

Energy-awareness in Fixed Network Infrastructures

Voravit Tanyingyong

Why do we want to save energy?

Economic Incentives

Average Electricity Price on January 1st*

Year

Environmental incentives

Enforced Legislations

• European Energy Policy (published 10 Jan 2007)

- 20% cut in CO₂ emission by 2020
- 20% energy consumption reduction by 2020
- 20% increased in the proportion of renewable energies in its energy mix by 2020
- Develop energy technologies

How do we do in the ICT sector?

GeSI's Smart2020 report (published in 2008)

- 2% of global carbon emission from ICT*
- 6% increase per year is expected
- CO₂ emission comparable to aviation industry
- Total electricity consumption
 - 5-10 % in a typical business
 - up to 75% in a business that relies heavily on ICT

* Estimated by Gartner – ICT includes PCs, telecoms networks and devices, printers and data centers

Cisco Forecast 2010-2015*

ROYAL INSTITUTE OF TECHNOLOGY

*source from <u>Cisco Visual Networking Index</u>

Energy Efficiency still lacks behind

ROYAL INSTITUTE OF TECHNOLOGY

Year

Evolution of high-end IP routers's capacity (per rack) vs. Traffic volumns and energy efficiency in silicon technologies*

*Figure from <u>Energy Efficiency in the Future Internet: A survey of Existing Approaches and Trends</u> <u>in Energy-Aware Fixed Network Infrastructures</u>

ROYAL INSTITUT

What can we do?

 Handheld devices and wireless networking - Energy efficiency is high priority End users' infrastructure - No big impact on the end user Fixed network infrastructure - High performance throughput/capacity - Power hungry Fixed Infrastructure End users (Telcos, ISPs, etc)

Device density and energy requirements in today's telecom networks*

*Source from <u>Energy Efficiency in the Future Internet: A survey of Existing Approaches and Trends</u> <u>in Energy-Aware Fixed Network Infrastructures</u>

Estimate of power consumption sources in a generic platform IP router*

*Source from <u>Energy Efficiency in the Future Internet: A survey of Existing Approaches and Trends</u> in Energy-Aware Fixed Network Infrastructures

Taxonomy of current approaches in Fixed Network Infrastructures

ROYAL INSTITUTE OF TECHNOLOGY

Taxonomy of current approaches in Fixed Network Infrastructures

Taxonomy of current approaches in Fixed Network Infrastructures

ROYAL INSTITUTE OF TECHNOLOGY

Taxonomy of current approaches in Fixed Network Infrastructures

OF TECHNOLOGY

Network node

Energy-Efficient components

- Power-adjustable components (CPU, Memory, PCIe)
- New silicons (ASICs, FPGAs)
- Optical components (fiber modules, optical packet switching)
- Complexity Reduction
 - Reduce/remove functionalities
 - Turn-off unused components

Network node

• Energy-Efficient components

- Power-adjustable components (CPU, Memory, PCIe)
- New silicons (ASICs, FPGAs)
- Optical components (fiber modules, optical packet switching)
- Complexity Reduction
 - Reduce/remove functionalities
 - Turn-off unused components

New network device architectures?

Link between two adjacent nodes

Dynamic adaptation (according to traffic load)

- Adaptive Link Rate (ALR)
- Dynamic voltage scaling (and adjustable frequency)
- Sleep/Standby mode
 - Idle logic (turning off preselected sub-elements)
 - Wake-on-packet
 - Predictive model (with buffer)
 - Service delegation (through a proxy)
 - Smart NICs, Network Connectivity Proxy (NCP)
- New energy-efficient access technologies
 - IEEE 802.3az Energy-efficient Ethernet (EEE)
 - FTTx, xDSL (ADSL2+, VDSL2), Mobile broadband, etc.

Link between two adjacent nodes (cont'd)

- c. Dynamic adaptation (voltage scaling/ALR)
- d. Sleep/Standy mode + Dynamic adaptation

*Figure from <u>Energy Efficiency in the Future Internet: A survey of Existing Approaches and Trends</u> <u>in Energy-Aware Fixed Network Infrastructures</u>

Link between two adjacent nodes (cont'd)

- a. No power-aware optimization
- b. Sleep/Standy mode (with wake-up delay)
- c. Dynamic adaptation (voltage scaling/ALR)
- d. Sleep/Standy mode + Dynamic adaptation

Alternative link technologies/protocols?

*Figure from <u>Energy Efficiency in the Future Internet: A survey of Existing Approaches and Trends</u> <u>in Energy-Aware Fixed Network Infrastructures</u>

Coordination among nodes

Energy-aware routing/infrastructure

- Power consumption as part of the cost matrix
- Reliability/Performance/Power
- Approaches with offline/pre-defined input
 - Design and operation decision
 - Pre-defined knowledge
 - Fixed components (nodes, topologies, traffic history)
 - Traffic pattern
 - Predictive models (multicommodity flow)
- Approaches with online/realtime input
 - Coordinate events (data transfer/sleep synchornization)
 - Real-time monitoring (SNMP Green Extension)

Coordination among nodes

Energy-aware routing/infrastructure

- Power consumption as part of the cost matrix
- Reliability/Performance/Power
- Approaches with offline/pre-defined input
 - Design and operation decision
 - Pre-defined knowledge
 - Fixed components (nodes, topologies, traffic history)
 - Traffic pattern
 - Predictive models (multicommodity flow)
- Approaches with online/realtime input
 - Coordinate events (data transfer/sleep synchornization)
 - Real-time monitoring (SNMP Green Extension)

How to deal with backward compatibilities?

What else?

- Standardized models and measurements
 - How to evaluate and compare different approaches
- Green data/control planes abstraction layer
 - How to manage and control the novel green capabilities/functionalities
- Other green opportunities
 - Green energy source
 - Cooling/heat-absorption technologies
 - Transmission technologies

Thank you for listening!

ROYAL INSTITUTE OF TECHNOLOGY