, 2),
loadings = loadings,
alpha = .05, beta = .05,
N = list(1, 1))

# request a simulated post-hoc power analysis with 500 replications.
bfLoadings <- rep(.6, 11)
bfWhichFactors <- c(1, 2, 3)
loadings <- list(

# specific factors
rep(.2, 3),
rep(.15, 3),
rep(.1, 3),
# covariate
rep(.7, 5)

)
Phi <- .2
set.seed(300121)
powerbifactor <- semPower.powerBifactor(type = 'post-hoc',

bfLoadings = bfLoadings,
bfWhichFactors = bfWhichFactors,
Phi = Phi,
nullWhich = c(1, 2),
loadings = loadings,
alpha = .05, N = 500,
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simulatedPower = TRUE,
simOptions = list(nReplications = 500)
)

## End(Not run)

semPower.powerCFA semPower.powerCFA

Description

Convenience function for performing power analyses for CFA models to reject one of the following
hypotheses: (a) a zero correlation between two factors, (b) the equality of two correlations between
factors, or (c) the equality of a correlation between two factors across two or more groups. This
requires the lavaan package.

Usage

semPower.powerCFA(
type,
comparison = "restricted",
Phi = NULL,
nullEffect = "cor = 0",
nullWhich = NULL,
nullWhichGroups = NULL,
...

)

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.

comparison comparison model, one of 'saturated' or 'restricted' (the default). This
determines the df for power analyses. 'saturated' provides power to reject
the model when compared to the saturated model, so the df equal the one of
the hypothesized model. 'restricted' provides power to reject the hypothe-
sized model when compared to an otherwise identical model that just omits the
restrictions defined in nullEffect, so the df equal the number of restrictions.

Phi either a single number defining the correlation between exactly two factors or
the factor correlation matrix. A list for multiple group models.

nullEffect defines the hypothesis of interest, must be one of 'cor = 0' (the default) to test
whether a correlation is zero, 'corX = corZ' to test for the equality of correla-
tions, 'corA = corB' to test for the equality of a correlation across groups, and
loading = 0 to test whether a loading is zero. Define the correlations to be set
to equality in nullWhich and the groups in nullWhichGroups.
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nullWhich vector of size 2 indicating which element in Lambda should equal zero when
nullEffect = 'loading = 0', or which factor correlation in Phi is hypothe-
sized to equal zero when nullEffect = 'cor = 0', or to restrict to equality
across groups when nullEffect = 'corA = corB', or list of vectors defining
which correlations to restrict to equality when nullEffect = 'corX = corZ'.
Can also contain more than two correlations, e.g., list(c(1, 2), c(1, 3),
c(2, 3)) to set Phi[1, 2] = Phi[1, 3] = Phi[2, 3]. If omitted, the correla-
tion between the first and the second factor is targeted, i. e., nullWhich = c(1,
2).

nullWhichGroups

for nullEffect = 'corA = corB', vector indicating the groups for which equal-
ity constrains should be applied, e.g. c(1, 3) to constrain the relevant param-
eters of the first and the third group. If NULL, all groups are constrained to
equality.

... mandatory further parameters related to the specific type of power analysis re-
quested, see semPower.aPriori(), semPower.postHoc(), and semPower.compromise(),
and parameters specifying the factor model. See details.

Details

This function performs a power analysis to reject various hypotheses arising in standard CFA mod-
els:

• nullEffect = 'loading = 0': Tests the hypothesis that a loading is zero.

• nullEffect = 'cor = 0': Tests the hypothesis that the correlation between two factors is zero.

• nullEffect = 'corX = corZ': Tests the hypothesis that two or more correlations between
three or more factors are equal to each other.

• nullEffect = 'corA = corB': Tests the hypothesis that the correlation between two factors is
equal in two or more groups (always assuming metric invariance).

For hypotheses regarding regression relationships between factors, see semPower.powerRegression().
For hypotheses regarding mediation effects, see semPower.powerMediation(). For hypotheses re-
garding measurement invariance, see semPower.powerMI().

Beyond the arguments explicitly contained in the function call, additional arguments are required
specifying the factor model and the requested type of power analysis.

Additional arguments related to the definition of the factor model:

• Lambda: The factor loading matrix (with the number of columns equaling the number of
factors).

• loadings: Can be used instead of Lambda: Defines the primary loadings for each factor in
a list structure, e. g. loadings = list(c(.5, .4, .6), c(.8, .6, .6, .4)) defines a two
factor model with three indicators loading on the first factor by .5, , 4., and .6, and four
indicators loading on the second factor by .8, .6, .6, and .4.

• nIndicator: Can be used instead of Lambda: Used in conjunction with loadM. Defines the
number of indicators by factor, e. g., nIndicator = c(3, 4) defines a two factor model with
three and four indicators for the first and second factor, respectively. nIndicator can also be
a single number to define the same number of indicators for each factor.
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• loadM: Can be used instead of Lambda: Used in conjunction with nIndicator. Defines the
loading either for all indicators (if a single number is provided) or separately for each factor
(if a vector is provided), e. g. loadM = c(.5, .6) defines the loadings of the first factor to
equal .5 and those of the second factor do equal .6.

So either Lambda, or loadings, or nIndicator and loadM need to be defined. If the model contains
observed variables only, use Lambda = diag(x) where x is the number of variables.

Additional arguments related to the requested type of power analysis:

• alpha: The alpha error probability. Required for type = 'a-priori' and type = 'post-hoc'.

• Either beta or power: The beta error probability and the statistical power (1 - beta), respec-
tively. Only for type = 'a-priori'.

• N: The sample size. Always required for type = 'post-hoc' and type = 'compromise'. For
type = 'a-priori' and multiple group analysis, N is a list of group weights.

• abratio: The ratio of alpha to beta. Only for type = 'compromise'.

If a simulated power analysis (simulatedPower = TRUE) is requested, optional arguments can be
provided as a list to simOptions:

• nReplications: The targeted number of simulation runs. Defaults to 250, but larger numbers
greatly improve accuracy at the expense of increased computation time.

• minConvergenceRate: The minimum convergence rate required, defaults to .5. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.

• type: specifies whether the data should be generated from a population assuming multivariate
normality ('normal'; the default), or based on an approach generating non-normal data ('IG',
'mnonr', 'RC', or 'VM').

• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of MCAR (the default), MAR, or NMAR.
The approaches generating non-normal data require additional arguments detailed below.

• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doSNOW package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.

type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.

type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
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a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors. This requires the semTools package.

Value

a list. Use the summary method to obtain formatted results. Beyond the results of the power analysis
and a number of effect size measures, the list contains the following components:

Sigma the population covariance matrix. A list for multiple group models.

mu the population mean vector or NULL when no meanstructure is involved. A list
for multiple group models.

SigmaHat the H0 model implied covariance matrix. A list for multiple group models.

muHat the H0 model implied mean vector or NULL when no meanstructure is involved.
A list for multiple group models.

modelH0 lavaan H0 model string.

modelH1 lavaan H1 model string or NULL when the comparison refers to the saturated
model.

simRes detailed simulation results when a simulated power analysis (simulatedPower
= TRUE) was performed.

See Also

semPower.genSigma() semPower.aPriori() semPower.postHoc() semPower.compromise()

Examples

## Not run:
# get required N to detect a correlation of >= .2 between two factors
# with a power of 95% on alpha = 5%, where the factors are
# measured by 5 and 6 indicators, respectively, and all loadings are equal to .5
powercfa <- semPower.powerCFA(type = 'a-priori',

Phi = .2,
nIndicator = c(5, 6), loadM = .5,
alpha = .05, beta = .05)

# show summary
summary(powercfa)
# optionally use lavaan to verify the model was set-up as intended
lavaan::sem(powercfa$modelH1, sample.cov = powercfa$Sigma,
sample.nobs = powercfa$requiredN, sample.cov.rescale = FALSE)
lavaan::sem(powercfa$modelH0, sample.cov = powercfa$Sigma,
sample.nobs = powercfa$requiredN, sample.cov.rescale = FALSE)

# same as above, but determine power with N = 500 on alpha = .05
powercfa <- semPower.powerCFA(type = 'post-hoc',

Phi = .2,
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nIndicator = c(5, 6), loadM = .5,
alpha = .05, N = 500)

# same as above, but determine the critical chi-square with N = 500 so that alpha = beta
powercfa <- semPower.powerCFA(type = 'compromise',

Phi = .2,
nIndicator = c(5, 6), loadM = .5,
abratio = 1, N = 500)

# same as above, but compare to the saturated model
# (rather than to the less restricted model)
powercfa <- semPower.powerCFA(type = 'a-priori',

comparison = 'saturated',
Phi = .2,
nIndicator = c(5, 6), loadM = .5,
alpha = .05, beta = .05)

# same as above, but provide a reduced loading matrix defining
# three indicators with loadings of .7, .6, and .5 on the first factor and
# four indicators with loadings of .5, .6, .4, .8 on the second factor
powercfa <- semPower.powerCFA(type = 'a-priori',

Phi = .2,
loadings = list(c(.7, .6, .5),

c(.5, .6, .4, .8)),
alpha = .05, beta = .05)

# detect that the loading of indicator 4 on the first factor differs from zero
Lambda <- matrix(c(

c(.8, 0),
c(.4, 0),
c(.6, 0),
c(.1, .5),
c(0, .6),
c(0, .7)

), ncol = 2, byrow = TRUE)
powercfa <- semPower.powerCFA(type = 'a-priori',

Phi = .2,
nullEffect = 'loading = 0',
nullWhich = c(4, 1),
Lambda = Lambda,
alpha = .05, beta = .05)

# get required N to detect a correlation of >= .3 between factors 1 and 3
# in a three factor model. Factors are measured by 3 indicators each, and all loadings
# on the first, second, and third factor are .5, .6, and .7, respectively.
Phi <- matrix(c(

c(1.00, 0.20, 0.30),
c(0.20, 1.00, 0.10),
c(0.30, 0.10, 1.00)

), ncol = 3,byrow = TRUE)

powercfa <- semPower.powerCFA(type = 'a-priori',
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Phi = Phi,
nullWhich = c(1, 3),
nIndicator = c(3, 3, 3), loadM = c(.5, .6, .7),
alpha = .05, beta = .05)

# same as above, but ask for N to detect that
# the correlation between factors 1 and 2 (of r = .2) differs from
# the correlation between factors 2 and 3 (of r = .3).
powercfa <- semPower.powerCFA(type = 'a-priori',

Phi = Phi,
nullEffect = 'corX = corZ',
nullWhich = list(c(1, 2), c(1, 3)),
nIndicator = c(3, 3, 3), loadM = c(.5, .6, .7),
alpha = .05, beta = .05)

# same as above, but ask for N to detect that all three correlations are unequal
powercfa <- semPower.powerCFA(type = 'a-priori',

Phi = Phi,
nullEffect = 'corX = corZ',
nullWhich = list(c(1, 2), c(1, 3), c(2, 3)),
nIndicator = c(3, 3, 3), loadM = c(.5, .6, .7),
alpha = .05, beta = .05)

# get required N to detect that the correlation between two factors
# in group 1 (of r = .2) differs from the one in group 2 (of r = .4).
# The measurement model is identical for both groups:
# The first factor is measured by 3 indicators loading by .7 each,
# the second factor is measured by 6 indicators loading by .5 each.
# Both groups are sized equally (N = list(1, 1)).
powercfa <- semPower.powerCFA(type = 'a-priori',

nullEffect = 'corA = corB',
Phi = list(.2, .4),
loadM = c(.7, .5),
nIndicator = c(3, 6),
alpha = .05, beta = .05, N = list(1, 1))

# request a simulated post-hoc power analysis with 500 replications.
set.seed(300121)
powercfa <- semPower.powerCFA(type = 'post-hoc',

Phi = .2,
nIndicator = c(5, 6), loadM = .5,
alpha = .05, N = 500,
simulatedPower = TRUE,
simOptions = list(nReplications = 500))

## End(Not run)

semPower.powerCLPM semPower.powerCLPM
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Description

Convenience function for performing power analysis on effects in a cross-lagged panel model
(CLPM). This requires the lavaan package.

Usage

semPower.powerCLPM(
type,
comparison = "restricted",
nWaves = NULL,
autoregEffects = NULL,
crossedEffects = NULL,
rXY = NULL,
waveEqual = NULL,
nullEffect = NULL,
nullWhich = NULL,
nullWhichGroups = NULL,
standardized = TRUE,
standardizedResidualCovariances = TRUE,
metricInvariance = TRUE,
autocorResiduals = TRUE,
...

)

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.

comparison comparison model, one of 'saturated' or 'restricted' (the default). This
determines the df for power analyses. 'saturated' provides power to reject
the model when compared to the saturated model, so the df equal the one of
the hypothesized model. 'restricted' provides power to reject the hypothe-
sized model when compared to an otherwise identical model that just omits the
restrictions defined in nullEffect, so the df equal the number of restrictions.

nWaves number of waves, must be >= 2.

autoregEffects vector of the autoregressive effects of X and Y (constant across waves), or a
list of vectors of autoregressive effects for X and Y from wave to wave, e.g.
list(c(.7, .6), c(.5, .5)) for a autoregressive effect of .7 for X1 -> X2 and
.6 for X2 -> X3 and autoregressive effects of .5 for Y1 -> Y2 and Y2 -> Y3. Must
be a list of lists for multiple groups models. If the list structure is omitted, no
group differences are assumed.

crossedEffects vector of crossed effects of X on Y (X -> Y) and vice versa (both constant across
waves), or a list of vectors of crossed effects giving the crossed effect of X
on Y (and vice versa) for each wave, e.g. list(c(.2, .3), c(.1, .1)) for
X1 - > Y2 = .2, X2 -> Y3 = .3, Y1 -> Y2 = .1, and Y2 -> Y3 = .1. Must be a
list of lists for multiple groups models. If the list structure is omitted, no group
differences are assumed.



semPower.powerCLPM 87

rXY vector of (residual-)correlations between X and Y for each wave. If NULL, all
(residual-)correlations are zero. Can be a list for multiple groups models, other-
wise no group differences are assumed.

waveEqual parameters that are assumed to be equal across waves in both the H0 and the
H1 model. Valid are 'autoregX' and 'autoregY' for autoregressive effects,
'crossedX' and 'crossedY' for crossed effects, 'corXY' for residual correla-
tions, or NULL for none (so that all parameters are freely estimated, subject to the
constraints defined in nullEffect).

nullEffect defines the hypothesis of interest. Valid are the same arguments as in waveEqual
and additionally 'autoregX = 0', 'autoregY = 0', 'crossedX = 0', 'crossedY
= 0' to constrain the X or Y autoregressive effects or the crossed effects to zero,
'autoregX = autoregY' and 'crossedX = crossedY' to constrain them to be
equal for X and Y, and 'autoregXA = autoregXB', 'autoregYA = autoregYB',
'crossedXA = crossedXB', 'crossedYA = crossedYB' to constrain them to be
equal across groups.

nullWhich used in conjunction with nullEffect to identify which parameter to constrain
when there are > 2 waves and parameters are not constant across waves. For
example, nullEffect = 'autoregX = 0' with nullWhich = 2 would constrain
the second autoregressive effect for X to zero.

nullWhichGroups

for hypothesis involving cross-groups comparisons, vector indicating the groups
for which equality constrains should be applied, e.g. c(1, 3) to constrain the
relevant parameters of the first and the third group. If NULL, all groups are con-
strained to equality.

standardized whether all parameters should be treated as standardized (TRUE, the default), im-
plying that unstandardized and standardized regression relations have the same
value. If FALSE, all regression relations are unstandardized.

standardizedResidualCovariances

whether the residual covariances provided in rXY should be interpreted as corre-
lations. When TRUE (the default) the unstandardized residual covariances differ
from the those provided in rXY. When FALSE, the values provided in rXY are the
unstandardized residual covariances, and the standardized residual correlations
differ.

metricInvariance

whether metric invariance over waves is assumed (TRUE, the default) or not
(FALSE). This affects the df when the comparison model is the saturated model
and generally affects power (also for comparisons to the restricted model).

autocorResiduals

whether the residuals of the indicators of latent variables are autocorrelated over
waves (TRUE, the default) or not (FALSE). This affects the df when the compari-
son model is the saturated model and generally affects power (also for compar-
isons to the restricted model).

... mandatory further parameters related to the specific type of power analysis re-
quested, see semPower.aPriori(), semPower.postHoc(), and semPower.compromise(),
and parameters specifying the factor model. The order of factors is (X1, Y1, X2,
Y2, ..., X_nWaves, Y_nWaves). See details.
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Details

This function performs a power analysis to reject various hypotheses arising in crossed-lagged panel
models (CLPM). In a standard CLPM implemented here, two variables X and Y are repeatedly
assessed at two or more different time points (nWaves), yielding autoregressive effects (stabilities;
X1 -> X2 and Y1 -> Y2), synchronous effects (X1 <-> Y1, X2 <-> Y2), and cross-lagged effects
(X1 -> Y2 and Y1 -> X2). CLPM including more than two waves are typically implemented
assuming that the parameters are constant across waves (waveEqual), and usually omit lag-2 effects
(e.g., X1 -> Y3). CLPM based on latent factors usually assume at least metric invariance of the
factors over waves (metricInvariance).

Relevant hypotheses in arising in a CLPM are:

• autoregX = 0 and autoregY = 0: Tests the hypothesis that the autoregressive effect of X and
Y, respectively, is zero.

• crossedX = 0 and crossedY = 0: Tests the hypothesis that the crossed effect of X on Y
(crossedX) and of Y on X (crossedY), respectively, is zero.

• autoregX = autoregY: Tests the hypothesis that the autoregressive effect of X and Y are
equal.

• crossedX = crossedY: Tests the hypothesis that the crossed effect of X on Y (crossedX) and
of Y on X (crossedY) are equal.

• autoregX and autoregY: Tests the hypothesis that the autoregressive effect of X and Y, re-
spectively, is equal across waves.

• crossedX and crossedY: Tests the hypothesis that the crossed effect of X on Y (crossedX)
and of Y on X (crossedY), respectively, is equal across waves.

• corXY: Tests the hypothesis that the (residual-)correlations between X and Y are equal across
waves.

• autoregXA = autoregXB and autoregYA = autoregYB: Tests the hypothesis that the autore-
gressive effect of either X or Y are equal across groups.

• crossedXA = crossedXB and crossedYA = crossedYB: Tests the hypothesis that the crossed
effect of X on Y (crossedX) or of Y on X (crossedY), respectively, is equal across groups.

For hypotheses regarding the random-intercept CLPM, see semPower.powerRICLPM(). For hy-
pothesis in autoregressive models, see semPower.powerAutoreg().

Beyond the arguments explicitly contained in the function call, additional arguments are required
specifying the factor model and the requested type of power analysis.

Additional arguments related to the definition of the factor model:

• Lambda: The factor loading matrix (with the number of columns equaling the number of
factors).

• loadings: Can be used instead of Lambda: Defines the primary loadings for each factor in
a list structure, e. g. loadings = list(c(.5, .4, .6), c(.8, .6, .6, .4)) defines a two
factor model with three indicators loading on the first factor by .5, , 4., and .6, and four
indicators loading on the second factor by .8, .6, .6, and .4.

• nIndicator: Can be used instead of Lambda: Used in conjunction with loadM. Defines the
number of indicators by factor, e. g., nIndicator = c(3, 4) defines a two factor model with
three and four indicators for the first and second factor, respectively. nIndicator can also be
a single number to define the same number of indicators for each factor.
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• loadM: Can be used instead of Lambda: Used in conjunction with nIndicator. Defines the
loading either for all indicators (if a single number is provided) or separately for each factor
(if a vector is provided), e. g. loadM = c(.5, .6) defines the loadings of the first factor to
equal .5 and those of the second factor do equal .6.

So either Lambda, or loadings, or nIndicator and loadM need to be defined. If the model contains
observed variables only, use Lambda = diag(x) where x is the number of variables.

Note that the order of the factors is (X1, Y1, X2, Y2, ..., X_nWaves, Y_nWaves), i. e., the first
factor is treated as the first measurement of X, the second as the first measurement of Y, the third as
the second measurement of X, etc..

Additional arguments related to the requested type of power analysis:

• alpha: The alpha error probability. Required for type = 'a-priori' and type = 'post-hoc'.

• Either beta or power: The beta error probability and the statistical power (1 - beta), respec-
tively. Only for type = 'a-priori'.

• N: The sample size. Always required for type = 'post-hoc' and type = 'compromise'. For
type = 'a-priori' and multiple group analysis, N is a list of group weights.

• abratio: The ratio of alpha to beta. Only for type = 'compromise'.

If a simulated power analysis (simulatedPower = TRUE) is requested, optional arguments can be
provided as a list to simOptions:

• nReplications: The targeted number of simulation runs. Defaults to 250, but larger numbers
greatly improve accuracy at the expense of increased computation time.

• minConvergenceRate: The minimum convergence rate required, defaults to .5. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.

• type: specifies whether the data should be generated from a population assuming multivari-
ate normality ('normal'; the default), or based on an approach generating non-normal data
('IG', 'mnonr', 'RC', or 'VM'). The approaches generating non-normal data require addi-
tional arguments detailed below.

• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of MCAR (the default), MAR, or NMAR.

• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doSNOW package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.

type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.
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type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors. This requires the semTools package.

Value

a list. Use the summary method to obtain formatted results. Beyond the results of the power analysis
and a number of effect size measures, the list contains the following components:

Sigma the population covariance matrix. A list for multiple group models.

mu the population mean vector or NULL when no meanstructure is involved. A list
for multiple group models.

SigmaHat the H0 model implied covariance matrix. A list for multiple group models.

muHat the H0 model implied mean vector or NULL when no meanstructure is involved.
A list for multiple group models.

modelH0 lavaan H0 model string.

modelH1 lavaan H1 model string or NULL when the comparison refers to the saturated
model.

simRes detailed simulation results when a simulated power analysis (simulatedPower
= TRUE) was performed.

See Also

semPower.genSigma() semPower.aPriori() semPower.postHoc() semPower.compromise()

Examples

## Not run:
# Determine required N in a 2-wave CLPM
# to detect a crossed-effect of X (X1 -> Y2) of >= .2
# with a power of 95% on alpha = 5%, where
# X1 and X2 are measured by 5 indicators loading by .5 each, and
# Y1 and Y2 are measured by 3 indicators loading by .6 each, and
# there is no synchronous correlation between X and Y (rXY = NULL),
# the stability of X is .8,
# the stability of Y is .7, and
# the crossed-effect of Y (Y1 -> X2) is .1.
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = NULL,
nullEffect = 'crossedX = 0',
nIndicator = c(5, 3, 5, 3),



semPower.powerCLPM 91

loadM = c(.5, .6, .5, .6),
alpha = .05, beta = .05)

# show summary
summary(powerCLPM)
# optionally use lavaan to verify the model was set-up as intended
lavaan::sem(powerCLPM$modelH1, sample.cov = powerCLPM$Sigma,

sample.nobs = powerCLPM$requiredN,
sample.cov.rescale = FALSE)

lavaan::sem(powerCLPM$modelH0, sample.cov = powerCLPM$Sigma,
sample.nobs = powerCLPM$requiredN,
sample.cov.rescale = FALSE)

# same as above, but determine power with N = 500 on alpha = .05
powerCLPM <- semPower.powerCLPM(type = 'post-hoc',

nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = NULL,
nullEffect = 'crossedX = 0',
nIndicator = c(5, 3, 5, 3),
loadM = c(.5, .6, .5, .6),
alpha = .05, N = 500)

# same as above, but determine the critical chi-square with N = 500 so that alpha = beta
powerCLPM <- semPower.powerCLPM(type = 'compromise',

nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = NULL,
nullEffect = 'crossedX = 0',
nIndicator = c(5, 3, 5, 3),
loadM = c(.5, .6, .5, .6),
abratio = 1, N = 500)

# same as above, but compare to the saturated model
# (rather than to the less restricted model)
powerCLPM <- semPower.powerCLPM(type = 'compromise',

comparison = 'saturated',
nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = NULL,
nullEffect = 'crossedX = 0',
nIndicator = c(5, 3, 5, 3),
loadM = c(.5, .6, .5, .6),
abratio = 1, N = 500)

# same as above, but assume only observed variables
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
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rXY = NULL,
nullEffect = 'crossedX = 0',
Lambda = diag(4),
alpha = .05, beta = .05)

# same as above, but provide reduced loadings matrix to define that
# X1 and X2 are measured by 5 indicators each loading by .4, .5, .6, .5, .4
# Y1 and Y2 are measured by 3 indicators each loading by .8, .6, .7
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = NULL,
nullEffect = 'crossedX = 0',
loadings = list(

c(.4, .5, .6, .5, .4), # X1
c(.8, .6, .7), # Y1
c(.4, .5, .6, .5, .4), # X2
c(.8, .6, .7) # Y2

),
alpha = .05, beta = .05)

# same as above, but do not assume metric invariance across waves
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = NULL,
nullEffect = 'crossedX = 0',
nIndicator = c(5, 3, 5, 3),
loadM = c(.5, .6, .5, .6),
metricInvariance = FALSE,
alpha = .05, beta = .05)

# same as above, but determine N to detect that the crossed-effect of Y (Y1 -> X2) is >= .1.
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = NULL,
nullEffect = 'crossedY = 0',
nIndicator = c(5, 3, 5, 3),
loadM = c(.5, .6, .5, .6),
alpha = .05, beta = .05)

# same as above, but determine N to detect that the stability of X (X1 -> X2) is >= .8.
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = NULL,
nullEffect = 'autoregX = 0',
nIndicator = c(5, 3, 5, 3),
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loadM = c(.5, .6, .5, .6),
alpha = .05, beta = .05)

# same as above, but determine N to detect that the stability of Y (Y1 -> Y2) is >= .7.
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = NULL,
nullEffect = 'autoregY = 0',
nIndicator = c(5, 3, 5, 3),
loadM = c(.5, .6, .5, .6),
alpha = .05, beta = .05)

# same as above, but determine N to detect that
# the crossed effect of X (X1 -> Y2) of .2 differs from
# the crossed effect of Y (Y1 -> X2) of .1
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = NULL,
nullEffect = 'crossedX = crossedY',
nIndicator = c(5, 3, 5, 3),
loadM = c(.5, .6, .5, .6),
alpha = .05, beta = .05)

# same as above, but determine N to detect that
# the autoregressive effect of X (X1 -> X2) of .8 differs from
# the autoregressive effect of Y (Y1 -> Y2) of .7
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = NULL,
nullEffect = 'autoregX = autoregY',
nIndicator = c(5, 3, 5, 3),
loadM = c(.5, .6, .5, .6),
alpha = .05, beta = .05)

# same as above, but assume that the synchronous correlation between X and Y
# is .3 at the first wave, and the respective residual correlation is .2 at the second wave,
# and determine N to detect that synchronous residual correlation (at wave 2) is => .2.
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = c(.3, .2),
nullEffect = 'corXY = 0',
nIndicator = c(5, 3, 5, 3),
loadM = c(.5, .6, .5, .6),
alpha = .05, beta = .05)



94 semPower.powerCLPM

# Determine required N in a 3-wave CLPM
# to detect a crossed-effect of X (X1 -> Y2 and X2 -> Y3) of >= .2
# with a power of 95% on alpha = 5%, where
# the crossed, autoregressive, and synchronous effects of X and Y are equal over waves,
# X1, X2, and X3 are measured by 5 indicators loading by .5 each, and
# Y1, Y2, and Y3 are measured by 3 indicators loading by .6 each, and
# the synchronous correlation between X and Y are .2 across all three waves, and
# the stability of X is .8 across all three waves,
# the stability of Y is .7 across all three waves, and
# the crossed-effect of Y (Y1 -> X2, and Y2 -> Y3) is .1.
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = c(.2, .2, .2),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
nullEffect = 'crossedX = 0',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .6, .5, .6, .5, .6),
alpha = .05, beta = .05)

# Determine required N in a 3-wave CLPM to detect that
# the crossed-effect of X in wave 1 (X1 -> Y2) of .20 is equal to the
# the crossed-effect of X in wave 2 (X2 -> Y3) of .10
# with a power of 95% on alpha = 5%, where
# the autoregressive effects of X and Y are equal over waves,
# X1, X2, and X3 are measured by 5 indicators loading by .5 each, and
# Y1, Y2, and Y3 are measured by 3 indicators loading by .6 each, and
# the synchronous correlation between X and Y are .2, .3, and .4 at the first,
# second, and third wave, and
# the stability of X is .8 across all three waves,
# the stability of Y is .7 across all three waves, and
# the crossed-effects of Y (Y1 -> X2, and Y2 -> X3) are both .1
# (but freely estimated for each wave).
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = list(

c(.20, .10), # X1 -> Y2, X2 -> Y3
c(.05, .10)), # Y1 -> X2, Y2 -> X3

rXY = c(.2, .3, .4),
nullEffect = 'crossedX',
waveEqual = c('autoregX', 'autoregY'),
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .6, .5, .6, .5, .6),
alpha = .05, beta = .05)

# same as above, but determine N to detect that
# the crossed-effect of X at wave 2 is >= .10.
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
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crossedEffects = list(
c(.20, .10), # X1 -> Y2, X2 -> Y3
c(.05, .10)), # Y1 -> X2, Y2 -> X3

rXY = c(.2, .3, .4),
nullEffect = 'crossedX',
nullWhich = 2,
waveEqual = c('autoregX', 'autoregY'),
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .6, .5, .6, .5, .6),
alpha = .05, beta = .05)

# same as above, but determine N to detect that
# the residual correlation between X and Y at wave 2 (of .3) differs from
# the residual correlation between X and Y at wave 3 (of .4)
# and define unstandardized parameters
powerCLPM <- semPower.powerCLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = list(

c(.20, .10), # X1 -> Y2, X2 -> Y3
c(.05, .10)), # Y1 -> X2, Y2 -> X3

rXY = c(.2, .3, .4),
nullEffect = 'corXY',
waveEqual = c('autoregX', 'autoregY'),
standardized = FALSE,
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .6, .5, .6, .5, .6),
alpha = .05, beta = .05)

# multiple group example
# determine power in a 3-wave CLPM to detect that
# the autoregressive effect of X in group 1 (of .8) differs from the
# autoregressive effect of X in group 2 (of .6)
# with a 500 observations in both groups on alpha = 5%, where
# the autoregressive effects of X and Y are equal over waves (but not across groups),
# the cross-lagged effects of X and Y are equal over waves (and also across groups),
# X1, X2, and X3 are measured by 5 indicators loading by .5 each, and
# Y1, Y2, and Y3 are measured by 3 indicators loading by .4 each, and
# there are no synchronous correlation between X and Y.
powerCLPM <- semPower.powerCLPM(type = 'post-hoc', alpha = .05, N = list(500, 500),

nWaves = 3,
autoregEffects = list(
# group 1
list(c(.8, .8), # X1 -> X2, X2 -> X3

c(.7, .7)), # Y1 -> Y2, Y2 -> Y3
# group 2
list(c(.6, .6), # X1 -> X2, X2 -> X3

c(.7, .7)) # Y1 -> Y2, Y2 -> Y3
),
crossedEffects = c(.2, .1),

waveEqual = c('autoregX', 'autoregY', 'crossedX', 'crossedY'),
rXY = NULL,
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nullEffect = 'autoregxa=autoregxb',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4))

# request a simulated post-hoc power analysis with 500 replications.
set.seed(300121)
powerCLPM <- semPower.powerCLPM(type = 'post-hoc',

nWaves = 2,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
rXY = NULL,
nullEffect = 'crossedX = 0',
Lambda = diag(4),
alpha = .05, N = 500,
simulatedPower = TRUE,
simOptions = list(nReplications = 500))

## End(Not run)

semPower.powerLav semPower.powerLav

Description

Perform a power analysis given lavaan model strings defining the H0 and the H1 model based on
either a lavaan model string defining the population model or the population covariance matrix
Sigma and the population means mu. This requires the lavaan package.

Usage

semPower.powerLav(
type,
modelPop = NULL,
modelH0 = NULL,
modelH1 = NULL,
fitH1model = TRUE,
Sigma = NULL,
mu = NULL,
fittingFunction = "ML",
simulatedPower = FALSE,
lavOptions = NULL,
lavOptionsH1 = lavOptions,
...

)



semPower.powerLav 97

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.

modelPop lavaan model string defining the true model. Can be omitted when Sigma is set.

modelH0 lavaan model string defining the (incorrect) analysis model.

modelH1 lavaan model string defining the comparison model. If omitted, the saturated
model is the comparison model.

fitH1model whether to fit the H1 model. If FALSE, the H1 model is assumed to show the
same fit as the saturated model, and only the delta df are computed.

Sigma can be used instead of modelPop: population covariance matrix. A list for mul-
tiple group models.

mu can be used instead of modelPop: vector of population means. Can be omitted
for no meanstructure. A list for multiple group models.

fittingFunction

one of 'ML' (default), 'WLS', 'DWLS', 'ULS'. Defines the fitting function used
to obtain SigmaHat in analytical power analyses. This also implies a certain
discrepancy function used to obtain Fmin.

simulatedPower whether to perform a simulated (TRUE, rather than analytical, FALSE) power anal-
ysis. See simulate() for additional options.

lavOptions a list of additional options passed to lavaan, e. g., list(estimator = 'mlm')
to request robust ML estimation. Mostly useful in conjunction with simulatedPower.

lavOptionsH1 alternative options passed to lavaan that are only used for the H1 model. If
NULL, identical to lavOptions. Probably only useful for multigroup models.

... mandatory further parameters related to the specific type of power analysis re-
quested, see semPower.aPriori(), semPower.postHoc(), and semPower.compromise().
See details.

Details

Generic function to perform a power analysis based on a true population covariance matrix Sigma
and a model implied covariance matrix SigmaHat (and optionally the associated mean vectors),
where SigmaHat (and muHat) is determined by fitting a respective H0 model using lavaan, and
Sigma (and mu) can also be provided through a corresponding lavaan model string.

All semPower convenience functions internally call this function.

Beyond the arguments explicitly contained in the function call, additional arguments are required
specifying the requested type of power analysis:

• alpha: The alpha error probability. Required for type = 'a-priori' and type = 'post-hoc'.

• Either beta or power: The beta error probability and the statistical power (1 - beta), respec-
tively. Only for type = 'a-priori'.

• N: The sample size. Always required for type = 'post-hoc' and type = 'compromise'. For
type = 'a-priori' and multiple group analysis, N is a list of group weights.

• abratio: The ratio of alpha to beta. Only for type = 'compromise'.

If a simulated power analysis (simulatedPower = TRUE) is requested, optional arguments can be
provided as a list to simOptions:
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• nReplications: The targeted number of simulation runs. Defaults to 250, but larger numbers
greatly improve accuracy at the expense of increased computation time.

• minConvergenceRate: The minimum convergence rate required, defaults to .5. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.

• type: specifies whether the data should be generated from a population assuming multivari-
ate normality ('normal'; the default), or based on an approach generating non-normal data
('IG', 'mnonr', 'RC', or 'VM'). The approaches generating non-normal data require addi-
tional arguments detailed below.

• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of MCAR (the default), MAR, or NMAR.

• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doSNOW package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.

type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.

type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors. This requires the semTools package.

Value

a list. Use the summary method to obtain formatted results. Beyond the results of the power analysis
and a number of effect size measures, the list contains the following components:

Sigma the population covariance matrix. A list for multiple group models.

mu the population mean vector or NULL when no meanstructure is involved. A list
for multiple group models.

SigmaHat the H0 model implied covariance matrix. A list for multiple group models.

muHat the H0 model implied mean vector or NULL when no meanstructure is involved.
A list for multiple group models.
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modelH0 lavaan H0 model string.

modelH1 lavaan H1 model string or NULL when the comparison refers to the saturated
model.

simRes detailed simulation results when a simulated power analysis (simulatedPower
= TRUE) was performed.

See Also

semPower.aPriori() semPower.postHoc() semPower.compromise()

Examples

## Not run:
# set up two CFA factors with a true correlation of .2
mPop <- '

f1 =~ .5*x1 + .6*x2 + .4*x3
f2 =~ .7*x4 + .8*x5 + .3*x6
x1 ~~ .75*x1
x2 ~~ .64*x2
x3 ~~ .84*x3
x4 ~~ .51*x4
x5 ~~ .36*x5
x6 ~~ .91*x6
f1 ~~ 1*f1
f2 ~~ 1*f2
f1 ~~ .2*f2

'
# define the H0 analysis model (restricting the factor correlation to zero)
mH0 <- '

f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f1 ~~ 0*f2

'
# determine N to reject the H0 that the correlation is zero
# with a power of 95% on alpha = .05
powerLav <- semPower.powerLav(type = 'a-priori',

modelPop = mPop, modelH0 = mH0,
alpha = .05, beta = .05)

summary(powerLav)

# same as above, but also define an H1 comparison model
mH1 <- '

f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f1 ~~ f2

'
powerLav <- semPower.powerLav(type = 'a-priori',

modelPop = mPop, modelH0 = mH0, modelH1 = mH1,
alpha = .05, beta = .05)

# same as above, but use covariance matrix input instead of modelPop
gen <- semPower.genSigma(Phi = .2,
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loadings = list(c(.5, .6, .4), c(.7, .8, .3)))
Sigma <- gen$Sigma
powerLav <- semPower.powerLav(type = 'a-priori',

Sigma = Sigma, modelH0 = mH0,
alpha = .05, beta = .05)

# note all of the above is identical to the output provided by the semPower.powerCFA function
powerCFA <- semPower.powerCFA(type = 'a-priori',

comparison = 'saturated',
Phi = .2,
loadings = list(c(.5, .6, .4), c(.7, .8, .3)),
alpha = .05, beta = .05)

# same as above, but perform simulated power analysis
# with 250 replications using a robust ML test-statistic
set.seed(300121)
powerLav <- semPower.powerLav(type = 'a-priori',

Sigma = Sigma, modelH0 = mH0,
alpha = .05, beta = .05,
simulatedPower = TRUE,
simOptions = list(nReplications = 250)
lavOptions = list(estimator = 'MLM'))

## End(Not run)

semPower.powerLGCM semPower.powerLGCM

Description

Convenience function for performing power analysis on effects in a latent growth curve model
(LGCM). This requires the lavaan package.

Usage

semPower.powerLGCM(
type,
comparison = "restricted",
nWaves = NULL,
means = NULL,
variances = NULL,
covariances = NULL,
quadratic = FALSE,
timeCodes = NULL,
ticExogSlopes = NULL,
ticEndogSlopes = NULL,
groupEqual = NULL,
nullEffect = NULL,
nullWhichGroups = NULL,



semPower.powerLGCM 101

autocorResiduals = TRUE,
...

)

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.

comparison comparison model, one of 'saturated' or 'restricted' (the default). This
determines the df for power analyses. 'saturated' provides power to reject
the model when compared to the saturated model, so the df equal the one of
the hypothesized model. 'restricted' provides power to reject the hypothe-
sized model when compared to an otherwise identical model that just omits the
restrictions defined in nullEffect, so the df equal the number of restrictions.

nWaves number of waves, must be >= 3 for linear and > 3 for quadratic trends.

means vector providing the means of the intercept and the linear slope factor (and the
quadratic slope factor, if quadratic = TRUE). A list for multiple group models.

variances vector providing the variances of the intercept and the linear slope factor (and
the quadratic slope factor, if quadratic = TRUE). Can be omitted, if a matrix is
provided to covariances. Takes precedence over the diagonal in covariances
when both are defined. A list for multiple group models.

covariances either the variance-covariance matrix between the intercept and the slope (and
the quadratic slope factor, if quadratic = TRUE), or a single number giving the
covariance between intercept and slope factor, or NULL for orthogonal factors. A
list for multiple group models.

quadratic whether to include a quadratic slope factor in addition to a linear slope factor.
Defaults to FALSE for no quadratic slope factor.

timeCodes vector of length nWaves defining the loadings on the slope factor. If omitted, the
time codes default to (0, 1, ..., (nWaves - 1)).

ticExogSlopes vector defining the slopes for an exogenous time-invariant covariate in the pre-
diction of the intercept and slope factors (and the quadratic slope factor, if
quadratic = TRUE). Can be omitted for no covariate.

ticEndogSlopes vector defining the slopes for the intercept and slope factors (and the quadratic
slope factor, if quadratic = TRUE) in the prediction of an endogenous time-
invariant covariate. Can be omitted for no covariate.

groupEqual parameters that are restricted across groups in both the H0 and the H1 model,
when nullEffect implies a multiple group model. Valid are 'imean', 'smean',
's2mean' to restrict the means of the intercept, linear slope, and quadratic
slope factors, and 'ivar', 'svar', 's2var' for their variances, and 'iscov',
'is2cov', 'ss2cov' for the covariances between intercept and slope, intercept
and quadratic slope, and linear and quadratic slope.

nullEffect defines the hypothesis of interest. See details for valid arguments.
nullWhichGroups

for hypothesis involving cross-groups comparisons, vector indicating the groups
for which equality constrains should be applied, e.g. c(1, 3) to constrain the
relevant parameters of the first and the third group. If NULL, all groups are con-
strained to equality.
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autocorResiduals

whether the residuals of the indicators of latent variables are autocorrelated over
waves (TRUE, the default) or not (FALSE). This is only applied to second order
LGCMs. This affects the df when the comparison model is the saturated model
and generally affects power (also for comparisons to the restricted model).

... mandatory further parameters related to the specific type of power analysis re-
quested, see semPower.aPriori(), semPower.postHoc(), and semPower.compromise(),
and parameters specifying the factor model. The order of factors is (X1, X2, ...,
X_nWaves, ticExogSlopes, ticEndogSlopes). See details.

Details

This function performs a power analysis to reject various hypotheses arising in latent growth curve
models (LGCM), where one variable X is repeatedly assessed at different time points (nWaves), and
a latent intercept and a linear (and optionally a quadratic) latent slope factor is assumed.

Relevant hypotheses in arising in a LCGM are:

• iMean = 0, sMean = 0, s2Mean = 0: Tests the hypothesis that the mean of the intercept, linear
slope, and quadratic slope factors, respectively, is zero.

• iVar = 0, sVar = 0, s2Var = 0: Tests the hypothesis that the variance of the intercept, linear
slope, and quadratic slope factors, respectively, is zero.

• isCov = 0: Tests the hypothesis that covariance between the intercept and linear slope factor
is zero.

• is2Cov = 0: Tests the hypothesis that covariance between the intercept and quadratic slope
factor is zero.

• ss2Cov = 0: Tests the hypothesis that covariance between the linear and the quadratic slope
factor is zero.

• betaIT = 0, betaST = 0, betaS2T = 0: Tests the hypothesis that the slope for an exogenous
time-invariant covariate in the prediction of the intercept, the linear slope, and the quadratic
slope factor, respectively, is zero (TIC -> I, S, S2).

• betaTI = 0, betaTS = 0, betaTS2 = 0: Tests the hypothesis that the slope the intercept, the
linear slope, and the quadratic slope factor, respectively, in the prediction of an endogenous
time-invariant covariate is zero (I, S, S2 -> TIC).

• iMeanA = iMeanB, sMeanA = sMeanB, s2MeanA = s2MeanB: Tests the hypothesis that the means
of the intercept, linear slope, and quadratic slope factors, respectively, are equal across groups.

• iVarA = iVarB, sVarA = sVarB, s2VarA = s2VarB: Tests the hypothesis that the variances of
the intercept, linear slope, and quadratic slope factors, respectively, are equal across groups.

• isCovA = isCovA: Tests the hypothesis that covariance between the intercept and linear slope
factor is equal across groups.

• is2CovA = is2CovA: Tests the hypothesis that the covariance between the intercept and quadratic
slope factor is equal across groups.

• ss2CovA = ss2CovA: Tests the hypothesis that the covariance between the linear and quadratic
slope factor is equal across groups.

• betaITA = betaITB, betaSTA = betaSTB, betaS2TA = betaS2TB: Tests the hypothesis that
the slopes for the time-invariant covariate in the prediction of the intercept, the linear slope,
and the quadratic slope factor, respectively, are equal across groups (TIC -> I, S, S2).
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• betaTIA = betaTIB, betaTSA = betaTSB, betaTS2A = betaTS2B: Tests the hypothesis that
the slope the intercept, the linear slope, and the quadratic slope factor, respectively, in the
prediction of the time-invariant covariate are equal across groups (I, S, S2 -> TIC).

For hypotheses regarding longitudinal invariance, see semPower.powerLI(). For hypotheses re-
garding a simple autoregression, see semPower.powerAutoreg(). For hypotheses in an ARMA
model, see semPower.powerARMA().

Beyond the arguments explicitly contained in the function call, additional arguments are required
specifying the factor model and the requested type of power analysis.

Additional arguments related to the definition of the factor model:

• Lambda: The factor loading matrix (with the number of columns equaling the number of
factors).

• loadings: Can be used instead of Lambda: Defines the primary loadings for each factor in
a list structure, e. g. loadings = list(c(.5, .4, .6), c(.8, .6, .6, .4)) defines a two
factor model with three indicators loading on the first factor by .5, , 4., and .6, and four
indicators loading on the second factor by .8, .6, .6, and .4.

• nIndicator: Can be used instead of Lambda: Used in conjunction with loadM. Defines the
number of indicators by factor, e. g., nIndicator = c(3, 4) defines a two factor model with
three and four indicators for the first and second factor, respectively. nIndicator can also be
a single number to define the same number of indicators for each factor.

• loadM: Can be used instead of Lambda: Used in conjunction with nIndicator. Defines the
loading either for all indicators (if a single number is provided) or separately for each factor
(if a vector is provided), e. g. loadM = c(.5, .6) defines the loadings of the first factor to
equal .5 and those of the second factor do equal .6.

So either Lambda, or loadings, or nIndicator and loadM need to be defined. Neither may contain
entries referring to the intercept and slope factors. If the model contains observed variables only,
use Lambda = diag(x) where x is the number of variables.

The order of the factors is (X1, X2, ..., X_nWaves, ticExogenous, ticEndogenous). If ticExogenous
is undefined, ticEndogenous takes its place.

Additional arguments related to the requested type of power analysis:

• alpha: The alpha error probability. Required for type = 'a-priori' and type = 'post-hoc'.

• Either beta or power: The beta error probability and the statistical power (1 - beta), respec-
tively. Only for type = 'a-priori'.

• N: The sample size. Always required for type = 'post-hoc' and type = 'compromise'. For
type = 'a-priori' and multiple group analysis, N is a list of group weights.

• abratio: The ratio of alpha to beta. Only for type = 'compromise'.

If a simulated power analysis (simulatedPower = TRUE) is requested, optional arguments can be
provided as a list to simOptions:

• nReplications: The targeted number of simulation runs. Defaults to 250, but larger numbers
greatly improve accuracy at the expense of increased computation time.

• minConvergenceRate: The minimum convergence rate required, defaults to .5. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.
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• type: specifies whether the data should be generated from a population assuming multivari-
ate normality ('normal'; the default), or based on an approach generating non-normal data
('IG', 'mnonr', 'RC', or 'VM'). The approaches generating non-normal data require addi-
tional arguments detailed below.

• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of MCAR (the default), MAR, or NMAR.

• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doSNOW package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.

type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.

type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors. This requires the semTools package.

Value

a list. Use the summary method to obtain formatted results. Beyond the results of the power analysis
and a number of effect size measures, the list contains the following components:

Sigma the population covariance matrix. A list for multiple group models.

mu the population mean vector or NULL when no meanstructure is involved. A list
for multiple group models.

SigmaHat the H0 model implied covariance matrix. A list for multiple group models.

muHat the H0 model implied mean vector or NULL when no meanstructure is involved.
A list for multiple group models.

modelH0 lavaan H0 model string.

modelH1 lavaan H1 model string or NULL when the comparison refers to the saturated
model.

simRes detailed simulation results when a simulated power analysis (simulatedPower
= TRUE) was performed.
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See Also

semPower.genSigma() semPower.aPriori() semPower.postHoc() semPower.compromise()

Examples

## Not run:
# Determine required N in a 3-wave LGCM model
# to detect that the mean of the slope factor differs from zero
# with a power of 80% on alpha = 5%, where
# X is measured by 3 indicators loading by .5 each (at each wave), and
# the mean of the intercept factor is .5 and
# the mean of the slope factor is .2 and
# the variance of the intercept factor is 1 and
# the variance of the slope factor is .5 and
# the intercept-slope covariance is .25 and
# autocorrelated residuals are assumed
powerLGCM <- semPower.powerLGCM(

'a-priori', alpha = .05, power = .80,
nWaves = 3,
means = c(.5, .2), # i, s
variances = c(1, .5), # i, s
covariances = .25,
nullEffect = 'sMean = 0',
nIndicator = rep(3, 3), loadM = .5,
autocorResiduals = TRUE

)

# show summary
summary(powerLGCM)
# optionally use lavaan to verify the model was set-up as intended
lavaan::sem(powerLGCM$modelH1, sample.cov = powerLGCM$Sigma,

sample.mean = powerLGCM$mu,
sample.nobs = powerLGCM$requiredN,
sample.cov.rescale = FALSE)

lavaan::sem(powerLGCM$modelH0, sample.cov = powerLGCM$Sigma,
sample.mean = powerLGCM$mu,
sample.nobs = powerLGCM$requiredN,
sample.cov.rescale = FALSE)

# same as above, but determine power with N = 250 on alpha = .05
powerLGCM <- semPower.powerLGCM(

'post-hoc', alpha = .05, N = 250,
nWaves = 3,
means = c(.5, .2),
variances = c(1, .5),
covariances = .25,
nullEffect = 'sMean = 0',
nIndicator = rep(3, 3), loadM = .5,
autocorResiduals = TRUE

)
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# same as above, but determine the critical chi-square with N = 250 so that alpha = beta
powerLGCM <- semPower.powerLGCM(

'compromise', abratio = 1, N = 250,
nWaves = 3,
means = c(.5, .2),
variances = c(1, .5),
covariances = .25,
nullEffect = 'sMean = 0',
nIndicator = rep(3, 3), loadM = .5,
autocorResiduals = TRUE

)

# same as above, but compare to the saturated model
# (rather than to the less restricted model)
powerLGCM <- semPower.powerLGCM(

'a-priori', alpha = .05, power = .80, comparison = 'saturated',
nWaves = 3,
means = c(.5, .2),
variances = c(1, .5),
covariances = .25,
nullEffect = 'sMean = 0',
nIndicator = rep(3, 3), loadM = .5,
autocorResiduals = TRUE

)

# same as above, but assume only observed variables
powerLGCM <- semPower.powerLGCM(

'a-priori', alpha = .05, power = .80, comparison = 'saturated',
nWaves = 3,
means = c(.5, .2),
variances = c(1, .5),
covariances = .25,
nullEffect = 'sMean = 0',
Lambda = diag(3),
autocorResiduals = TRUE

)

# same as above, but provide reduced loadings matrix to define that
# X is measured by 3 indicators each loading by .5, .6, .4 (at each wave)
powerLGCM <- semPower.powerLGCM(

'a-priori', alpha = .05, power = .80, comparison = 'saturated',
nWaves = 3,
means = c(.5, .2),
variances = c(1, .5),
covariances = .25,
nullEffect = 'sMean = 0',
loadings = list(
c(.5, .6, .4), # X1
c(.5, .6, .4), # X2
c(.5, .6, .4) # X3

),
autocorResiduals = TRUE

)
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# same as above, but get required N to detect that
# the variance of the intercept factor differs from zero
powerLGCM <- semPower.powerLGCM(

'a-priori', alpha = .05, power = .80,
nWaves = 3,
means = c(.5, .2),
variances = c(1, .5),
covariances = .25,
nullEffect = 'iVar = 0',
nIndicator = rep(3, 3), loadM = .5,
autocorResiduals = TRUE

)

# same as above, but get required N to detect that
# the intercept-slope covariance differs from zero
powerLGCM <- semPower.powerLGCM(

'a-priori', alpha = .05, power = .80,
nWaves = 3,
means = c(.5, .2),
variances = c(1, .5),
covariances = .25,
nullEffect = 'iscov = 0',
nIndicator = rep(3, 3), loadM = .5,
autocorResiduals = TRUE

)

# include a quadratic slope factor
# and get required N to detect that
# its variance differs from zero.
# provide the variance-covariance matrix
# between intercept, slope, and quadratic slope factors
powerLGCM <- semPower.powerLGCM(

'a-priori', alpha = .05, power = .80,
nWaves = 4,
quadratic = TRUE,
means = c(.5, .2, .1),
covariances = matrix(c(

# i s s2
c(1, .3, .2),
c(.3, .5, .01),
c(.2, .01, .1)

), ncol = 3, byrow = TRUE),
nullEffect = 's2var = 0',
nIndicator = rep(3, 4), loadM = .5,
autocorResiduals = TRUE

)

# Determine required N in a 3-wave LGCM model
# to detect that the slope of an time-invariant covariate (TIC)
# on the slope factor differs from zero.
# The TIC is measured by 4 indicators loading
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# by .7, .7, .5, and .8. The slope of the TIC in the prediction of
# the intercept factor is .5, and in the prediction of the slope factor is .4.
powerLGCM <- semPower.powerLGCM(

'a-priori', alpha = .05, power = .80,
nWaves = 3,
means = c(.5, .2),
variances = c(1, .5),
covariances = .25,
ticExogSlopes = c(.5, .4), # i s
nullEffect = 'betaST = 0',
loadings = list(
c(.5, .6, .4), # X1
c(.5, .6, .4), # X2
c(.5, .6, .4), # X3
c(.7, .7, .5, .8) # TIC

),
autocorResiduals = TRUE

)

# Determine required N in a 3-wave LGCM model
# to detect that the slope of the slope factor in
# the prediction of a time-invariant covariate (TIC) differs from zero.
# The TIC is measured by 4 indicators loading
# by .7, .7, .5, and .8. The slopes of the intercept and the slope factors in
# the prediction of the TIC are .1 and .3, respectively.
powerLGCM <- semPower.powerLGCM(

'a-priori', alpha = .05, power = .80,
nWaves = 3,
means = c(.5, .2),
variances = c(1, .5),
covariances = .25,
ticEndogSlopes = c(.1, .3), # i s
nullEffect = 'betaTS = 0',
loadings = list(
c(.5, .6, .4), # X1
c(.5, .6, .4), # X2
c(.5, .6, .4), # X3
c(.7, .7, .5, .8) # TIC

),
autocorResiduals = TRUE

)

# Determine required N in a 3-wave LGCM model
# to detect that the mean of the slope factor in group 1
# differs from the mean of the slope factor in group 2
# with a power of 80% on alpha = 5%, where
# X is measured by 3 indicators loading by .5 each (at each wave and in each group), and
# the means of the intercept factor in group 1 and 2 are .5 and .25
# the means of the slope factor in group 1 and 2 are .25 and .4
# the variance of the intercept factor is 1 in both groups and
# the variance of the slope factor is .5in both groups and
# the intercept-slope covariance is .25 in both groups and
# autocorrelated residuals are assumed and
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# the groups are equal-sized
powerLGCM <- semPower.powerLGCM(

'a-priori', alpha = .05, power = .80, N = list(1, 1),
nWaves = 3,
means = list(

# i, s
c(.5, .2), # group 1
c(.25, .4)), # group 2

variances = c(1, .5),
covariances = .25,
nullEffect = 'sMeanA = sMeanB',
nIndicator = rep(3, 3), loadM = .5,
autocorResiduals = TRUE

)

# similar as above, but get required N to detect that
# the intercept-slope covariance differs across groups,
# assuming that intercept and slope variances are equal across groups.
powerLGCM <- semPower.powerLGCM(

'a-priori', alpha = .05, power = .80, N = list(1, 1),
nWaves = 3,
means = c(.5, .2),
variances = c(1, .5),
covariances = list(

c(.25), # group 1
c(.1)), # group 2

nullEffect = 'isCovA = isCovB',
groupEqual = c('ivar', 'svar'),
nIndicator = rep(3, 3), loadM = .5,
autocorResiduals = TRUE

)

# perform a simulated post-hoc power analysis
# with 250 replications
set.seed(300121)
powerLGCM <- semPower.powerLGCM(

'post-hoc', alpha = .05, N = 500,
nWaves = 3,
means = c(.5, .2), # i, s
variances = c(1, .5), # i, s
covariances = .25,
nullEffect = 'sMean = 0',
nIndicator = rep(3, 3), loadM = .5,
autocorResiduals = TRUE,
simulatedPower = TRUE,
simOptions = list(nReplications = 250)

)

## End(Not run)

semPower.powerLI semPower.powerLI
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Description

Convenience function for performing power analyses for hypothesis arising in longitudinal mea-
surement invariance models concerning a specific level of invariance. This requires the lavaan
package.

Usage

semPower.powerLI(
type,
comparison = NULL,
nullEffect = NULL,
autocorResiduals = TRUE,
Phi = NULL,
...

)

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.

comparison comparison model, either 'saturated' or one of 'configural', 'metric',
'scalar', 'residual', 'covariances', 'means', or a vector of restrictions
in lavaan format (with 'none' for no restrictions). See details.

nullEffect defines the hypothesis (i.e., level of invariance) of interest. Accepts the same
arguments as comparison. See details.

autocorResiduals

whether the residuals of the indicators of latent variables are autocorrelated over
waves (TRUE, the default) or not (FALSE). This affects the df when the compari-
son model is the saturated model and generally affects power (also for compar-
isons to the restricted model).

Phi the factor correlation matrix. Can be NULL for uncorrelated factors.

... mandatory further parameters related to the specific type of power analysis re-
quested, see semPower.aPriori(), semPower.postHoc(), and semPower.compromise(),
and parameters specifying the factor model. See details.

Details

This function performs a power analysis to reject various hypotheses arising in the context of lon-
gitudinal measurement invariance, where a single attribute is measured repeatedly. The typical -
but not in all parts necessary - sequence concerning the measurement part is (a) configural, (b)
metric, (c) scalar, (d) residual invariance, and concerning the structural part (e) latent covariances,
(f) latent means, where each level of invariance is compared against the previous level (e.g., scalar
vs. metric). Power analysis provides the power (or the required N) to reject a particular level of
invariance.

For hypotheses regarding multiple group invariance, see semPower.powerMI(). For hypotheses
regarding autoregressive models, see semPower.powerAutoreg(). For hypotheses in an ARMA
model, see semPower.powerARMA().
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There are two ways to specify the models defined in the comparison and the nullEffect argu-
ments. Either, one may specify a specific level of invariance that includes all previous levels:

• 'configural': no invariance constraints. Shows the same fit as the saturated model, so only
the delta df differ.

• 'metric': all loadings are restricted to equality over measurement occasions. Note that ref-
erence scaling is used, so the first indicator should be invariant.

• 'scalar': all loadings and (indicator-)intercepts are restricted to equality.

• 'residual': all loadings, (indicator-)intercepts, and (indicator-)residuals are restricted to
equality.

• 'covariances': all loadings, (indicator-)intercepts, (indicator-)residuals, and latent covari-
ances are restricted to equality.

• 'means': all loadings, (indicator-)intercepts, (indicator-)residuals, latent covariances, and la-
tent means are restricted to equality.

For example, setting comparison = 'metric' and nullEffect = 'scalar' determines power to
reject the hypothesis that the constraints placed in the scalar invariance model (restricting loadings
and intercepts) over the metric invariance model (restricting only the loadings) are defensible.

For greater flexibility, the models can also be defined using lavaan style restrictions as a vector,
namely 'none' (no restrictions), 'loadings' (loadings), 'intercepts' (intercepts), 'residuals'
(residuals), 'lv.covariances' (latent covariances), 'means' (latent means). For instance:

• 'none': no invariance constraints and thus representing a configural invariance model. Shows
the same fit as the saturated model, so only the delta df differ.

• c('loadings'): all loadings are restricted to equality. Note that reference scaling is used, so
the first indicator should be invariant.

• c('loadings', 'intercepts'): all loadings and (indicator-)intercepts are restricted to equal-
ity.

• c('loadings', 'intercepts', 'residuals'): all loadings, (indicator-)intercepts, and (indicator-
)residuals are restricted to equality.

• c('loadings', 'residuals'): all loadings and (indicator-)residuals are restricted to equal-
ity.

• c('loadings', 'intercepts', 'means'): all loadings, (indicator-)intercepts, and latent fac-
tor means are restricted to equality.

• c('loadings', 'residuals', 'lv.covariances'): all loadings, (indicator-)residuals, and
latent factor covariances are restricted to equality.

For example, setting comparison = c('loadings') and nullEffect = 'c('loadings', 'intercepts')'
determines power to reject the hypothesis that the constraints placed in the scalar invariance model
(restricting loadings and intercepts) over the metric invariance model (restricting only the loadings)
are defensible. Note that variance scaling is used, so invariance of variances ('lv.variances') is
always met. Latent means are identified using single occasion identification.

Beyond the arguments explicitly contained in the function call, additional arguments are required
specifying the factor model and the requested type of power analysis.

Additional arguments related to the definition of the factor model:
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• Lambda: The factor loading matrix (with the number of columns equaling the number of
factors).

• loadings: Can be used instead of Lambda: Defines the primary loadings for each factor in
a list structure, e. g. loadings = list(c(.5, .4, .6), c(.8, .6, .6, .4)) defines a two
factor model with three indicators loading on the first factor by .5, , 4., and .6, and four
indicators loading on the second factor by .8, .6, .6, and .4.

• nIndicator: Can be used instead of Lambda: Used in conjunction with loadM. Defines the
number of indicators by factor, e. g., nIndicator = c(3, 4) defines a two factor model with
three and four indicators for the first and second factor, respectively. nIndicator can also be
a single number to define the same number of indicators for each factor.

• loadM: Can be used instead of Lambda: Used in conjunction with nIndicator. Defines the
loading either for all indicators (if a single number is provided) or separately for each factor
(if a vector is provided), e. g. loadM = c(.5, .6) defines the loadings of the first factor to
equal .5 and those of the second factor do equal .6.

• Theta: Variance-covariance matrix of the indicator residuals, which should be a diagonal
matrix. Required when residual non-invariance is to be detected. When NULL, Theta is a
diagonal matrix with elements such that all variances are 1.

• tau: Defines the indicator intercepts, required whenever a model involves hypotheses about
means (e.g., scalar invariance). If NULL and Alpha is set, all intercepts are assumed to equal
zero.

• Alpha: Defines the latent means, required whenever a model involves hypotheses about latent
means (e.g., latent mean invariance). If NULL and tau is set, all latent means are assumed to
equal zero. Because variance scaling is used so that all factor variances are 1, latent mean
differences can be interpreted akin to Cohen’s d as standardized mean differences.

So either Lambda, or loadings, or nIndicator and loadM always need to be defined, and Theta,
tau and Alpha need to be defined for particular levels of invariance.

Additional arguments related to the requested type of power analysis:

• alpha: The alpha error probability. Required for type = 'a-priori' and type = 'post-hoc'.

• Either beta or power: The beta error probability and the statistical power (1 - beta), respec-
tively. Only for type = 'a-priori'.

• N: The sample size. Always required for type = 'post-hoc' and type = 'compromise'. For
type = 'a-priori' and multiple group analysis, N is a list of group weights.

• abratio: The ratio of alpha to beta. Only for type = 'compromise'.

If a simulated power analysis (simulatedPower = TRUE) is requested, optional arguments can be
provided as a list to simOptions:

• nReplications: The targeted number of simulation runs. Defaults to 250, but larger numbers
greatly improve accuracy at the expense of increased computation time.

• minConvergenceRate: The minimum convergence rate required, defaults to .5. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.

• type: specifies whether the data should be generated from a population assuming multivari-
ate normality ('normal'; the default), or based on an approach generating non-normal data
('IG', 'mnonr', 'RC', or 'VM'). The approaches generating non-normal data require addi-
tional arguments detailed below.



semPower.powerLI 113

• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of MCAR (the default), MAR, or NMAR.

• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doSNOW package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.

type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.

type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors. This requires the semTools package.

Value

a list. Use the summary method to obtain formatted results. Beyond the results of the power analysis
and a number of effect size measures, the list contains the following components:

Sigma the population covariance matrix. A list for multiple group models.

mu the population mean vector or NULL when no meanstructure is involved. A list
for multiple group models.

SigmaHat the H0 model implied covariance matrix. A list for multiple group models.

muHat the H0 model implied mean vector or NULL when no meanstructure is involved.
A list for multiple group models.

modelH0 lavaan H0 model string.

modelH1 lavaan H1 model string or NULL when the comparison refers to the saturated
model.

simRes detailed simulation results when a simulated power analysis (simulatedPower
= TRUE) was performed.

See Also

semPower.genSigma() semPower.aPriori() semPower.postHoc() semPower.compromise()
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Examples

## Not run:

# obtain the required N to reject the hypothesis of metric invariance
# in comparison to the configural invariance model
# with a power of 80% on alpha = 5%
# for amodel involving a two factors (= two measurements) which
# is measured by 5 indicators
# loading by .5 each at the first measurement occasion
# loading by .6 each in the second measurement occasion,
# and assuming autocorrelated residuals
powerLI <- semPower.powerLI(

type = 'a-priori', alpha = .05, power = .80,
comparison = 'configural',
nullEffect = 'metric',
nIndicator = c(5, 5),
loadM = c(.5, .6),
autocorResiduals = TRUE

)

# show summary
summary(powerLI)

# optionally use lavaan to verify the model was set-up as intended
lavaan::sem(powerLI$modelH1, sample.cov = powerLI$Sigma,

sample.nobs = 1000, sample.cov.rescale = FALSE)
lavaan::sem(powerLI$modelH0, sample.cov = powerLI$Sigma,

sample.nobs = 1000, sample.cov.rescale = FALSE)

# same as above, but determine power with N = 500 on alpha = .05
powerLI <- semPower.powerLI(

type = 'post-hoc', alpha = .05, N = 500,
comparison = 'configural',
nullEffect = 'metric',
nIndicator = c(5, 5),
loadM = c(.5, .6),
autocorResiduals = TRUE

)

# same as above, but determine the critical chi-square with N = 500 in each
# group so that alpha = beta
powerLI <- semPower.powerLI(

type = 'compromise', abratio = 1, N = 500,
comparison = 'configural',
nullEffect = 'metric',
nIndicator = c(5, 5),
loadM = c(.5, .6),
autocorResiduals = TRUE
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)

# same as above, but compare to the saturated model
# (rather than to the configural invariance model)
powerLI <- semPower.powerLI(

type = 'a-priori', alpha = .05, power = .80,
comparison = 'saturated',
nullEffect = 'metric',
nIndicator = c(5, 5),
loadM = c(.5, .6),
autocorResiduals = TRUE

)

# same as above, but provide individual factor loadings by group using a
# reduced loading matrix to define a single factor model with three indicators
# loading by .4, .6, .5 at the first measurement occasion and
# loading by .5, .6, .7 at the second measurement occasion
powerLI <- semPower.powerLI(

type = 'a-priori', alpha = .05, power = .80,
comparison = 'configural',
nullEffect = 'metric',
loadings = list(

c(.4, .6, .5),
c(.5, .6, .7)

),
autocorResiduals = TRUE

)

# obtain the required N to reject the hypothesis of scalar invariance
# in comparison to the metric invariance model
# with a power of 80% on alpha = 5%
# for a two factor model, where both factors are
# measured by 3 indicators each and all loadings equal .5 (at both measurements),
# all intercepts are 0.0 at the first measurement occasion, but
# all intercepts are 0.2 at the second measurement occasion and
powerLI <- semPower.powerLI(

type = 'a-priori', alpha = .05, power = .80,
comparison = 'metric',
nullEffect = 'scalar',
nIndicator = c(5, 5),
loadM = c(.5, .5),
tau = c(0, 0, 0, 0, 0,

.2, .2, .2, .2, .2),
autocorResiduals = TRUE

)

# same as above, but use lavaan strings
powerLI <- semPower.powerLI(

type = 'a-priori', alpha = .05, power = .80,
comparison = c('loadings'),
nullEffect = c('loadings', 'intercepts'),
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nIndicator = c(5, 5),
loadM = c(.5, .5),
tau = c(0, 0, 0, 0, 0,

.2, .2, .2, .2, .2),
autocorResiduals = TRUE

)

# obtain the required N to reject the hypothesis of equal latent means
# in comparison to the scalar invariance model;
# all intercepts are zero in both groups,
# at the first measurement occasion, the latent mean is 0.0,
# at the first measurement occasion, the latent mean is 0.5
powerLI <- semPower.powerLI(

type = 'a-priori', alpha = .05, power = .80,
comparison = c('loadings', 'intercepts'),
nullEffect = c('loadings', 'intercepts', 'means'),
nIndicator = c(5, 5),
loadM = c(.5, .5),
tau = rep(0, 10),
Alpha = c(0, .5),
autocorResiduals = TRUE

)

# obtain the required N to reject the hypothesis of equal covariances
# in comparison to the residual invariance model;
Phi <- matrix(c(
c(1, .3, .1),
c(.3, 1, .2),
c(.1, .2, 1)

), nrow=3, byrow = TRUE)
powerLI <- semPower.powerLI(

type = 'a-priori', alpha = .05, power = .80,
comparison = 'residual',
nullEffect = 'covariances',
nIndicator = c(3, 3, 3),
loadM = c(.5, .5, .5),
Phi = Phi,
tau = rep(0, 9)

)

# request a simulated post-hoc power analysis with 250 replications
# to reject the hypothesis of equal latent means.
set.seed(300121)
powerLI <- semPower.powerLI(
type = 'post-hoc', alpha = .05, N = 500,
comparison = c('loadings', 'intercepts'),
nullEffect = c('loadings', 'intercepts', 'means'),
nIndicator = c(5, 5),
loadM = c(.5, .5),
tau = rep(0, 10),
Alpha = c(0, .5),
autocorResiduals = TRUE,
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simulatedPower = TRUE,
simOptions = list(nReplications = 250)

)

## End(Not run)

semPower.powerMediation

semPower.powerMediation

Description

Convenience function for performing power analysis concerning indirect effect(s) in a mediation
model. This requires the lavaan package.

Usage

semPower.powerMediation(
type,
comparison = "restricted",
bYX = NULL,
bMX = NULL,
bYM = NULL,
Beta = NULL,
indirect = NULL,
nullEffect = "ind = 0",
nullWhichGroups = NULL,
standardized = TRUE,
...

)

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.

comparison comparison model, one of 'saturated' or 'restricted' (the default). This
determines the df for power analyses. 'saturated' provides power to reject
the model when compared to the saturated model, so the df equal the one of
the hypothesized model. 'restricted' provides power to reject the hypothe-
sized model when compared to an otherwise identical model that just omits the
restrictions defined in nullEffect, so the df equal the number of restrictions.

bYX the slope (direct effect) for X -> Y. A list for multiple group models. Can be
NULL if Beta is set.

bMX the slope for X -> M. A list for multiple group models. Can be NULL if Beta is
set.

bYM the slope for M -> Y. A list for multiple group models. Can be NULL if Beta is
set.
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Beta can be used instead of bYX, bMX, and bYM: matrix of regression weights connect-
ing the latent factors (all-Y notation). Exogenous variables must be in the first
row(s), so the upper triangular of Beta must be zero. A list for multiple group
models.

indirect NULL unless Beta is set. Otherwise a list of vectors of size 2 indicating the
elements of Beta that define the indirect effect of interest, e.g. list(c(2, 1),
c(3, 2)). See details.

nullEffect defines the hypothesis of interest, must be one of 'ind = 0' (the default) to test
whether the indirect effect is zero or 'indA = indB' to test for the equality of
indirect effects across groups. See details.

nullWhichGroups

for nullEffect = 'indA = indB', vector indicating the groups for which equal-
ity constrains should be applied, e.g. c(1, 3) to constrain the relevant param-
eters of the first and the third group. If NULL, all groups are constrained to
equality.

standardized whether all parameters should be standardized (TRUE, the default). If FALSE, all
regression relations are unstandardized.

... mandatory further parameters related to the specific type of power analysis re-
quested, see semPower.aPriori(), semPower.postHoc(), and semPower.compromise(),
and parameters specifying the factor model. In case of a simple mediation, the
order of factors is X, M, Y. See details.

Details

This function performs a power analysis to reject various hypotheses arising in the context of me-
diation:

• nullEffect = 'ind = 0': Tests the hypothesis that an indirect effect is zero.

• nullEffect = 'indA = indB': Tests the hypothesis that an indirect effect is equal in two or
more groups. This is currently only possible for models without latent variables.

The indirect effect of interest can be specified in two ways:

• If a simple mediation involving three variables of the form X -> M -> Y is assumed, the argu-
ments bYX, bMX, and bYM are used to define the respective slopes, e. g. bYX = .4, bMX = .5, and
bYM = .3 translates to X -- .5 --> M -- .3 --> Y and X -- .4 --> Y.

• More complex mediation structures can be defined by providing the Beta matrix along with
indirect specifying which paths define the indirect effect. See examples below.

Notes on implementation:

• For models without latent variables, nullEffect = 'ind = 0' and nullEffect = 'indA = indB'
constrain the indirect effect to zero and to equality, respectively, yielding the test described in
Tofighi & Kelley (2020).

• For models with latent variables and nullEffect = 'ind = 0', power is (sometimes roughly)
approximated by constraining the smallest slope contained in the indirect effect to zero.

• For models with latent variables multiple groups (i. e., nullEffect = 'indA = indB'), there
is currently no way to determine power.
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Tofighi, D., & Kelley, K. (2020). Improved inference in mediation analysis: Introducing the model-
based constrained optimization procedure. Psychological Methods, 25(4), 496–515. https://doi.org/10.1037/met0000259

Beyond the arguments explicitly contained in the function call, additional arguments are required
specifying the factor model and the requested type of power analysis.

Additional arguments related to the definition of the factor model:

• Lambda: The factor loading matrix (with the number of columns equaling the number of
factors).

• loadings: Can be used instead of Lambda: Defines the primary loadings for each factor in
a list structure, e. g. loadings = list(c(.5, .4, .6), c(.8, .6, .6, .4)) defines a two
factor model with three indicators loading on the first factor by .5, , 4., and .6, and four
indicators loading on the second factor by .8, .6, .6, and .4.

• nIndicator: Can be used instead of Lambda: Used in conjunction with loadM. Defines the
number of indicators by factor, e. g., nIndicator = c(3, 4) defines a two factor model with
three and four indicators for the first and second factor, respectively. nIndicator can also be
a single number to define the same number of indicators for each factor.

• loadM: Can be used instead of Lambda: Used in conjunction with nIndicator. Defines the
loading either for all indicators (if a single number is provided) or separately for each factor
(if a vector is provided), e. g. loadM = c(.5, .6) defines the loadings of the first factor to
equal .5 and those of the second factor do equal .6.

So either Lambda, or loadings, or nIndicator and loadM need to be defined. If the model contains
observed variables only, use Lambda = diag(x) where x is the number of variables.

Note that in case of a simple mediation model involving three variables, the order of the factors is
X, M, Y, i. e., the first factor is treated as X, the second as M, and the third as Y. In case of a more
complex mediation defined via the Beta matrix, the order of factors matches the order of Beta.

Additional arguments related to the requested type of power analysis:

• alpha: The alpha error probability. Required for type = 'a-priori' and type = 'post-hoc'.

• Either beta or power: The beta error probability and the statistical power (1 - beta), respec-
tively. Only for type = 'a-priori'.

• N: The sample size. Always required for type = 'post-hoc' and type = 'compromise'. For
type = 'a-priori' and multiple group analysis, N is a list of group weights.

• abratio: The ratio of alpha to beta. Only for type = 'compromise'.

If a simulated power analysis (simulatedPower = TRUE) is requested, optional arguments can be
provided as a list to simOptions:

• nReplications: The targeted number of simulation runs. Defaults to 250, but larger numbers
greatly improve accuracy at the expense of increased computation time.

• minConvergenceRate: The minimum convergence rate required, defaults to .5. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.

• type: specifies whether the data should be generated from a population assuming multivari-
ate normality ('normal'; the default), or based on an approach generating non-normal data
('IG', 'mnonr', 'RC', or 'VM'). The approaches generating non-normal data require addi-
tional arguments detailed below.
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• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of MCAR (the default), MAR, or NMAR.

• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doSNOW package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.

type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.

type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors. This requires the semTools package.

Value

a list. Use the summary method to obtain formatted results. Beyond the results of the power analysis
and a number of effect size measures, the list contains the following components:

Sigma the population covariance matrix. A list for multiple group models.

mu the population mean vector or NULL when no meanstructure is involved. A list
for multiple group models.

SigmaHat the H0 model implied covariance matrix. A list for multiple group models.

muHat the H0 model implied mean vector or NULL when no meanstructure is involved.
A list for multiple group models.

modelH0 lavaan H0 model string.

modelH1 lavaan H1 model string or NULL when the comparison refers to the saturated
model.

simRes detailed simulation results when a simulated power analysis (simulatedPower
= TRUE) was performed.

See Also

semPower.genSigma() semPower.aPriori() semPower.postHoc() semPower.compromise()



semPower.powerMediation 121

Examples

## Not run:
# simple case of X -> M -> Y mediation in the form of
# X -- .30 --> M -- .40 --> Y
# X --------- .25 --------> Y
# determine the required N to detect the indirect effect of >= .12 (= .3 * .4)
# with a power of 95% on alpha = 5%, where
# X is measured by 3 indicators loading by .5 each,
# M is measured by 5 indicators loading by .6 each,
# Y is measured by 4 indicators loading by .7 each.
powerMed <- semPower.powerMediation(type = 'a-priori',

bYX = .25, bMX = .3, bYM = .4,
nIndicator = c(3, 5, 4),
loadM = c(.5, .6, .7),
alpha = .05, beta = .05)

# show summary
summary(powerMed)
# optionally use lavaan to verify the model was set-up as intended
lavaan::sem(powerMed$modelH1, sample.cov = powerMed$Sigma,
sample.nobs = powerMed$requiredN, sample.cov.rescale = FALSE)
lavaan::sem(powerMed$modelH0, sample.cov = powerMed$Sigma,
sample.nobs = powerMed$requiredN, sample.cov.rescale = FALSE)

# same as above, but determine power with N = 500 on alpha = .05
powerMed <- semPower.powerMediation(type = 'post-hoc',

bYX = .25, bMX = .3, bYM = .4,
nIndicator = c(3, 5, 4),
loadM = c(.5, .6, .7),
alpha = .05, N = 500)

# same as above, but determine the critical chi-square with N = 500 so that alpha = beta
powerMed <- semPower.powerMediation(type = 'compromise',

bYX = .25, bMX = .3, bYM = .4,
nIndicator = c(3, 5, 4),
loadM = c(.5, .6, .7),
abratio = 1, N = 500)

# same as above, but compare to the saturated model
# (rather than to the less restricted model)
powerMed <- semPower.powerMediation(type = 'a-priori',

comparison = 'saturated',
bYX = .25, bMX = .3, bYM = .4,
nIndicator = c(3, 5, 4),
loadM = c(.5, .6, .7),
alpha = .05, beta = .05)

# same as above, but assuming observed variables only (Lambda = diag(3))
powerMed <- semPower.powerMediation(type = 'a-priori',

bYX = .25, bMX = .3, bYM = .4,
Lambda = diag(3),
alpha = .05, beta = .05)
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# same mediation model as above, but specifying Beta and indirect
Beta <- matrix(c(

# X M Y
c(.00, .00, .00), # X
c(.30, .00, .00), # M
c(.25, .40, .00) # Y

), byrow = TRUE, ncol = 3)
powerMed <- semPower.powerMediation(type = 'a-priori',

Beta = Beta,
indirect = list(c(2, 1), c(3, 2)),
nIndicator = c(3, 5, 4),
loadM = c(.5, .6, .7),
alpha = .05, beta = .05)

# Beta for a more complex mediation hypothesis
# of the form X -- .2 --> M1 -- .3 --> M2 -- .40 -> Y
# (and all other effects being zero)
# using a reduced loading matrix to define that
# X is measured by 3 indicators loading by .4, .5, .8
# M1 is measured by 4 indicators loading by .7, .6, .5, .8
# M2 is measured by 5 indicators loading by .5, .6, .3, .4, .6
# Y is measured by 4 indicators loading by .6, .7, .8
Beta <- matrix(c(

c(.00, .00, .00, .00), # X
c(.20, .00, .00, .00), # M1
c(.00, .30, .00, .00), # M2
c(.00, .00, .40, .00) # Y

), byrow = TRUE, ncol = 4)
loadings <- list(

c(0.4, 0.5, 0.8), # X
c(0.7, 0.6, 0.5, 0.8), # M1
c(0.5, 0.6, 0.3, 0.4, 0.6), # M2
c(0.6, 0.7, 0.8) # Y

)
powerMed <- semPower.powerMediation(type = 'a-priori',

Beta = B,
indirect = list(c(2, 1),

c(3, 2),
c(4, 3)),

loadings = loadings,
alpha = .05, beta = .05)

# Determine required N to detect that the indirect effect
# in group 1 (of .2 * .3 = .09) differs from the indirect effect
# in group 2 (of .3 * .5 = .15).
# The direct effect of X on Y is .25 in both groups.
# The model is based on observed variables only (Lambda = diag(3))
# Both groups are sized equally (N = list(1, 1)).
powerMed <- semPower.powerMediation(type = 'a-priori',

nullEffect = 'indA = indB',
bYX = list(.25, .25),
bMX = list(.2, .3),
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bYM = list(.3, .5),
Lambda = diag(3),
alpha = .05, beta = .05, N = list(1, 1))

# same as above, but specifying Beta
Beta1 <- matrix(c(

c(.00, .00, .00), # X
c(.20, .00, .00), # M
c(.25, .30, .00) # Y

), byrow = TRUE, ncol = 3)
Beta2 <- matrix(c(

c(.00, .00, .00), # X
c(.30, .00, .00), # M
c(.25, .50, .00) # Y

), byrow = TRUE, ncol = 3)
powerMed <- semPower.powerMediation(type = 'a-priori',

nullEffect = 'indA = indB',
Beta = list(Beta1, Beta2),
indirect = list(c(2, 1), c(3, 2)),
Lambda = diag(3),
alpha = .05, beta = .05, N = list(1, 1))

# request a simulated post-hoc power analysis with 500 replications.
set.seed(300121)
powerMed <- semPower.powerMediation(type = 'post-hoc',

bYX = .25, bMX = .3, bYM = .4,
nIndicator = c(3, 5, 4),
loadM = c(.5, .6, .7),
alpha = .05, N = 500,
simulatedPower = TRUE,
simOptions = list(nReplications = 500))

## End(Not run)

semPower.powerMI semPower.powerMI

Description

Convenience function for performing power analyses for hypothesis arising in multigroup measure-
ment invariance models concerning a specific level of invariance. This requires the lavaan package.

Usage

semPower.powerMI(type, comparison = NULL, nullEffect = NULL, ...)

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.
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comparison comparison model, either 'saturated' or one of 'configural', 'metric',
'scalar', 'covariances', or a vector of restrictions in lavaan format (with
'none' for no restrictions). See details.

nullEffect defines the hypothesis (i.e., level of invariance) of interest. One of 'metric',
'scalar', 'residual', 'covariances', 'means' or a vector of restrictions in
lavaan format. See details.

... mandatory further parameters related to the specific type of power analysis re-
quested, see semPower.aPriori(), semPower.postHoc(), and semPower.compromise(),
and parameters specifying the factor model. See details.

Details

This function performs a power analysis to reject various hypotheses arising in the context of multi-
group measurement invariance. Multigroup invariance models fit the specified model simultane-
ously to various groups and place increasingly restrictive cross-group equality constrains on the
model parameters. The typical - but not in all parts necessary - sequence is (a) configural, (b) met-
ric, (c) scalar, and (d) residual invariance, where each level of invariance is compared against the
previous level (e.g., scalar vs. metric). Power analysis provides the power (or the required N) to
reject a particular level of invariance.

For hypotheses regarding longitudinal invariance, see semPower.powerLI().

The models defined in the comparison and the nullEffect arguments can be specified in two
ways. Either specify a specific level of invariance that includes all previous levels:

• 'configural': no invariance constraints. Shows the same fit as the saturated model, so only
the delta df differ.

• 'metric': all loadings are restricted to equality.

• 'scalar': all loadings and (indicator-)intercepts are restricted to equality.

• 'residual': all loadings, (indicator-)intercepts, and (indicator-)residuals are restricted to
equality.

• 'covariances': all loadings, (indicator-)intercepts, and (indicator-)residuals, and latent co-
variances are restricted to equality.

• 'means': all loadings, (indicator-)intercepts, (indicator-)residuals, latent covariances, and la-
tent means are restricted to equality.

For example, setting comparison = 'metric' and nullEffect = 'scalar' determines power to
reject the hypothesis that the constraints placed in the scalar invariance model (restricting loadings
and intercepts) over the metric invariance model (restricting only the loadings) are defensible.

For greater flexibility, the models can also be defined using lavaan style group.equal restrictions
as a vector:

• 'none': no invariance constraints and thus representing a configural invariance model. Shows
the same fit as the saturated model, so only the delta df differ.

• c('loadings'): all loadings are restricted to equality.

• c('loadings', 'intercepts'): all loadings and (indicator-)intercepts are restricted to equal-
ity.



semPower.powerMI 125

• c('loadings', 'intercepts', 'residuals'): all loadings, (indicator-)intercepts, and (indicator-
)residuals are restricted to equality.

• c('loadings', 'residuals'): all loadings and (indicator-)residuals are restricted to equal-
ity.

• c('loadings', 'intercepts', 'means'): all loadings, (indicator-)intercepts, and latent fac-
tor means are restricted to equality.

For example, setting comparison = c('loadings') and nullEffect = 'c('loadings', 'intercepts')'
determines power to reject the hypothesis that the constraints placed in the scalar invariance model
(restricting loadings and intercepts) over the metric invariance model (restricting only the loadings)
are defensible. Note that variance scaling is used, so invariance of variances ('lv.variances') is
always met.

Beyond the arguments explicitly contained in the function call, additional arguments are required
specifying the factor model and the requested type of power analysis.

Additional arguments related to the definition of the factor model:

• Lambda: The factor loading matrix (with the number of columns equaling the number of
factors).

• loadings: Can be used instead of Lambda: Defines the primary loadings for each factor in
a list structure, e. g. loadings = list(c(.5, .4, .6), c(.8, .6, .6, .4)) defines a two
factor model with three indicators loading on the first factor by .5, , 4., and .6, and four
indicators loading on the second factor by .8, .6, .6, and .4.

• nIndicator: Can be used instead of Lambda: Used in conjunction with loadM. Defines the
number of indicators by factor, e. g., nIndicator = c(3, 4) defines a two factor model with
three and four indicators for the first and second factor, respectively. nIndicator can also be
a single number to define the same number of indicators for each factor.

• loadM: Can be used instead of Lambda: Used in conjunction with nIndicator. Defines the
loading either for all indicators (if a single number is provided) or separately for each factor
(if a vector is provided), e. g. loadM = c(.5, .6) defines the loadings of the first factor to
equal .5 and those of the second factor do equal .6.

• Theta: Variance-covariance matrix of the indicator residuals, which should be a diagonal
matrix. Required when residual non-invariance is to be detected. When NULL, Theta is a
diagonal matrix with elements such that all variances are 1.

• tau: Defines the item intercepts, required whenever a model involves hypotheses about means
(e.g., scalar invariance). If NULL and Alpha is set, all intercepts are assumed to equal zero.

• Alpha: Defines the latent means, required whenever a model involves hypotheses about latent
means (e.g., latent mean invariance). If NULL and tau is set, all latent means are assumed to
equal zero. Because variance scaling is used so that all factor variances are 1, latent mean
differences can be interpreted akin to Cohen’s d as standardized mean differences.

So either Lambda, or loadings, or nIndicator and loadM always need to be defined, and Theta,
tau and Alpha need to be defined for particular levels of invariance. As this function operates on
multiple groups, either argument is a list whenever there are group differences in the respective
parameters. When no list is provided, the same parameter values are assumed for all groups.

Additional arguments related to the requested type of power analysis:

• alpha: The alpha error probability. Required for type = 'a-priori' and type = 'post-hoc'.
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• Either beta or power: The beta error probability and the statistical power (1 - beta), respec-
tively. Only for type = 'a-priori'.

• N: The sample size. Always required for type = 'post-hoc' and type = 'compromise'. For
type = 'a-priori' and multiple group analysis, N is a list of group weights.

• abratio: The ratio of alpha to beta. Only for type = 'compromise'.

If a simulated power analysis (simulatedPower = TRUE) is requested, optional arguments can be
provided as a list to simOptions:

• nReplications: The targeted number of simulation runs. Defaults to 250, but larger numbers
greatly improve accuracy at the expense of increased computation time.

• minConvergenceRate: The minimum convergence rate required, defaults to .5. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.

• type: specifies whether the data should be generated from a population assuming multivari-
ate normality ('normal'; the default), or based on an approach generating non-normal data
('IG', 'mnonr', 'RC', or 'VM'). The approaches generating non-normal data require addi-
tional arguments detailed below.

• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of MCAR (the default), MAR, or NMAR.

• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doSNOW package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.

type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.

type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors. This requires the semTools package.
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Value

a list. Use the summary method to obtain formatted results. Beyond the results of the power analysis
and a number of effect size measures, the list contains the following components:

Sigma the population covariance matrix. A list for multiple group models.

mu the population mean vector or NULL when no meanstructure is involved. A list
for multiple group models.

SigmaHat the H0 model implied covariance matrix. A list for multiple group models.

muHat the H0 model implied mean vector or NULL when no meanstructure is involved.
A list for multiple group models.

modelH0 lavaan H0 model string.

modelH1 lavaan H1 model string or NULL when the comparison refers to the saturated
model.

simRes detailed simulation results when a simulated power analysis (simulatedPower
= TRUE) was performed.

See Also

semPower.genSigma() semPower.aPriori() semPower.postHoc() semPower.compromise()

Examples

## Not run:
# obtain the required N to reject the hypothesis of metric invariance
# in comparison to the configural invariance model
# with a power of 95% on alpha = 5%
# assuming equally sized groups (N = list(1, 1))
# for a factor model involving a single factor which
# is measured by 5 indicators (in both groups)
# loading by .5 each in the first group and
# loading by .6 each in the second group.
powerMI <- semPower.powerMI(type = 'a-priori',

comparison = 'configural',
nullEffect = 'metric',
nIndicator = list(5, 5),
loadM = list(.5, .6),
alpha = .05, beta = .05, N = list(1, 1))

# show summary
summary(powerMI)
# optionally use lavaan to verify the model was set-up as intended
lavaan::sem(powerMI$modelH1, sample.cov = list(powerMI$Sigma[[1]], powerMI$Sigma[[2]]),

sample.nobs = as.list(powerMI$requiredN.g), sample.cov.rescale = FALSE)
lavaan::sem(powerMI$modelH0, sample.cov = list(powerMI$Sigma[[1]], powerMI$Sigma[[2]]),

sample.nobs = as.list(powerMI$requiredN.g), sample.cov.rescale = FALSE)

# same as above, but determine power with N = 500 in each group on alpha = .05
powerMI <- semPower.powerMI(type = 'post-hoc',

comparison = 'configural',
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nullEffect = 'metric',
nIndicator = 5,
loadM = list(.5, .6),
alpha = .05, N = list(500, 500))

# same as above, but determine the critical chi-square with N = 500 in each
# group so that alpha = beta
powerMI <- semPower.powerMI(type = 'compromise',

comparison = 'configural',
nullEffect = 'metric',
nIndicator = 5,
loadM = list(.5, .6),
abratio = 1, N = list(500, 500))

# same as above, but compare to the saturated model
# (rather than to the configural invariance model)
powerMI <- semPower.powerMI(type = 'a-priori',

comparison = 'saturated',
nullEffect = 'metric',
nIndicator = 5,
loadM = list(.5, .6),
alpha = .05, beta = .05, N = list(1, 1))

# same as above, but provide individual factor loadings by group using a
# reduced loading matrix to define a single factor model with three indicators
# loading by .4, .6, .5 in the first group and
# loading by .5, .6, .7 in the second group
powerMI <- semPower.powerMI(type = 'a-priori',

comparison = 'saturated',
nullEffect = 'metric',
loadings = list(

list(c(.4, .6, .5)),
list(c(.5, .6, .7))),

alpha = .05, beta = .05, N = list(1, 1))

# same as above, but make first group twice as large as the second group
powerMI <- semPower.powerMI(type = 'a-priori',

comparison = 'saturated',
nullEffect = 'metric',
loadings = list(

list(c(.4, .6, .5)),
list(c(.5, .6, .7))),

alpha = .05, beta = .05, N = list(2, 1))

# obtain the required N to reject the hypothesis of scalar invariance
# in comparison to the metric invariance model
# with a power of 95% on alpha = 5%
# assuming equally sized groups (N = list(1, 1))
# for a two factor model, where both factors are
# measured by 3 indicators each and all loadings equal .5 (in both groups),
# the factor correlation is .3 in both groups, and the
# all intercepts are 0.0 in the first group, but
# the intercepts are .1, .2, .3, .4, .5, .6 in the second group
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powerMI <- semPower.powerMI(type = 'a-priori',
comparison = 'metric',
nullEffect = 'scalar',
Phi = list(.3, .3),
nIndicator = list(

c(3, 3),
c(3, 3)),

loadM = .5,
tau = list(

rep(0.0, 6),
seq(.1, .6, .1)

),
alpha = .05, beta = .05, N = list(1, 1))

# same as above, but use lavaan group.equal strings
powerMI <- semPower.powerMI(type = 'a-priori',

comparison = c('loadings'),
nullEffect = c('loadings', 'intercepts'),
Phi = list(.3, .3),
nIndicator = list(

c(3, 3),
c(3, 3)),

loadM = .5,
tau = list(

rep(0.0, 6),
seq(.1, .6, .1)

),
alpha = .05, beta = .05, N = list(1, 1))

# same as above, but
# obtain the required N to reject the hypothesis of equal latent means
# in comparison to the scalar invariance model;
# all intercepts are zero in both groups,
# in the first group, the latent means equal 0.0,
# in the second group, the latent mean of the factors are 0.0 and 0.5
powerMI <- semPower.powerMI(type = 'a-priori',

comparison = c('loadings', 'intercepts'),
nullEffect = c('loadings', 'intercepts', 'means'),
Phi = list(.3, .3),
nIndicator = list(

c(3, 3),
c(3, 3)),

loadM = .5,
tau = list(

rep(0.0, 6),
rep(0.0, 6)

),
Alpha = list(

c(0.0, 0.0),
c(0.0, 0.5)

),
alpha = .05, beta = .05, N = list(1, 1))
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# request a simulated post-hoc power analysis with 500 replications
# to reject the hypothesis of metric invariance.
set.seed(300121)
powerMI <- semPower.powerMI(type = 'post-hoc',

comparison = 'configural',
nullEffect = 'metric',
nIndicator = list(5, 5),
loadM = list(.5, .6),
alpha = .05, N = list(500, 500),
simulatedPower = TRUE,
simOptions = list(nReplications = 500))

## End(Not run)

semPower.powerPath semPower.powerPath

Description

Convenience function for performing power analyses for hypothesis arising in a generic path model.
This requires the lavaan package.

Usage

semPower.powerPath(
type,
comparison = "restricted",
Beta,
Psi = NULL,
nullEffect = "beta = 0",
nullWhich = NULL,
nullWhichGroups = NULL,
standardized = TRUE,
...

)

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.

comparison comparison model, one of 'saturated' or 'restricted' (the default). This
determines the df for power analyses. 'saturated' provides power to reject
the model when compared to the saturated model, so the df equal the one of
the hypothesized model. 'restricted' provides power to reject the hypothe-
sized model when compared to an otherwise identical model that just omits the
restrictions defined in nullEffect, so the df equal the number of restrictions.
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Beta matrix of regression slopes between latent variables (all-Y notation). A list for
multiple group models. Exogenous variables must occupy the first rows in Beta
when standardized = TRUE. See details.

Psi variance-covariance matrix of latent (residual) factors. If standardized = TRUE,
the diagonal is ignored and all off-diagonal elements are treated as correlations.
If NULL, an identity matrix is assumed. A list for multiple group models. See
details.

nullEffect defines the hypothesis of interest, must be one of 'beta = 0' (the default) to
test whether a regression slope is zero, 'betaX = betaZ' to test for the equal-
ity of slopes, and 'betaX = betaZ' to test for the equality of a slope across
groups. Define the slopes to be set to equality in nullWhich and the groups in
nullWhichGroups.

nullWhich vector of size 2 indicating which slope in Beta is hypothesized to equal zero
when nullEffect = 'beta = 0', or to restrict to equality across groups when
nullEffect = 'betaA = betaB', or list of vectors defining which correlations
to restrict to equality when nullEffect = 'betaX = betaZ'. Can also contain
more than two slopes, e.g., list(c(2, 1), c(3, 1), c(3, 2)) to set Beta[2,
1] = Beta[3, 1] = Beta[3, 2].

nullWhichGroups

for nullEffect = 'betaA = betaB', vector indicating the groups for which equal-
ity constrains should be applied, e.g. c(1, 3) to constrain the relevant param-
eters of the first and the third group. If NULL, all groups are constrained to
equality.

standardized whether all parameters should be standardized (TRUE, the default). If FALSE, all
regression relations are unstandardized.

... mandatory further parameters related to the specific type of power analysis re-
quested, see semPower.aPriori(), semPower.postHoc(), and semPower.compromise(),
and parameters specifying the factor model. See details.

Details

This function performs a power analysis to reject a hypothesis arising in a generic structural equa-
tion model specifying regression relations between the factors via the Beta matrix:

• nullEffect = 'beta = 0': Tests the hypothesis that a slope is zero.
• nullEffect = 'betaX = betaZ': Tests the hypothesis that two or more slopes are equal to

each other.
• nullEffect = 'betaA = betaB': Tests the hypothesis that a slope is equal in two or more

groups (always assuming metric invariance).

This function provides a generic way to perform power analyses (as compared to other functions
covering special cases in a more accessible manner).

A specific hypothesis is defined by setting nullEffect to define the hypothesis type, nullWhich to
define the slope(s) that are targeted, and by providing the Beta (and optionally the Psi) matrix to
define the population structure.

To understand the structure of Beta and Psi, consider the general structural equation model,

Σ = Λ(I −B)−1Ψ[(I −B)−1]′Λ′ +Θ
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where B is the m · m matrix containing the regression slopes and Ψ is the (residual) variance-
covariance matrix of the m factors.

As an example, suppose there are four factors (X1, X2, X3, X4), and Beta is defined as follows:

X1 X2 X3 X4

X1 0.0 0.0 0.0 0.0
X2 0.0 0.0 0.0 0.0
X3 0.2 0.3 0.0 0.0
X4 0.3 0.5 0.0 0.0

Each row specifies how a particular factor is predicted by the available factors, so the above implies
the following regression relations:

X1 = 0.0 ·X1 + 0.0 ·X2 + 0.0 ·X3 + 0.0 ·X4

X2 = 0.0 ·X1 + 0.0 ·X2 + 0.0 ·X3 + 0.0 ·X4

X3 = 0.2 ·X1 + 0.3 ·X2 + 0.0 ·X3 + 0.0 ·X4

X4 = 0.3 ·X1 + 0.5 ·X2 + 0.0 ·X3 + 0.0 ·X4

which simplifies to

X3 = 0.2 ·X1 + 0.3 ·X2

X4 = 0.3 ·X1 + 0.5 ·X2

Further suppose that Psi is

X1 X2 X3 X4

X1 1.0 0.3 0.0 0.0
X2 0.3 1.0 0.0 0.0
X3 0.0 0.0 1.0 0.2
X4 0.0 0.0 0.2 1.0

which implies a correlation between X1 and X2 of .3 and a residual correlation between X3 and X4
of .2.

Beyond the arguments explicitly contained in the function call, additional arguments are required
specifying the factor model and the requested type of power analysis.

Additional arguments related to the definition of the factor model:

• Lambda: The factor loading matrix (with the number of columns equaling the number of
factors).

• loadings: Can be used instead of Lambda: Defines the primary loadings for each factor in
a list structure, e. g. loadings = list(c(.5, .4, .6), c(.8, .6, .6, .4)) defines a two
factor model with three indicators loading on the first factor by .5, , 4., and .6, and four
indicators loading on the second factor by .8, .6, .6, and .4.

• nIndicator: Can be used instead of Lambda: Used in conjunction with loadM. Defines the
number of indicators by factor, e. g., nIndicator = c(3, 4) defines a two factor model with
three and four indicators for the first and second factor, respectively. nIndicator can also be
a single number to define the same number of indicators for each factor.

• loadM: Can be used instead of Lambda: Used in conjunction with nIndicator. Defines the
loading either for all indicators (if a single number is provided) or separately for each factor
(if a vector is provided), e. g. loadM = c(.5, .6) defines the loadings of the first factor to
equal .5 and those of the second factor do equal .6.



semPower.powerPath 133

So either Lambda, or loadings, or nIndicator and loadM always need to be defined.

Additional arguments related to the requested type of power analysis:

• alpha: The alpha error probability. Required for type = 'a-priori' and type = 'post-hoc'.

• Either beta or power: The beta error probability and the statistical power (1 - beta), respec-
tively. Only for type = 'a-priori'.

• N: The sample size. Always required for type = 'post-hoc' and type = 'compromise'. For
type = 'a-priori' and multiple group analysis, N is a list of group weights.

• abratio: The ratio of alpha to beta. Only for type = 'compromise'.

If a simulated power analysis (simulatedPower = TRUE) is requested, optional arguments can be
provided as a list to simOptions:

• nReplications: The targeted number of simulation runs. Defaults to 250, but larger numbers
greatly improve accuracy at the expense of increased computation time.

• minConvergenceRate: The minimum convergence rate required, defaults to .5. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.

• type: specifies whether the data should be generated from a population assuming multivari-
ate normality ('normal'; the default), or based on an approach generating non-normal data
('IG', 'mnonr', 'RC', or 'VM'). The approaches generating non-normal data require addi-
tional arguments detailed below.

• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of MCAR (the default), MAR, or NMAR.

• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doSNOW package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.

type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.

type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors. This requires the semTools package.
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Value

a list. Use the summary method to obtain formatted results. Beyond the results of the power analysis
and a number of effect size measures, the list contains the following components:

Sigma the population covariance matrix. A list for multiple group models.

mu the population mean vector or NULL when no meanstructure is involved. A list
for multiple group models.

SigmaHat the H0 model implied covariance matrix. A list for multiple group models.

muHat the H0 model implied mean vector or NULL when no meanstructure is involved.
A list for multiple group models.

modelH0 lavaan H0 model string.

modelH1 lavaan H1 model string or NULL when the comparison refers to the saturated
model.

simRes detailed simulation results when a simulated power analysis (simulatedPower
= TRUE) was performed.

See Also

semPower.aPriori() semPower.postHoc() semPower.compromise()

Examples

## Not run:
# set up pathmodel in the form of
# f2 = .2*f1
# f3 = .3*f2
# f4 = .1*f1 + .4*f3
# obtain the required N to detect that the
# slope f1 -> f4 is >= .10
# with a power of 95% on alpha = 5%
# where f1 is measured by 3, f2 by 4, f3 by 5, and f4 by 6 indicators,
# and all loadings are .5
Beta <- matrix(c(

c(.00, .00, .00, .00), # f1
c(.20, .00, .00, .00), # f2
c(.00, .30, .00, .00), # f3
c(.10, .00, .40, .00) # f4

), byrow = TRUE, ncol = 4)
powerPath <- semPower.powerPath(type = 'a-priori',

Beta = Beta,
nullWhich = c(4, 1),
nIndicator = c(3, 4, 5, 6),
loadM = .5,
alpha = .05, beta = .05)

# show summary
summary(powerPath)
# optionally use lavaan to verify the model was set-up as intended
lavaan::sem(powerPath$modelH1, sample.cov = powerPath$Sigma,
sample.nobs = powerPath$requiredN, sample.cov.rescale = FALSE)
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lavaan::sem(powerPath$modelH0, sample.cov = powerPath$Sigma,
sample.nobs = powerPath$requiredN, sample.cov.rescale = FALSE)

# same as above, but detect that the slope f3 -> f4 is >= .30
powerPath <- semPower.powerPath(type = 'a-priori',

Beta = Beta,
nullWhich = c(4, 3),
nIndicator = c(3, 4, 5, 6),
loadM = .5,
alpha = .05, beta = .05)

# same as above, but detect that
# the slope f1 -> f2 (of .20) differs from the slope f2 -> f3 (of .30)
powerPath <- semPower.powerPath(type = 'a-priori',

Beta = Beta,
nullEffect = 'betaX = betaZ',
nullWhich = list(c(2, 1), c(3, 2)),
nIndicator = c(3, 4, 5, 6),
loadM = .5,
alpha = .05, beta = .05)

# same as above, but consider a multiple group model with equally sized groups,
# and obtain the required N to detect that the slope
# in group 1 (of .20) differs from the one in group 2 (of .40)
Beta1 <- Beta2 <- matrix(c(

c(.00, .00, .00, .00), # f1
c(.20, .00, .00, .00), # f2
c(.00, .30, .00, .00), # f3
c(.10, .00, .40, .00) # f4

), byrow = TRUE, ncol = 4)
Beta2[2, 1] <- .40
Beta <- list(Beta1, Beta2)
powerPath <- semPower.powerPath(type = 'a-priori',

Beta = Beta,
nullEffect = 'betaA = betaB',
nullWhich = c(2, 1),
nIndicator = c(3, 4, 5, 6),
loadM = .5,
alpha = .05, beta = .05, N = list(1, 1))

## End(Not run)

semPower.powerPlot semPower.powerPlot

Description

Shows a plot showing power as function of N given the output of a power analysis.
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Usage

semPower.powerPlot(semPowerRes, ...)

Arguments

semPowerRes results of a semPower analysis

... other parameters passed to semPower.powerPlot.byN()

Value

powerplot

Examples

## Not run:
# perform a power analysis
powerCFA <- semPower.powerCFA(type = 'post-hoc', alpha = .05, N = 300,

Phi = .15, nIndicator = c(5, 4), loadM = c(.5, .6))
# show plot
semPower.powerPlot(powerCFA)

## End(Not run)

semPower.powerPlot.byEffect

semPower.powerPlot.byEffect

Description

Shows a plot showing power as function of the effect for a given N and alpha.

Usage

semPower.powerPlot.byEffect(
effect.measure = NULL,
alpha,
N,
df,
p = NULL,
effect.min = NULL,
effect.max = NULL,
steps = 50,
linewidth = 1

)
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Arguments

effect.measure type of effect, one of "F0", "RMSEA", "Mc", "GFI", "AGFI"
alpha alpha error
N the number of observations
df the model degrees of freedom
p the number of observed variables, required for effect.measure = "GFI" and

effect.measure = "AGFI"

effect.min minimum effect
effect.max maximum effect
steps number of steps
linewidth linewidth

Value

powerplot

Examples

## Not run:
semPower.powerPlot.byEffect(effect.measure = "RMSEA", alpha = .05,

N = 500, effect.min = .01, effect.max = .15, df = 200)

## End(Not run)

semPower.powerPlot.byN

semPower.powerPlot.byN

Description

Shows a plot showing power as function of N for a given effect and alpha.

Usage

semPower.powerPlot.byN(
effect = NULL,
effect.measure = NULL,
alpha,
df,
p = NULL,
SigmaHat = NULL,
Sigma = NULL,
power.min = alpha,
power.max = 0.99,
steps = 50,
linewidth = 1

)
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Arguments

effect effect size specifying the discrepancy between H0 and H1

effect.measure type of effect, one of "F0", "RMSEA", "Mc", "GFI", "AGFI"

alpha alpha error

df the model degrees of freedom

p the number of observed variables, required for effect.measure = "GFI" and
effect.measure = "AGFI"

SigmaHat model implied covariance matrix. Use in conjunction with Sigma`` to define ef-
fectandeffect.measure‘.

Sigma population covariance matrix. Use in conjunction with SigmaHat to define
effect and effect.measure.

power.min minimum power, must not be smaller than alpha.

power.max maximum power

steps number of steps

linewidth linewidth

Value

powerplot

Examples

## Not run:
semPower.powerPlot.byN(effect = .05, effect.measure = "RMSEA",

alpha = .05, power.min = .05, power.max = .99, df = 200)

## End(Not run)

semPower.powerRegression

semPower.powerRegression

Description

Convenience function for performing power analysis on slope(s) in a latent regression of the form
Y = XB. This requires the lavaan package.

Usage

semPower.powerRegression(
type,
comparison = "restricted",
slopes = NULL,
corXX = NULL,
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nullEffect = "slope = 0",
nullWhich = NULL,
nullWhichGroups = NULL,
standardized = TRUE,
...

)

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.

comparison comparison model, one of 'saturated' or 'restricted' (the default). This
determines the df for power analyses. 'saturated' provides power to reject
the model when compared to the saturated model, so the df equal the one of
the hypothesized model. 'restricted' provides power to reject the hypothe-
sized model when compared to an otherwise identical model that just omits the
restrictions defined in nullEffect, so the df equal the number of restrictions.

slopes vector of slopes (or a single number for a single slope) of the k predictors for Y.
A list of slopes for multigroup models.

corXX correlation(s) between the k predictors (X). Either NULL for uncorrelated predic-
tors, a single number (for k = 2 predictors), or a matrix. Can also be a list for
multigroup models providing the correlations by group of matrices (otherwise,
the same correlations are used in all groups).

nullEffect defines the hypothesis of interest, must be one of 'slope = 0' (the default) to
test whether a slope is zero, 'slopeX = slopeZ' to test for the equality of slopes,
or 'slopeA = slopeB' to test for the equality of slopes across groups. Define
the slopes to set to equality in nullWhich.

nullWhich single number indicating which slope is hypothesized to equal zero when nullEffect
= 'slope = 0', or indicating which slope to restrict to equality across groups
when nullEffect = 'slopeA = slopeB', or vector defining the slopes to re-
strict to equality when nullEffect = 'slopeX = slopeZ'. Can also contain more
than two slopes, e.g. c(1, 2, 3) to constrain the first three slopes to equality.

nullWhichGroups

for nullEffect = 'slopeA = slopeB', vector indicating the groups for which
equality constrains should be applied, e.g. c(1, 3) to constrain the relevant
parameters of the first and the third group. If NULL, all groups are constrained to
equality.

standardized whether all parameters should be standardized (TRUE, the default). If FALSE, all
regression relations are unstandardized.

... mandatory further parameters related to the specific type of power analysis re-
quested, see semPower.aPriori(), semPower.postHoc(), and semPower.compromise(),
and parameters specifying the factor model. The first factor is treated as Y and
the subsequent factors as the predictors X_k. See details.

Details

This function performs a power analysis to reject various hypotheses arising in SEM models involv-
ing a simple regression relation of the form Y = b_1*X_1 + ... + b_k*X_k between the factors:
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• nullEffect = 'slope = 0': Tests the hypothesis that the slope for a predictor is zero.

• nullEffect = 'slopeX = slopeZ': Tests the hypothesis that two or more slopes are equal to
each other.

• nullEffect = 'slopeA = slopeB': Tests the hypothesis that the slope for a predictor is equal
in two or more groups (always assuming metric invariance).

For hypotheses regarding mediation effects, see semPower.powerMediation(). For hypothesis in
autoregressive models, see semPower.powerAutoreg().

Beyond the arguments explicitly contained in the function call, additional arguments are required
specifying the factor model and the requested type of power analysis.

Additional arguments related to the definition of the factor model:

• Lambda: The factor loading matrix (with the number of columns equaling the number of
factors).

• loadings: Can be used instead of Lambda: Defines the primary loadings for each factor in
a list structure, e. g. loadings = list(c(.5, .4, .6), c(.8, .6, .6, .4)) defines a two
factor model with three indicators loading on the first factor by .5, , 4., and .6, and four
indicators loading on the second factor by .8, .6, .6, and .4.

• nIndicator: Can be used instead of Lambda: Used in conjunction with loadM. Defines the
number of indicators by factor, e. g., nIndicator = c(3, 4) defines a two factor model with
three and four indicators for the first and second factor, respectively. nIndicator can also be
a single number to define the same number of indicators for each factor.

• loadM: Can be used instead of Lambda: Used in conjunction with nIndicator. Defines the
loading either for all indicators (if a single number is provided) or separately for each factor
(if a vector is provided), e. g. loadM = c(.5, .6) defines the loadings of the first factor to
equal .5 and those of the second factor do equal .6.

So either Lambda, or loadings, or nIndicator and loadM need to be defined. If the model contains
observed variables only, use Lambda = diag(x) where x is the number of variables.

Note that the first factor acts as the criterion Y, the subsequent factors as predictors X_1 to X_k.

Additional arguments related to the requested type of power analysis:

• alpha: The alpha error probability. Required for type = 'a-priori' and type = 'post-hoc'.

• Either beta or power: The beta error probability and the statistical power (1 - beta), respec-
tively. Only for type = 'a-priori'.

• N: The sample size. Always required for type = 'post-hoc' and type = 'compromise'. For
type = 'a-priori' and multiple group analysis, N is a list of group weights.

• abratio: The ratio of alpha to beta. Only for type = 'compromise'.

If a simulated power analysis (simulatedPower = TRUE) is requested, optional arguments can be
provided as a list to simOptions:

• nReplications: The targeted number of simulation runs. Defaults to 250, but larger numbers
greatly improve accuracy at the expense of increased computation time.

• minConvergenceRate: The minimum convergence rate required, defaults to .5. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.
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• type: specifies whether the data should be generated from a population assuming multivari-
ate normality ('normal'; the default), or based on an approach generating non-normal data
('IG', 'mnonr', 'RC', or 'VM'). The approaches generating non-normal data require addi-
tional arguments detailed below.

• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of MCAR (the default), MAR, or NMAR.

• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doSNOW package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.

type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.

type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors. This requires the semTools package.

Value

a list. Use the summary method to obtain formatted results. Beyond the results of the power analysis
and a number of effect size measures, the list contains the following components:

Sigma the population covariance matrix. A list for multiple group models.

mu the population mean vector or NULL when no meanstructure is involved. A list
for multiple group models.

SigmaHat the H0 model implied covariance matrix. A list for multiple group models.

muHat the H0 model implied mean vector or NULL when no meanstructure is involved.
A list for multiple group models.

modelH0 lavaan H0 model string.

modelH1 lavaan H1 model string or NULL when the comparison refers to the saturated
model.

simRes detailed simulation results when a simulated power analysis (simulatedPower
= TRUE) was performed.
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See Also

semPower.genSigma() semPower.aPriori() semPower.postHoc() semPower.compromise()

Examples

## Not run:
# latent regression of the form `Y = .2*X1 + .3*X2`, where X1 and X2 correlate by .4
# obtain required N to reject the hypothesis that the slope of X1 is zero
# with a power of 95% on alpha = 5%,
# where Y is measured by 3 indicators loading by .5 each,
# X1 by 5 indicators loading by .6 each, and
# X2 by 4 indicators loading by .7 each.
powerReg <- semPower.powerRegression(type = 'a-priori',

slopes = c(.2, .3), corXX = .4,
nullWhich = 1,
nIndicator = c(3, 5, 4),
loadM = c(.5, .6, .7),
alpha = .05, beta = .05)

# show summary
summary(powerReg)
# optionally use lavaan to verify the model was set-up as intended
lavaan::sem(powerReg$modelH1, sample.cov = powerReg$Sigma,
sample.nobs = powerReg$requiredN, sample.cov.rescale = FALSE)
lavaan::sem(powerReg$modelH0, sample.cov = powerReg$Sigma,
sample.nobs = powerReg$requiredN, sample.cov.rescale = FALSE)

# same as above, but determine power with N = 500 on alpha = .05
powerReg <- semPower.powerRegression(type = 'post-hoc',

slopes = c(.2, .3), corXX = .4,
nullWhich = 1,
nIndicator = c(3, 5, 4),
loadM = c(.5, .6, .7),
alpha = .05, N = 500)

# same as above, but determine the critical chi-square with N = 500 so that alpha = beta
powerReg <- semPower.powerRegression(type = 'compromise',

slopes = c(.2, .3), corXX = .4,
nullWhich = 1,
nIndicator = c(3, 5, 4),
loadM = c(.5, .6, .7),
abratio = .05, N = 500)

# same as above, but ask for the required N to detect that the slope of X2 is zero
powerReg <- semPower.powerRegression(type = 'a-priori',

slopes = c(.2, .3), corXX = .4,
nullWhich = 2,
nIndicator = c(3, 5, 4),
loadM = c(.5, .6, .7),
alpha = .05, beta = .05)

# same as above, but define unstandardized slopes
powerReg <- semPower.powerRegression(type = 'a-priori',
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slopes = c(.2, .3), corXX = .4,
nullWhich = 2,
standardized = FALSE,
nIndicator = c(3, 5, 4),
loadM = c(.5, .6, .7),
alpha = .05, beta = .05)

# same as above, but compare to the saturated model
# (rather than to the less restricted model)
powerReg <- semPower.powerRegression(type = 'a-priori',

comparison = 'saturated',
slopes = c(.2, .3), corXX = .4,
nullWhich = 2,
nIndicator = c(3, 5, 4),
loadM = c(.5, .6, .7),
alpha = .05, beta = .05)

# same as above, but provide a reduced loading matrix defining
# three indicators with loadings of .7, .6, .5 on the first factor (Y),
# four indicators with loadings of .5, .6, .4, .8 on the second factor (X1), and
# three indicators with loadings of .8, .7, .8 on the third factor (X2).
powerReg <- semPower.powerRegression(type = 'a-priori',

slopes = c(.2, .3), corXX = .4,
nullWhich = 2,
loadings = list(

c(.7, .6, .5),
c(.5, .6, .4, .8),
c(.8, .7, .8)),

alpha = .05, beta = .05)

# latent regression of the form `Y = .2*X1 + .3*X2 + .4*X3`,
# providing the predictor intercorrelation matrix,
# and ask for the required N to detect that the first slope differs from zero.
corXX <- matrix(c(

# X1 X2 X3
c(1.00, 0.20, 0.30), # X1
c(0.20, 1.00, 0.10), # X2
c(0.30, 0.10, 1.00) # X3

), ncol = 3,byrow = TRUE)
powerReg <- semPower.powerRegression(type = 'a-priori',

slopes = c(.2, .3, .4), corXX = corXX,
nullWhich = 1,
nIndicator = c(4, 3, 5, 4),
loadM = c(.5, .5, .6, .7),
alpha = .05, beta = .05)

# same as above, but ask for the required N to detect that
# the slope for X1 (b = .2) and the slope for X2 (b = .3) differ from each other
powerReg <- semPower.powerRegression(type = 'a-priori',

slopes = c(.2, .3, .4), corXX = corXX,
nullEffect = 'slopeX = slopeZ',
nullWhich = c(1, 2),
nIndicator = c(4, 3, 5, 4),
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loadM = c(.5, .5, .6, .7),
alpha = .05, beta = .05)

# same as above, but ask for the required N to reject the hypothesis that
# all three slopes are equal to each other
powerReg <- semPower.powerRegression(type = 'a-priori',

slopes = c(.2, .3, .4), corXX = corXX,
nullEffect = 'slopeX = slopeZ',
nullWhich = c(1, 2, 3),
nIndicator = c(4, 3, 5, 4),
loadM = c(.5, .5, .6, .7),
alpha = .05, beta = .05)

# get required N to detect that
# the slope for X2 group 1 (of b2 = .3) differs from the slope for X2 in group 2 (of b = .0).
# The remaining slopes are equal in both groups (b1 = .2, b3 = .4).
# The measurement model is identical in both groups:
# The criterion (Y) is measured by 4 indicators loading by .5 each,
# Predictors X1 and X3 are both measured by 5 indicators loading by .6 each,
# Predictor X2 is measured by 3 indicators loading by .7 each.
# Both groups are sized equally (N = list(1, 1)).
powerReg <- semPower.powerRegression(type = 'a-priori',

slopes = list(c(.2, .3, .4),
c(.2, .0, .4)),
corXX = corXX,
nullEffect = 'slopeA = slopeB',
nullWhich = 2,
nIndicator = c(4, 5, 3, 5),
loadM = c(.5, .6, .7, .6),
alpha = .05, beta = .05,
N = list(1, 1))

# request a simulated post-hoc power analysis with 500 replications
# to detect that the slope of X1 differs from zero.
set.seed(300121)
powerReg <- semPower.powerRegression(type = 'post-hoc',

slopes = c(.2, .1),
nullWhich = 1,
nIndicator = c(4, 3, 3), loadM = .5,
alpha = .05, N = 500,
simulatedPower = TRUE,
simOptions = list(nReplications = 500))

## End(Not run)

semPower.powerRICLPM semPower.powerRICLPM
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Description

Convenience function for performing power analysis on effects in a random intercept cross-lagged
panel model (RI-CLPM). This requires the lavaan package.

Usage

semPower.powerRICLPM(
type,
comparison = "restricted",
nWaves = NULL,
autoregEffects = NULL,
crossedEffects = NULL,
rXY = NULL,
rBXBY = NULL,
waveEqual = NULL,
nullEffect = NULL,
nullWhichGroups = NULL,
nullWhich = NULL,
standardized = TRUE,
metricInvariance = TRUE,
autocorResiduals = TRUE,
...

)

Arguments

type type of power analysis, one of 'a-priori', 'post-hoc', 'compromise'.

comparison comparison model, one of 'saturated' or 'restricted' (the default). This
determines the df for power analyses. 'saturated' provides power to reject
the model when compared to the saturated model, so the df equal the one of
the hypothesized model. 'restricted' provides power to reject the hypothe-
sized model when compared to an otherwise identical model that just omits the
restrictions defined in nullEffect, so the df equal the number of restrictions.

nWaves number of waves, must be >= 3.

autoregEffects vector of the autoregressive effects of X and Y (constant across waves), or a
list of vectors of autoregressive effects for X and Y from wave to wave, e.g.
list(c(.7, .6), c(.5, .5)) for an autoregressive effect of .7 for X1->X2 and
.6 for X2->X3 and autoregressive effects of .5 for Y1->Y2 and Y2->Y3. Must
be a list of lists for multiple groups models. If the list structure is omitted, no
group differences are assumed.

crossedEffects vector of crossed effects of X on Y (X -> Y) and vice versa (both constant across
waves), or a list of vectors of crossed effects giving the crossed effect of X on Y
(and vice versa) for each wave, e.g. list(c(.2, .3), c(.1, .1)) for X1->Y2
= .2, X2->Y3 = .3, Y1->Y2 = .1, and Y2->Y3 = .1. Must be a list of lists for
multiple groups models. If the list structure is omitted, no group differences are
assumed.
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rXY vector of (residual-)correlations between X and Y for each wave. If NULL, all
(residual-)correlations are zero. Can be a list for multiple groups models, other-
wise no group differences are assumed.

rBXBY correlation between random intercept factors. If NULL, the correlation is zero.
Must be a list of lists for multiple groups models. If the list structure is omitted,
no group differences are assumed.

waveEqual parameters that are assumed to be equal across waves in both the H0 and the
H1 model. Valid are 'autoregX' and 'autoregY' for autoregressive effects,
'crossedX' and 'crossedY' for crossed effects, 'corXY' for residual correla-
tions, or NULL for none (so that all parameters are freely estimated, subject to the
constraints defined in nullEffect).

nullEffect defines the hypothesis of interest. Valid are the same arguments as in waveEqual
and additionally 'autoregX = 0', 'autoregY = 0', 'crossedX = 0', 'crossedY
= 0' to constrain the X or Y autoregressive effects or the crossed effects to zero,
'corBXBY = 0' to constrain the correlation between the random intercepts to
zero, and 'autoregX = autoregY' and 'crossedX = crossedY' to constrain
them to be equal for X and Y, and 'autoregXA = autoregXB', 'autoregYA =
autoregYB', 'crossedXA = crossedXB', 'crossedYA = crossedYB', and corBXBYA
= corBXBYB to constrain them to be equal across groups.

nullWhichGroups

for hypothesis involving cross-groups comparisons, vector indicating the groups
for which equality constrains should be applied, e.g. c(1, 3) to constrain the
relevant parameters of the first and the third group. If NULL, all groups are con-
strained to equality.

nullWhich used in conjunction with nullEffect to identify which parameter to constrain
when there are > 2 waves and parameters are not constant across waves. For
example, nullEffect = 'autoregX = 0' with nullWhich = 2 would constrain
the second autoregressive effect for X to zero.

standardized whether the autoregressive and cross-lagged parameters should be treated as
standardized (TRUE, the default), implying that unstandardized and standardized
regression relations have the same value. If FALSE, all regression relations are
unstandardized.

metricInvariance

whether metric invariance over waves is assumed (TRUE, the default) or not
(FALSE). This affects the df when the comparison model is the saturated model
and generally affects power (also for comparisons to the restricted model, where
the df are not affected by invariance constraints).

autocorResiduals

whether the residuals of the indicators of latent variables are autocorrelated over
waves (TRUE, the default) or not (FALSE). This affects the df when the compari-
son model is the saturated model and generally affects power (also for compar-
isons to the restricted model).

... mandatory further parameters related to the specific type of power analysis re-
quested, see semPower.aPriori(), semPower.postHoc(), and semPower.compromise(),
and parameters specifying the factor model. The order of factors is (X1, Y1, X2,
Y2, ..., X_nWaves, Y_nWaves). See details.
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Details

This function performs a power analysis to reject various hypotheses arising in a random intercept
crossed-lagged panel model (RI-CLPM). In a standard RI-CLPM implemented here, two variables
X and Y are repeatedly assessed at three or more different time points (nWaves), yielding autoregres-
sive effects (X1 -> X2, X2 -> X3, Y1 -> Y2, Y2 -> Y3), synchronous effects (X1 <-> Y1, X2 <-> Y2,
X3 <-> Y3), and cross-lagged effects (X1 -> Y2, X2 -> Y3, Y1 -> X2, Y2 -> X3). RI-CLPMs are
typically implemented assuming that the parameters are constant across waves (waveEqual), and
usually omit lag-2 effects (e.g., X1 -> Y3). RI-CLPMs based on latent factors usually assume at
least metric invariance of the factors over waves (metricInvariance).

Relevant hypotheses in arising in a RI-CLPM are:

• autoregX = 0 and autoregY = 0: Tests the hypothesis that the autoregressive effect of X and
Y, respectively, is zero.

• crossedX = 0 and crossedY = 0: Tests the hypothesis that the crossed effect of X on Y
(crossedX) and Y on X (crossedY), respectively, is zero.

• autoregX = autoregY: Tests the hypothesis that the autoregressive effect of X and Y are
equal.

• crossedX = crossedY: Tests the hypothesis that the crossed effect of X on Y (crossedX) and
Y on X (crossedY) are equal.

• autoregX and autoregY: Tests the hypothesis that the autoregressive effect of X and Y, re-
spectively, is equal across waves.

• crossedX and crossedY: Tests the hypothesis that the crossed effect of X on Y (crossedX)
and Y on X (crossedY), respectively, is equal across waves.

• corXY: Tests the hypothesis that the (residual-)correlations between X and Y are equal across
waves.

• corBXBY = 0: Tests the hypothesis that the correlation between the random intercept factors of
X and Y is zero.

• autoregXA = autoregXB and autoregYA = autoregYB: Tests the hypothesis that the autore-
gressive effect of either X or Y are equal across groups.

• crossedXA = crossedXB and crossedYA = crossedYB: Tests the hypothesis that the crossed
effect of X on Y (crossedX) or of Y on X (crossedY), respectively, is equal across groups.

• corBXBYA = corBXBYB: Tests the hypothesis that the correlation between the random intercept
factors is equal across groups.

For hypotheses regarding the traditional CLPM, see semPower.powerCLPM().

Beyond the arguments explicitly contained in the function call, additional arguments are required
specifying the factor model and the requested type of power analysis.

Additional arguments related to the definition of the factor model:

• Lambda: The factor loading matrix (with the number of columns equaling 2 times the number
of waves). Columns should be in order X1, Y1, X2, Y2, ..., X_nWaves, Y_nWaves.

• loadings: Can be used instead of Lambda: Defines the primary loadings for each factor in a
list structure ordered by wave, e.g., list(c(.2, .2, .2), c(.4, .4, .4, .4), c(.2, .2, .2), c(.4, .4, .4,
.4), c(.2, .2, .2), c(.4, .4, .4, .4)) defines loadings of .2 for the three indicators of X at waves
1-3 and loadings of .4 for the four indicators of Y at waves 1-3. Must not contain secondary
loadings.
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• nIndicator: Can be used instead of Lambda: Used in conjunction with loadM. Defines the
number of indicators for each factor ordered by wave, e.g. c(3, 4, 3, 4, 3, 4) defines three
indicators for X at waves 1-3 and four indicators for Y at waves 1-3.

• loadM: Can be used instead of Lambda: Used in conjunction with nIndicator. Defines the
loading either for all indicators (if a single number is provided) or separately for each factor at
each wave (if a vector is provided), e. g. loadM = c(.5, .6, .5, .6, .5, .6) defines mean
loadings of .5 for X at waves 1-3 and mean loadings of .6 for Y at waves 1-3.

So either Lambda, or loadings, or nIndicator and loadM need to be defined. If the model contains
observed variables only, use Lambda = diag(x) where x is the number of variables.

Note that the order of the factors is (X1, Y1, X2, Y2, ..., X_nWaves, Y_nWaves), i. e., the first
factor is treated as the first measurement of X, the second as the first measurement of Y, the third as
the second measurement of X, etc..

Additional arguments related to the requested type of power analysis:

• alpha: The alpha error probability. Required for type = 'a-priori' and type = 'post-hoc'.

• Either beta or power: The beta error probability and the statistical power (1 - beta), respec-
tively. Only for type = 'a-priori'.

• N: The sample size. Always required for type = 'post-hoc' and type = 'compromise'. For
type = 'a-priori' and multiple group analysis, N is a list of group weights.

• abratio: The ratio of alpha to beta. Only for type = 'compromise'.

If a simulated power analysis (simulatedPower = TRUE) is requested, optional arguments can be
provided as a list to simOptions:

• nReplications: The targeted number of simulation runs. Defaults to 250, but larger numbers
greatly improve accuracy at the expense of increased computation time.

• minConvergenceRate: The minimum convergence rate required, defaults to .5. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.

• type: specifies whether the data should be generated from a population assuming multivari-
ate normality ('normal'; the default), or based on an approach generating non-normal data
('IG', 'mnonr', 'RC', or 'VM'). The approaches generating non-normal data require addi-
tional arguments detailed below.

• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of MCAR (the default), MAR, or NMAR.

• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doSNOW package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.
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type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.

type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors. This requires the semTools package.

Value

a list. Use the summary method to obtain formatted results. Beyond the results of the power analysis
and a number of effect size measures, the list contains the following components:

Sigma the population covariance matrix. A list for multiple group models.

mu the population mean vector or NULL when no meanstructure is involved. A list
for multiple group models.

SigmaHat the H0 model implied covariance matrix. A list for multiple group models.

muHat the H0 model implied mean vector or NULL when no meanstructure is involved.
A list for multiple group models.

modelH0 lavaan H0 model string.

modelH1 lavaan H1 model string or NULL when the comparison refers to the saturated
model.

simRes detailed simulation results when a simulated power analysis (simulatedPower
= TRUE) was performed.

See Also

semPower.genSigma() semPower.aPriori() semPower.postHoc() semPower.compromise()

Examples

## Not run:
# Determine required N in a 3-wave RI-CLPM
# to detect crossed effects of X (X1 -> Y2 and X2 -> Y3) of >= .2
# with a power of 95% on alpha = 5%, where
# X1, X2, and X3 are measured by 5 indicators loading by .5 each, and
# Y1, Y2, and Y3 are measured by 3 indicators loading by .4 each, and
# there is no synchronous correlation between X and Y (rXY = NULL),
# the correlation between the random intercept factors of X and Y (rBXBY) is .1,
# the autoregressive effects of X are .8 (equal across waves),
# the autoregressive effects of Y are .7 (equal across waves), and
# the crossed effects of Y (Y1 -> X2 and Y2 -> X3) are .1 (equal across waves).
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powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',
nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = NULL,
rBXBY = .1,
nullEffect = 'crossedX = 0',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
alpha = .05, beta = .05)

# show summary
summary(powerRICLPM)
# optionally use lavaan to verify the model was set-up as intended
lavaan::sem(powerRICLPM$modelH1, sample.cov = powerRICLPM$Sigma,

sample.nobs = powerRICLPM$requiredN, sample.cov.rescale = FALSE)
lavaan::sem(powerRICLPM$modelH0, sample.cov = powerRICLPM$Sigma,

sample.nobs = powerRICLPM$requiredN, sample.cov.rescale = FALSE)

# same as above, but determine power with N = 500 on alpha = .05
powerRICLPM <- semPower.powerRICLPM(type = 'post-hoc',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = NULL,
rBXBY = .1,
nullEffect = 'crossedX = 0',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
alpha = .05, N = 500)

# same as above, but determine the critical chi-square with N = 500 so that alpha = beta
powerRICLPM <- semPower.powerRICLPM(type = 'compromise',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = NULL,
rBXBY = .1,
nullEffect = 'crossedX = 0',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
abratio = 1, N = 500)

# same as above, but compare to the saturated model
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# (rather than to the less restricted model)
powerRICLPM <- semPower.powerRICLPM(type = 'compromise',

comparison = 'saturated',
nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = NULL,
rBXBY = .1,
nullEffect = 'crossedX = 0',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
abratio = 1, N = 500)

# same as above, but assume only observed variables
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = NULL,
rBXBY = .1,
nullEffect = 'crossedX = 0',
Lambda = diag(6),
alpha = .05, beta = .05)

# same as above, but provide reduced loadings matrix to define that
# X1, X2, and X3 are measured by 5 indicators each loading by .5, .4, .5, .4, .3
# Y1, Y2, and Y3 are measured by 3 indicators each loading by .4, .3, .2
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = NULL,
rBXBY = .1,
nullEffect = 'crossedX = 0',
loadings = list(

c(.5, .4, .5, .4, .3), # X1
c(.4, .3, .2), # Y1
c(.5, .4, .5, .4, .3), # X2
c(.4, .3, .2), # Y2
c(.5, .4, .5, .4, .3), # X3
c(.4, .3, .2) # Y3

),
alpha = .05, beta = .05)
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# same as above, but do not assume metric invariance across waves
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = NULL,
rBXBY = .1,
nullEffect = 'crossedX = 0',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
metricInvariance = FALSE,
alpha = .05, beta = .05)

# same as above, but determine N to detect that the crossed effect of Y
# (Y1 -> X2 and Y2 -> X3) is >= .1.
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = NULL,
rBXBY = .1,
nullEffect = 'crossedY = 0',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
alpha = .05, beta = .05)

# same as above, but determine N to detect that the autoregressive effect
# of X (X1 -> X2 and X2 -> X3) is >= .8.
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = NULL,
rBXBY = .1,
nullEffect = 'autoregX = 0',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
alpha = .05, beta = .05)

# same as above, but determine N to detect that the autoregressive effect
# of Y (Y1 -> Y2) is >= .7.
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
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crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = NULL,
rBXBY = .1,
nullEffect = 'autoregY = 0',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
alpha = .05, beta = .05)

# same as above, but determine N to detect that
# the crossed effect of X (X1 -> Y2) of .2 differs from
# the crossed effect of Y (Y1 -> X2) of .1
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = NULL,
rBXBY = .1,
nullEffect = 'crossedX = crossedY',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
alpha = .05, beta = .05)

# same as above, but determine N to detect that
# the autoregressive effect of X (X1 -> X2) of .8 differs from
# the autoregressive effect of Y (Y1 -> Y2) of .7
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = NULL,
rBXBY = .1,
nullEffect = 'autoregX = autoregY',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
alpha = .05, beta = .05)

# same as above, but determine N to detect that the correlation between the
# random intercept factors is >= .1
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
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rXY = NULL,
rBXBY = .1,
nullEffect = 'corBXBY = 0',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
alpha = .05, beta = .05)

# same as above, but assume that the synchronous (residual-)correlations between
# X and Y are equal across waves,
# namely a synchronous correlation of .05 at the first wave and residual correlations
# of .05 at the second and third wave,
# and determine N to detect a crossed effect of X (X1 -> Y2 and X2 -> Y3) of >= .2
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY',
'corXY'),

rXY = c(.05, .05, .05),
rBXBY = .1,
nullEffect = 'crossedX = 0',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
alpha = .05, beta = .05)

# same as above, but assume that the synchronous correlation between X and Y
# is .3 at the first wave, and the respective residual correlations are .2 at
# the second wave and .3 at the third wave,
# and determine N to detect that the synchronous residual correlation at wave 2 is => .2.
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = c(.3, .2, .3),
rBXBY = .1,
nullEffect = 'corXY = 0',
nullWhich = 2,
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
alpha = .05, beta = .05)

# Determine required N in a 3-wave RI-CLPM to detect that
# the crossed effect of X at wave 1 (X1 -> Y2) of .20 is equal to the
# the crossed effect of X at wave 2 (X2 -> Y3) of .05
# with a power of 95% on alpha = 5%, where
# the autoregressive effects of X and Y are equal over waves,
# X1, X2, and X3 are measured by 5 indicators loading by .5 each, and
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# Y1, Y2, and Y3 are measured by 3 indicators loading by .4 each, and
# the synchronous correlation between X and Y are .2, .3, and .4 at the first,
# second, and third wave,
# the correlation between the random intercept factors of X and Y is .1, and
# the autoregressive effect of X is .8 across all three waves,
# the autoregressive effect of Y is .7 across all three waves, and
# the crossed effects of Y (Y1 -> X2, and Y2 -> Y3) are both .1
# (but freely estimated for each wave).
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = list(

# X Y
c(.20, .10), # wave 1 -> wave 2
c(.05, .10)), # wave 2 -> wave 3

waveEqual = c('autoregX', 'autoregY'),
rXY = c(.2, .3, .4),
rBXBY = .1,
nullEffect = 'crossedX',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
alpha = .05, beta = .05)

# same as above, but determine N to detect that
# the crossed effect of X at wave 2 is >= .05.
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = list(

# X Y
c(.20, .10), # wave 1 -> wave 2
c(.05, .10)), # wave 2 -> wave 3

waveEqual = c('autoregX', 'autoregY'),
rXY = c(.2, .3, .4),
rBXBY = .1,
nullEffect = 'crossedX = 0',
nullWhich = 2,
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
alpha = .05, beta = .05)

# same as above, but determine N to detect that
# the residual correlation between X and Y at wave 2 (of .3) differs from
# the residual correlation between X and Y at wave 3 (of .4).
powerRICLPM <- semPower.powerRICLPM(type = 'a-priori',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = list(

# X Y
c(.20, .10), # wave 1 -> wave 2
c(.05, .10)), # wave 2 -> wave 3
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waveEqual = c('autoregX', 'autoregY'),
rXY = c(.2, .3, .4),
rBXBY = .1,
nullEffect = 'corXY',
nIndicator = c(5, 3, 5, 3, 5, 3),
loadM = c(.5, .4, .5, .4, .5, .4),
alpha = .05, beta = .05)

# multigroup example
# Determine the achieved power N in a 3-wave RI-CLPM to detect that
# the crossed effect of X at wave 1 (X1 -> Y2) in group 1 of .25 differs
# from the crossed effect of X at wave 1 (X1 -> Y2) in group 2 of .15,
# where both groups comprise 500 observations and alpha = 5%, and
# the measurement model is equal for both groups, and
# the crossed effects of X (X1 -> Y2, and X2 -> Y3) are .25 and .10 in the first group,
# the crossed effects of X (X1 -> Y2, and X2 -> Y3) are .15 and .05 in the second group,
# the crossed effects of Y (Y1 -> X2, and Y2 -> X3) are .05 and .15 in the first group,
# the crossed effects of Y (Y1 -> X2, and Y2 -> X3) are .01 and .10 in the second group, and
# the autoregressive effects of X (of .5) and Y (of .4) are equal over waves and over groups
# (but freely estimated in each group).
powerRICLPM <- semPower.powerRICLPM(type = 'post-hoc', alpha = .05, N = list(500, 500),

nWaves = 3,
autoregEffects = c(.5, .4), # group and wave constant
crossedEffects = list(

# group 1
list(

c(.25, .10), # X
c(.05, .15) # Y

),
# group 2
list(

c(.15, .05), # X
c(.01, .10) # Y

)
),
rXY = NULL, # identity
rBXBY = NULL, # identity
nullEffect = 'crossedXA = crossedXB',
nullWhich = 1,
nIndicator = rep(3, 6),
loadM = c(.5, .6, .5, .6, .5, .6),
metricInvariance = TRUE,
waveEqual = c('autoregX', 'autoregY')
)

# Request a simulated post-hoc power analysis with 500 replications
# to detect crossed effects of X (X1 -> Y2 and X2 -> Y3) of >= .2
# with a power of 95% on alpha = 5% in a RI-CLPM with 3 waves,
# where there are only observed variables and
# there is no synchronous correlation between X and Y (rXY = NULL),
# and no correlation between the random intercept factors of X and Y (rBXBY = NULL),
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# the autoregressive effects of X are .8 (equal across waves),
# the autoregressive effects of Y are .7 (equal across waves), and
# the crossed effects of Y (Y1 -> X2 and Y2 -> X3) are .1 (equal across waves).
set.seed(300121)
powerRICLPM <- semPower.powerRICLPM(type = 'post-hoc',

nWaves = 3,
autoregEffects = c(.8, .7),
crossedEffects = c(.2, .1),
waveEqual = c('autoregX', 'autoregY',

'crossedX', 'crossedY'),
rXY = NULL,
rBXBY = NULL,
nullEffect = 'crossedX = 0',
Lambda = diag(6),
alpha = .05, N = 500,
simulatedPower = TRUE,
simOptions = list(nReplications = 500))

## End(Not run)

semPower.showPlot semPower.showPlot

Description

Shows a plot showing central and non-central chi-square distribution.

Usage

semPower.showPlot(chiCrit, ncp, df, linewidth = 1, showLabels = TRUE)

Arguments

chiCrit critical chi-square, e. g. qchisq(alpha, df, ncp = 0, lower.tail = FALSE)

ncp non-centrality parameter under H1

df degrees of freedom

linewidth linewidth

showLabels whether to add labels
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simulate simulate

Description

Estimates empirical power using a simulation approach.

Usage

simulate(
modelH0 = NULL,
modelH1 = NULL,
Sigma = NULL,
mu = NULL,
N = NULL,
alpha = NULL,
simOptions = list(nReplications = 500, minConvergenceRate = 0.75, type = "normal",
missingVars = NULL, missingVarProp = 0, missingProp = 0, missingMechanism = "MCAR",
nCores = 1),

lavOptions = NULL,
lavOptionsH1 = lavOptions,
returnFmin = TRUE

)

Arguments

modelH0 lavaan model string defining the (incorrect) analysis model.

modelH1 lavaan model string defining the comparison model. If omitted, the saturated
model is the comparison model.

Sigma population covariance matrix.

mu population means.

N sample size

alpha alpha error probability

simOptions a list of additional options specifying simulation details, see details.

lavOptions a list of additional options passed to lavaan, e. g., list(estimator = 'mlm')
to request robust ML estimation

lavOptionsH1 lavoptions when fitting modelH1. If NULL, the same as lavOptions.

returnFmin whether to return the mean unbiased Fmin over replications (i. e., fmin_0 =
fmin_hat - df/N)

Details

The details of the simulation are specified in simOptions, which is a list that may have the following
components:
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• nReplications: The targeted number of valid simulation runs, defaults to 500.

• minConvergenceRate: The minimum convergence rate required, defaults to .75. The maxi-
mum actual simulation runs are increased by a factor of 1/minConvergenceRate.

• type: specifies whether the data should be generated from a population assuming multivari-
ate normality ('normal'; the default), or based on an approach generating non-normal data
('IG', 'mnonr', 'RK', or 'VM'). The approaches generating non-normal data require addi-
tional arguments detailed below.

• missingVars: vector specifying the variables containing missing data (defaults to NULL).

• missingVarProp: can be used instead of missingVars: The proportion of variables contain-
ing missing data (defaults to zero).

• missingProp: The proportion of missingness for variables containing missing data (defaults
to zero), either a single value or a vector giving the probabilities for each variable.

• missingMechanism: The missing data mechanism, one of 'MCAR' (the default), 'MAR', or
'NMAR'.

• nCores: The number of cores to use for parallel processing. Defaults to 1 (= no parallel
processing). This requires the doFuture package.

type = 'IG' implements the independent generator approach (IG, Foldnes & Olsson, 2016) ap-
proach specifying third and fourth moments of the marginals, and thus requires that skewness
(skewness) and excess kurtosis (kurtosis) for each variable are provided as vectors. This requires
the covsim package.

type = 'mnonr' implements the approach suggested by Qu, Liu, & Zhang (2020) and requires
provision of Mardia’s multivariate skewness (skewness) and kurtosis (kurtosis), where skewness
must be non-negative and kurtosis must be at least 1.641 skewness + p (p + 0.774), where p is the
number of variables. This requires the mnonr package.

type = 'RK' implements the approach suggested by Ruscio & Kaczetow (2008) and requires pro-
vision of the population distributions of each variable (distributions). distributions must be
a list (if all variables shall be based on the same population distribution) or a list of lists. Each com-
ponent must specify the population distribution (e.g. rchisq) and additional arguments (list(df
= 2)).

type = 'VM' implements the third-order polynomial method (Vale & Maurelli, 1983) specifying
third and fourth moments of the marginals, and thus requires that skewness (skewness) and excess
kurtosis (kurtosis) for each variable are provided as vectors.

Foldnes, N. & Olsson, U. H. (2016) A Simple Simulation Technique for Nonnormal Data with
Prespecified Skewness, Kurtosis, and Covariance Matrix. Multivariate Behavioral Research, 51,
207-219. doi: 10.1080/00273171.2015.1133274

Qu, W., Liu, H., & Zhang, Z. (2020). A method of generating multivariate non-normal random
numbers with desired multivariate skewness and kurtosis. Behavior Research Methods, 52, 939-
946. doi: 10.3758/s13428-019-01291-5

Ruscio, J., & Kaczetow, W. (2008). Simulating multivariate nonnormal data using an iterative
algorithm. Multivariate Behavioral Research, 43, 355-381. doi: 10.1080/00273170802285693

Vale, C. & Maurelli, V. (1983). Simulating multivariate nonnormal distributions. Psychometrika,
48, 465-471.
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Value

Returns empirical power: sum(p < alpha) / nReplications or a list (if returnFmin = TRUE) with
the following components:

ePower the empirical power.

meanFmin the estimated mean unbiased Fmin over replications (i. e., fmin_0 = fmin_hat
- df/N).

meanFminGroups the estimated mean unbiased Fmin by groups given as a vector, assuming the df
spread equally over groups. Therefore, meanFmin != sum(meanFminGroups)

df the model df.

nrep the number of successful replications.
convergenceRate

the convergence rate of the H0 model.

bChiSq median chi-square bias of the H1 model

bLambda average median bias in lambda in the H1 model

bPhi average median bias in phi in the H1 model

bPsi average median bias in psi in the H1 model

bBeta average median bias in beta in the H1 model

Examples

## Not run:
# create Sigma and modelH0 using powerCFA
powerCFA <- semPower.powerCFA(type = 'a-priori', alpha = .05, beta = .05,

comparison = 'saturated',
Phi = .2, loadings = list(rep(.5, 3), rep(.7, 3)))

# perform simulated power analysis using defaults
simulate(modelH0 = powerCFA$modelH0,

Sigma = powerCFA$Sigma,
N = powerCFA$requiredN,
alpha = .05,
simulatedPower = TRUE)

# same with additional options
simulate(modelH0 = powerCFA$modelH0,

Sigma = powerCFA$Sigma,
N = powerCFA$requiredN,
alpha = .05,
simulatedPower = TRUE,
simOptions = list(nReplications = 500,

minConvergenceRate = .80,
nCores = 8))

# same with IG as data generation routine
simulate(modelH0 = powerCFA$modelH0,
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Sigma = powerCFA$Sigma,
N = powerCFA$requiredN,
alpha = .05,
simulatedPower = TRUE,
simOptions = list(type = 'IG',

skewness = c(0, 1, -2, 6, 5, 4),
kurtosis = c(-3, 6, 9, 0, 2, -2)))

# same with mnonr as data generation routine
simulate(modelH0 = powerCFA$modelH0,

Sigma = powerCFA$Sigma,
N = powerCFA$requiredN,
alpha = .05,
simulatedPower = TRUE,
simOptions = list(type = 'mnonr',

skewness = 1,
kurtosis = 50))

# same with RK as data generation routine
distributions <- list(

list('rnorm', list(mean = 0, sd = 10)),
list('runif', list(min = 0, max = 1)),
list('rbeta', list(shape1 = 1, shape2 = 2)),
list('rexp', list(rate = 1)),
list('rpois', list(lambda = 4)),
list('rbinom', list(size = 1, prob = .5))

)
simulate(modelH0 = powerCFA$modelH0,

Sigma = powerCFA$Sigma,
N = powerCFA$requiredN,
alpha = .05,
simulatedPower = TRUE,
simOptions = list(type = 'RK',

distributions = distributions))

## End(Not run)

summary.semPower.aPriori

summary.semPower.aPriori

Description

provide summary of a-priori power analyses
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Usage

## S3 method for class 'semPower.aPriori'
summary(object, ...)

Arguments

object result object from semPower.aPriori

... other

summary.semPower.compromise

summary.sempower.compromise

Description

provide summary of compromise post-hoc power analyses

Usage

## S3 method for class 'semPower.compromise'
summary(object, ...)

Arguments

object result object from semPower.compromise

... other

summary.semPower.postHoc

semPower.postHoc.summary

Description

provide summary of post-hoc power analyses

Usage

## S3 method for class 'semPower.postHoc'
summary(object, ...)

Arguments

object result object from semPower.posthoc

... other
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validateInput validateInput

Description

Validates input for power functions.

Usage

validateInput(
power.type = NULL,
effect = NULL,
effect.measure = NULL,
alpha = NULL,
beta = NULL,
power = NULL,
abratio = NULL,
N = NULL,
df = NULL,
p = NULL,
SigmaHat = NULL,
Sigma = NULL,
muHat = NULL,
mu = NULL,
fittingFunction = "ML",
simulatedPower = FALSE,
modelH0 = NULL,
power.min = alpha,
power.max = 0.999,
effect.min = NULL,
effect.max = NULL,
steps = 50,
linewidth = 1

)

Arguments

power.type type of power analyses, one of "a-priori", "post-hoc", "compromise", "powerplot.byN",
"powerplot.byEffect"

effect effect size specifying the discrepancy between H0 and H1

effect.measure type of effect, one of "F0", "RMSEA", "Mc", "GFI", "AGFI"

alpha alpha error

beta beta error

power power (= 1 - beta)

abratio ratio alpha/beta
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N the number of observations

df the model degrees of freedom

p the number of observed variables, required for effect.measure = "GFI" and
effect.measure = "AGFI"

SigmaHat model implied covariance matrix

Sigma observed (or population) covariance matrix

muHat model implied mean vector

mu observed (or population) mean vector
fittingFunction

whether to use ML (the default) or WLS

simulatedPower whether to perform a simulated (TRUE) (rather than analytical, FALSE) power
analysis.

modelH0 for simulated power: lavaan model string defining the (incorrect) analysis model.

power.min for plotting: minimum power

power.max for plotting: maximum power

effect.min for plotting: minimum effect

effect.max for plotting: maximum effect

steps for plotting: number of sampled points

linewidth for plotting: linewidth
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