Package 'xrnet'

July 16, 2024

Type Package

Title Hierarchical Regularized Regression

Version 1.0.0

URL https://github.com/USCbiostats/xrnet,

https://uscbiostats.github.io/xrnet/

Description Fits hierarchical regularized regression models

to incorporate potentially informative exter-

nal data, Weaver and Lewinger (2019) <doi:10.21105/joss.01761>.

Utilizes coordinate descent to efficiently fit regularized regression models both with and without external information with the most common penalties used in practice (i.e. ridge, lasso, elastic net).

Support for standard R matrices, sparse matrices and big.matrix objects.

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Suggests knitr, rmarkdown, testthat, Matrix, doParallel

LinkingTo Rcpp, RcppEigen, BH, bigmemory

Imports Rcpp (>= 0.12.19), foreach, bigmemory, methods

Depends R (>= 4.0)

BugReports https://github.com/USCbiostats/xrnet/issues

NeedsCompilation yes

Author Garrett Weaver [aut, cre] (<https://orcid.org/0000-0002-9918-8386>), Dixin Shen [aut], Juan Pablo Lewinger [ctb, ths]

Maintainer Garrett Weaver <gmweaver.usc@gmail.com>

Repository CRAN

Date/Publication 2024-07-16 00:40:02 UTC

20

Contents

coef.tune_xrnet	. 2
coef.xmet	. 3
define_enet	. 5
define_lasso	. 5
define_penalty	. 6
define_ridge	. 8
ext_linear	. 8
plot.tune_xrnet	. 9
predict.tune_xrnet	. 10
predict.xrnet	. 11
tune_xrnet	. 13
xrnet	. 15
xrnet_control	. 18
x_linear	. 19
y_linear	. 19

Index

coef.tune_xrnet

Get coefficient estimates from "tune_xrnet" model object.

Description

Returns coefficients from 'xrnet' model. Note that we currently only support returning coefficient estimates that are in the original path(s).

Usage

```
## S3 method for class 'tune_xrnet'
coef(object, p = "opt", pext = "opt", ...)
```

Arguments

object	A tune_xrnet object.
p	vector of penalty values to apply to predictor variables. Default is optimal value in tune_xrnet object.
pext	vector of penalty values to apply to external data variables. Default is optimal value in tune_xrnet object.
	pass other arguments to xrnet function (if needed).

coef.xrnet

Value

A list with coefficient estimates at each of the requested penalty combinations.

beta0	matrix of first-level intercepts indexed by penalty values, NULL if no first-level intercept in original model fit.
betas	3-dimensional array of first-level penalized coefficients indexed by penalty values.
gammas	3-dimensional array of first-level non-penalized coefficients indexed by penalty values, NULL if unpen NULL in original model fit.
alpha0	matrix of second-level intercepts indexed by penalty values, NULL if no second-level intercept in original model fit.
alphas	3-dimensional array of second-level external data coefficients indexed by penalty values, NULL if external NULL in original model fit.

Examples

```
## Cross validation of hierarchical linear regression model
data(GaussianExample)
```

```
## 5-fold cross validation
cv_xrnet <- tune_xrnet(
    x = x_linear,
    y = y_linear,
    external = ext_linear,
    family = "gaussian",
    control = xrnet_control(tolerance = 1e-6)
)
## Get coefficient estimates at optimal penalty combination
```

```
coef_opt <- coef(cv_xrnet)</pre>
```

coef.xrnet

Description

Returns coefficients from 'xrnet' model. Note that we currently only support returning coefficient estimates that are in the original path(s).

Usage

```
## S3 method for class 'xrnet'
coef(object, p = NULL, pext = NULL, ...)
```

Arguments

object	A xrnet object.
р	vector of penalty values to apply to predictor variables.
pext	vector of penalty values to apply to external data variables.
	pass other arguments to xrnet function (if needed).

Value

A list with coefficient estimates at each of the requested penalty combinations.

beta0	matrix of first-level intercepts indexed by penalty values, NULL if no first-level intercept in original model fit.
betas	3-dimensional array of first-level penalized coefficients indexed by penalty values.
gammas	3-dimensional array of first-level non-penalized coefficients indexed by penalty values, NULL if unpen NULL in original model fit.
alpha0	matrix of second-level intercepts indexed by penalty values, NULL if no second-level intercept in original model fit.
alphas	3-dimensional array of second-level external data coefficients indexed by penalty values, NULL if external NULL in original model fit.

```
data(GaussianExample)
fit_xrnet <- xrnet(
    x = x_linear,
    y = y_linear,
    external = ext_linear,
    family = "gaussian"
)
lambda1 <- fit_xrnet$penalty[10]
lambda2 <- fit_xrnet$penalty_ext[10]
coef_xrnet <- coef(
    fit_xrnet,
    p = lambda1,
    pext = lambda2,
)</pre>
```

define_enet

Description

Helper function to define a elastic net penalty regularization object. See define_penalty for more details.

Usage

```
define_enet(
    en_param = 0.5,
    num_penalty = 20,
    penalty_ratio = NULL,
    user_penalty = NULL,
    custom_multiplier = NULL
)
```

Arguments

en_param	elastic net parameter, between 0 and 1	
num_penalty	number of penalty values to fit in grid. Default is 20.	
penalty_ratio	ratio between minimum and maximum penalty for x. Default is 1e-04 if $n > p$ and 0.01 if $n <= p$.	
user_penalty	user-defined vector of penalty values to use in penalty path.	
custom_multiplier		
	variable-specific penalty multipliers to apply to overall penalty. Default is 1 for all variables. 0 is no penalization.	

Value

A list object with regularization settings that are used to define the regularization for predictors or external data in xrnet and tune_xrnet. The list elements will match those returned by define_penalty, but with the penalty_type set to match the value of en_param.

define_lasso

Define lasso regularization object for predictor and external data

Description

Helper function to define a lasso penalty regularization object. See define_penalty for more details.

Usage

```
define_lasso(
    num_penalty = 20,
    penalty_ratio = NULL,
    user_penalty = NULL,
    custom_multiplier = NULL
)
```

Arguments

num_penalty	number of penalty values to fit in grid. Default is 20.	
penalty_ratio	ratio between minimum and maximum penalty for x. Default is 1e-04 if $n > p$ and 0.01 if $n \le p$.	
user_penalty	user-defined vector of penalty values to use in penalty path.	
custom_multiplier		
	variable-specific penalty multipliers to apply to overall penalty. Default is 1 for all variables. 0 is no penalization.	

Value

A list object with regularization settings that are used to define the regularization for predictors or external data in xrnet and tune_xrnet. The list elements will match those returned by define_penalty, but with the penalty_type automatically set to 1.

define_penalty Define regularization object for predictor and external data.

Description

Defines regularization for predictors and external data variables in xrnet fitting. Use helper functions define_lasso, define_ridge, or define_enet to specify a common penalty on x or external.

Usage

```
define_penalty(
    penalty_type = 1,
    quantile = 0.5,
    num_penalty = 20,
    penalty_ratio = NULL,
    user_penalty = NULL,
    custom_multiplier = NULL
)
```

6

define_penalty

Arguments

penalty_type	type of regularization. Default is 1 (Lasso). Can supply either a scalar value or vector with length equal to the number of variables the matrix.	
	• 0 = Ridge	
	• (0,1) = Elastic-Net	
	• 1 = Lasso / Quantile	
quantile	specifies quantile for quantile penalty. Default of 0.5 reduces to lasso (currently not implemented).	
num_penalty	number of penalty values to fit in grid. Default is 20.	
penalty_ratio	ratio between minimum and maximum penalty for x. Default is 1e-04 if $n > p$ and 0.01 if $n <= p$.	
user_penalty	user-defined vector of penalty values to use in penalty path.	
custom_multiplier		
	variable-specific penalty multipliers to apply to overall penalty. Default is 1 for all variables. 0 is no penalization.	

Value

A list object with regularization settings that are used to define the regularization for predictors or external data in xrnet and tune_xrnet:

penalty_type	The penalty type, scalar with value in range [0, 1].	
quantile	Quantile for quantile penalty, 0.5 defaults to lasso (not currently implemented).	
num_penalty	The number of penalty values in the penalty path.	
penalty_ratio	The ratio of the minimum penalty value compared to the maximum penalty value.	
user_penalty	User-defined numeric vector of penalty values, NULL if not provided by user.	
custom_multiplier		
	User-defined feature-specific penalty multipliers, NULL if not provided by user.	

```
# define ridge penalty with penalty grid split into 30 values
my_penalty <- define_penalty(penalty_type = 0, num_penalty = 30)
# define elastic net (0.5) penalty with user-defined penalty
my_custom_penalty <- define_penalty(
    penalty_type = 0.5, user_penalty = c(100, 50, 10, 1, 0.1)
)</pre>
```

define_ridge

Description

Helper function to define a ridge penalty regularization object. See define_penalty for more details.

Usage

```
define_ridge(
   num_penalty = 20,
   penalty_ratio = NULL,
   user_penalty = NULL,
   custom_multiplier = NULL
)
```

Arguments

num_penalty	number of penalty values to fit in grid. Default is 20.
penalty_ratio	ratio between minimum and maximum penalty for x. Default is 1e-04 if $n > p$ and 0.01 if $n <= p$.
user_penalty	user-defined vector of penalty values to use in penalty path.
custom_multipli	ier
	variable-specific penalty multipliers to apply to overall penalty. Default is 1 for all variables. 0 is no penalization.

Value

A list object with regularization settings that are used to define the regularization for predictors or external data in xrnet and tune_xrnet. The list elements will match those returned by define_penalty, but with the penalty_type automatically set to 0.

ext_linear

Simulated external data

Description

Simulated external data

Usage

ext_linear

Format

A matrix with 50 rows and 4 columns

plot.tune_xrnet

Description

Generates plots to visualize the mean cross-validation error. If no external data was used in the model fit, a plot of the cross-validated error with standard error bars is generated for all penalty values. If external data was used in the model fit, a contour plot of the cross-validated errors is created. Error curves can also be generated for a fixed value of the primary penalty on x (p) or the external penalty (pext) when external data is used.

Usage

S3 method for class 'tune_xrnet'
plot(x, p = NULL, pext = NULL, ...)

Arguments

х	A tune_xrnet class object
р	(optional) penalty value for x (for generating an error curve across external penalties). Use value "opt" to use the optimal penalty value.
pext	(optional) penalty value for external (for generating an error curve across pri- mary penalties). Use value "opt" to use the optimal penalty value.
	Additional graphics parameters

Details

The parameter values p and pext can be used to generate profiled error curves by fixing either the penalty on x or the penalty on external to a fixed value. You cannot specify both at the same time as this would only return a single point.

Value

None

```
## load example data
data(GaussianExample)
## 5-fold cross validation
cv_xrnet <- tune_xrnet(
    x = x_linear,
    y = y_linear,
    external = ext_linear,
    family = "gaussian",
    control = xrnet_control(tolerance = 1e-6)</pre>
```

```
)
## contour plot of cross-validated error
plot(cv_xrnet)
## error curve of external penalties at optimal penalty value
plot(cv_xrnet, p = "opt")
```

predict.tune_xrnet Predict function for "tune_xrnet" object

Description

Extract coefficients or predict response in new data using fitted model from a tune_xrnet object. Note that we currently only support returning results that are in the original path(s).

Usage

```
## S3 method for class 'tune_xrnet'
predict(
   object,
   newdata = NULL,
   newdata_fixed = NULL,
   p = "opt",
   pext = "opt",
   type = c("response", "link", "coefficients"),
   ...
)
```

Arguments

object	A tune_xrnet object
newdata	matrix with new values for penalized variables
newdata_fixed	matrix with new values for unpenalized variables
р	vector of penalty values to apply to predictor variables. Default is optimal value in tune_xrnet object.
pext	vector of penalty values to apply to external data variables. Default is optimal value in tune_xrnet object.
type	type of prediction to make using the xrnet model, options include:
	• response
	• link (linear predictor)
	• coefficients
	pass other arguments to xrnet function (if needed)

10

predict.xrnet

Value

The object returned is based on the value of type as follows:

- response: An array with the response predictions based on the data for each penalty combination
- · link: An array with linear predictions based on the data for each penalty combination
- coefficients: A list with the coefficient estimates for each penalty combination. See coef.xrnet.

Examples

data(GaussianExample)

```
## 5-fold cross validation
cv_xrnet <- tune_xrnet(
    x = x_linear,
    y = y_linear,
    external = ext_linear,
    family = "gaussian",
    control = xrnet_control(tolerance = 1e-6)
)
## Get coefficients and predictions at optimal penalty combination
coef_xrnet <- predict(cv_xrnet, type = "coefficients")
pred_xrnet <- predict(cv_xrnet, newdata = x_linear, type = "response")</pre>
```

predict.xrnet Predict function for "xrnet" object

Description

Extract coefficients or predict response in new data using fitted model from an xrnet object. Note that we currently only support returning coefficient estimates that are in the original path(s).

Usage

```
## S3 method for class 'xrnet'
predict(
   object,
   newdata = NULL,
   newdata_fixed = NULL,
   p = NULL,
   pext = NULL,
   type = c("response", "link", "coefficients"),
   ...
)
```

Arguments

object	A xrnet object
newdata	matrix with new values for penalized variables
newdata_fixed	matrix with new values for unpenalized variables
р	vector of penalty values to apply to predictor variables
pext	vector of penalty values to apply to external data variables
type	type of prediction to make using the xrnet model, options include:
	• response
	• link (linear predictor)
	• coefficients
	pass other arguments to xrnet function (if needed)

Value

The object returned is based on the value of type as follows:

- response: An array with the response predictions based on the data for each penalty combination
- link: An array with linear predictions based on the data for each penalty combination
- coefficients: A list with the coefficient estimates for each penalty combination. See coef.xrnet.

Examples

data(GaussianExample)

```
fit_xrnet <- xrnet(</pre>
  x = x_linear,
  y = y_linear,
  external = ext_linear,
  family = "gaussian"
)
lambda1 <- fit_xrnet$penalty[10]</pre>
lambda2 <- fit_xrnet$penalty_ext[10]</pre>
coef_xrnet <- predict(</pre>
  fit_xrnet,
  p = lambda1,
  pext = lambda2,
  type = "coefficients"
)
pred_xrnet <- predict(</pre>
  fit_xrnet,
  p = lambda1,
  pext = lambda2,
  newdata = x_linear,
  type = "response"
)
```

tune_xrnet

Description

k-fold cross-validation for hierarchical regularized regression xrnet

Usage

```
tune_xrnet(
 х,
 у,
 external = NULL,
  unpen = NULL,
  family = c("gaussian", "binomial"),
  penalty_main = define_penalty(),
  penalty_external = define_penalty(),
 weights = NULL,
  standardize = c(TRUE, TRUE),
  intercept = c(TRUE, FALSE),
  loss = c("deviance", "mse", "mae", "auc"),
  nfolds = 5,
  foldid = NULL,
 parallel = FALSE,
  control = list()
)
```

Arguments

х	predictor design matrix of dimension nxp , matrix options include:
	• matrix
	• big.matrix
	• filebacked.big.matrix
	• sparse matrix (dgCMatrix)
У	outcome vector of length n
external	(optional) external data design matrix of dimension pxq , matrix options include:
	• matrix
	• sparse matrix (dgCMatrix)
unpen	(optional) unpenalized predictor design matrix, matrix options include:
	• matrix
family	error distribution for outcome variable, options include:
	• "gaussian"
	• "binomial"

penalty_main	specifies regularization object for x. See define_penalty for more details.
penalty_externa	1
	specifies regularization object for external. See define_penalty for more de- tails. See define_penalty for more details.
weights	optional vector of observation-specific weights. Default is 1 for all observations.
standardize	indicates whether x and/or external should be standardized. Default is c(TRUE, TRUE).
intercept	indicates whether an intercept term is included for x and/or external. Default is c(TRUE, FALSE).
loss	loss function for cross-validation. Options include:
	• "deviance"
	• "mse" (Mean Squared Error)
	• "mae" (Mean Absolute Error)
	• "auc" (Area under the curve)
nfolds	number of folds for cross-validation. Default is 5.
foldid	(optional) vector that identifies user-specified fold for each observation. If NULL, folds are automatically generated.
parallel	use foreach function to fit folds in parallel if TRUE, must register cluster (doParallel) before using.
control	specifies xrnet control object. See xrnet_control for more details.

Details

k-fold cross-validation is used to determine the 'optimal' combination of hyperparameter values, where optimal is based on the optimal value obtained for the user-selected loss function across the k folds. To efficiently traverse all possible combinations of the hyperparameter values, 'warm-starts' are used to traverse the penalty from largest to smallest penalty value(s). Note that the penalty grid for the folds is generated by fitting the model on the entire training data. Parallelization is enabled through the foreach and doParallel R packages. To use parallelization, parallel = TRUE, you must first create the cluster makeCluster and then register the cluster registerDoParallel. See the parallel, foreach, and/or doParallel R packages for more details on how to setup parallelization.

Value

A list of class tune_xrnet with components

cv_mean	mean cross-validated error for each penalty combination. Object returned is a vector if there is no external data (external = NULL) and matrix if there is external data.
cv_sd	estimated standard deviation for cross-validated errors. Object returned is a vec- tor if there is no external data (external = NULL) and matrix if there is external data.
loss	loss function used to compute cross-validation error
opt_loss	the value of the loss function for the optimal cross-validated error

xrnet

opt_penalty	first-level penalty value that achieves the optimal loss
<pre>opt_penalty_ext</pre>	
	second-level penalty value that achieves the optimal loss (if external data is present)
fitted_model	fitted xrnet object using all data, see xrnet for details of object

Examples

```
## cross validation of hierarchical linear regression model
data(GaussianExample)
## 5-fold cross validation
cv_xrnet <- tune_xrnet(
    x = x_linear,
    y = y_linear,
    external = ext_linear,
    family = "gaussian",
    control = xrnet_control(tolerance = 1e-6)
)
## contour plot of cross-validated error
plot(cv_xrnet)
```

xrnet

```
Fit hierarchical regularized regression model
```

Description

Fits hierarchical regularized regression model that enables the incorporation of external data for predictor variables. Both the predictor variables and external data can be regularized by the most common penalties (lasso, ridge, elastic net). Solutions are computed across a two-dimensional grid of penalties (a separate penalty path is computed for the predictors and external variables). Currently support regularized linear and logistic regression, future extensions to other outcomes (i.e. Cox regression) will be implemented in the next major update.

Usage

```
xrnet(
    x,
    y,
    external = NULL,
    unpen = NULL,
    family = c("gaussian", "binomial"),
    penalty_main = define_penalty(),
    penalty_external = define_penalty(),
    weights = NULL,
    standardize = c(TRUE, TRUE),
    intercept = c(TRUE, FALSE),
```

```
xrnet
```

```
control = list()
)
```

Arguments

х	predictor design matrix of dimension nxp , matrix options include:
	• matrix
	• big.matrix
	• filebacked.big.matrix
	• sparse matrix (dgCMatrix)
У	outcome vector of length n
external	(optional) external data design matrix of dimension pxq , matrix options include:
	• matrix
	• sparse matrix (dgCMatrix)
unpen	(optional) unpenalized predictor design matrix, matrix options include:
	• matrix
family	error distribution for outcome variable, options include:
	• "gaussian"
	• "binomial"
penalty_main	specifies regularization object for x. See define_penalty for more details.
penalty_externa	al
	specifies regularization object for external. See define_penalty for more de- tails.
weights	optional vector of observation-specific weights. Default is 1 for all observations.
standardize	indicates whether x and/or external should be standardized. Default is c(TRUE, TRUE).
intercept	indicates whether an intercept term is included for x and/or external. Default is c(TRUE, FALSE).
control	specifies xrnet control object. See xrnet_control for more details.

Details

This function extends the coordinate descent algorithm of the R package glmnet to allow the type of regularization (i.e. ridge, lasso) to be feature-specific. This extension is used to enable fitting hierarchical regularized regression models, where external information for the predictors can be included in the external= argument. In addition, elements of the R package biglasso are utilized to enable the use of standard R matrices, memory-mapped matrices from the bigmemory package, or sparse matrices from the Matrix package.

Value

A list of class xrnet with components:

beta0 matrix of first-level intercepts indexed by penalty values

16

xrnet

betas	3-dimensional array of first-level penalized coefficients indexed by penalty val-
	ues
gammas	3-dimensional array of first-level non-penalized coefficients indexed by penalty values
alpha0	matrix of second-level intercepts indexed by penalty values
alphas	3-dimensional array of second-level external data coefficients indexed by penalty values
penalty	vector of first-level penalty values
penalty_ext	vector of second-level penalty values
family	error distribution for outcome variable
num_passes	total number of passes over the data in the coordinate descent algorithm
status	error status for xrnet fitting
• 0 = OK	
• $1 = \text{Error}/V$	Varning

error_msg description of error

References

Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22. URL http://www.jstatsoft.org/v33/i01/.

Zeng, Y., and Breheny, P. (2017). The biglasso Package: A Memory- and Computation-Efficient Solver for Lasso Model Fitting with Big Data in R. arXiv preprint arXiv:1701.05936. URL https://arxiv.org/abs/1701.05936.

Michael J. Kane, John Emerson, Stephen Weston (2013). Scalable Strategies for Computing with Massive Data. Journal of Statistical Software, 55(14), 1-19. URL http://www.jstatsoft.org/v55/i14/.

```
### hierarchical regularized linear regression ###
data(GaussianExample)
## define penalty for predictors and external variables
## default is ridge for predictors and lasso for external
## see define_penalty() function for more details
penMain <- define_penalty(0, num_penalty = 20)</pre>
penExt <- define_penalty(1, num_penalty = 20)</pre>
## fit model with defined regularization
fit_xrnet <- xrnet(</pre>
 x = x_linear,
 y = y_linear,
 external = ext_linear,
 family = "gaussian",
 penalty_main = penMain,
 penalty_external = penExt
)
```

xrnet_control

Description

Control function for xrnet fitting.

Usage

```
xrnet_control(
  tolerance = 1e-08,
  max_iterations = 1e+05,
  dfmax = NULL,
  pmax = NULL,
  lower_limits = NULL,
  upper_limits = NULL
)
```

Arguments

tolerance	positive convergence criterion. Default is 1e-08.
<pre>max_iterations</pre>	maximum number of iterations to run coordinate gradient descent across all penalties before returning an error. Default is 1e+05.
dfmax	eq:maximum number of variables allowed in model. Default is \$ncol(x) + ncol(unpen) + ncol(external) + intercept[1] + intercept[2].
pmax	$ \begin{array}{l} \mbox{maximum number of variables with nonzero coefficient estimate. Default is} \\ min(2*dfmax+20, ncol(x)+ncol(unpen)+ncol(external)+intercept[2]). \end{array} $
lower_limits	vector of lower limits for each coefficient. Default is -Inf for all variables.
upper_limits	vector of upper limits for each coefficient. Default is Inf for all variables.

Value

A list object with the following components:

tolerance	The coordinate descent stopping criterion.
dfmax	The maximum number of variables that will be allowed in the model.
pmax	The maximum number of variables with nonzero coefficient estimate.
lower_limits	Feature-specific numeric vector of lower bounds for coefficient estimates
upper_limits	Feature-specific numeric vector of upper bounds for coefficient estimates

x_linear

Description

Simulated example data for hierarchical regularized linear regression

Usage

x_linear

Format

A matrix with 100 rows and 50 variables

y_linear

Simulated outcome data

Description

Simulated outcome data

Usage

y_linear

Format

A vector with 100 elements

Index

* datasets ext_linear, 8 x_linear, 19 y_linear, 19 coef.tune_xrnet, 2 coef.xrnet, 3, 11, 12 define_enet, 5 define_lasso, 5 define_penalty, 5, 6, 6, 8, 14, 16 define_ridge, 8 ext_linear, 8 plot.tune_xrnet, 9 predict.tune_xrnet, 10 predict.xrnet, 11 tune_xrnet, 2, 5–8, 10, 13

x_linear, 19 xrnet, 4-8, 11-13, 15, 15, 18 xrnet_control, 14, 16, 18

y_linear, 19