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Abstract 

Due to known difficulties of researchers in the networking domain 
regarding experimentation of their ideas in actual networks, network simulators 
have become indispensable tools for investigating and validating various ideas in 
all layers of the network. However, most of the wireless network researchers are 
not completely familiar with the implications of the assumptions they make for 
the physical layer in their scenarios. For the sake of building the case for a good 
simulator, it will be demonstrated that unknown assumptions might lead to 
wrong conclusions about the performance of the protocols under examination. 

Having a feature-rich IEEE 802.11 Physical and MAC in a network 
simulator, which has more chance to be a realistic model, is of paramount 
interest to both Digital Communications researchers and Networking researchers. 
This thesis is an effort to study, design and implement a near-realistic IEEE 
802.11a physical layer model, with all the phenomena associated with this layer. 

YANS network simulator, a product of INRIA-Planète group and father of 
the future NS-3 network simulator, is the simulator whose Physical layer is the 
basis of this thesis work. The implementation choices have been made based on 
the original architecture and with the intention of causing as little disturbance as 
possible to the original mechanics of the simulator.  

As the principle objective, this thesis examines what it takes to have a 
feature-rich physical layer model, and then as the secondary goal, how these 
concepts could be implemented in the network simulator. Not all the explored 
concepts are part of the IEEE 802.11a standard, like the propagation models; 
nonetheless, they play a key role in having a realistic, and working, 
implementation. 

We present the related concepts and implementation choices, where 
applicable, in a step-by-step approach within this thesis. Different propagation 
models, i.e., large-scale path loss models and fading, bit error rate calculation 
formulas depending on the type of modulation used and the specific channel type 
under examination, forward error correction mechanism employed in IEEE 
802.11a and related issues, influence of Viterbi decoder on the bit error rate and, 
finally, bit error distribution models are the major issues elaborated in this work. 

As a future work, it is envisaged to validate the results of IEEE 802.11 
simulations with experiments done in ORBIT and/or Emulab testbeds. The 
intention of this work would be measurement-based validation of our models, by 
finding a set of physical layer configurations, based on which, a strong correlation 
between simulation and experimentation could be achieved. 
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Chapter 1  
– Introduction 
 
 
 
 
 
 
 
 
 

1.1. Introduction 
Difficulties of IEEE 802.11 experimentations for the researchers both in 

networking domain and in digital communications domain, have given rise to the 
use of network simulators. However, the validity of these simulations is far from 
certain. Therefore, the efforts to examine the correlation between simulation and 
experimentation and determining to what extent, researchers can rely on 
simulation results, have found a significant importance. 

A first step in conducting a realistic, or near-realistic, IEEE 802.11 
simulation is developing an exhaustive, feature-rich model. This thesis addresses 
the issues related to the development of an IEEE 802.11 physical layer model. 
The work towards this goal is two-fold: as the first step, important parameters 
affecting the physical layer are identified and explained, and as the second step, 
these parameters have been implemented within our chosen simulator, YANS 
Network Simulator. 

 YANS is a prototype network simulator developed within INRIA’s Planète 
group. The primary goal of the development of “Yet Another Network Simulator”, 
YANS for short, has been to build a clean, solid core event-based simulator. Its 
development decision has been taken due to short-comings of the existing open-
source network simulators, and its code base, due to the partnership of Planète 
group with NS-3 project initiative, will be ported to the future NS-3 Network 
Simulator. The primary module in YANS, due to the research interests of the 
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Planète group, is the IEEE 802.11 module. Although the implementation of this 
module enjoyed an enhanced MAC layer, on the physical layer side, there were far 
too many remaining issues; hence this thesis work. 

1.2. Existing Problem 
As mentioned before, validity of wireless network simulations, especially 

those of Mobile Ad-hoc Networks (MANETs), has come under question recently. 
The major issue has been the lack of familiarity of networking researchers, 
especially in higher layers, with concepts related to physical layer. In wired 
networks, networking researchers did not need to bother caring about physical 
layer issues, however, in wireless networks, knowledge about cross-layer 
interactions, and especially interaction with physical layer, is essential. 

The problem, however, is not just the lack of familiarity with physical layer, 
but also related to lack of proper modeling thereof, in widely used network 
simulators. This thesis is an effort to mitigate this problem, by designing and 
implementing a feature-rich IEEE 802.11a Physical layer model in YANS. Quoting 
from another study, we have also tried to make aware the networking research 
community, of the potential mistakes that can be done, if the physical layer 
issues are ignored. 

1.3. Thesis Objectives and Contributions 
Having set the stage in the preceding sections, this thesis examines the 

different phenomena that need to be taken into account when modeling an IEEE 
802.11a physical layer. In different chapters of this thesis, reader is familiarized 
with the various concepts and, where worthwhile, with implementation choices.  

Different propagation models, i.e., large-scale path loss models and fading, 
bit error rate calculation methods for various modulation and channel types, 
effect of the convolutional encoder/decoder suggested in IEEE 802.11a standard, 
bit error rate calculation after having taken into account Viterbi decoder effects 
and uniform/non-uniform bit error distributions within a packet, are the 
highlights of the issues studied and implemented in the simulator. 

1.4. Thesis Organization 
This thesis comprises 6 chapters. Chapter 1 serves as the introduction to 

the work and addresses the problem at hand and mentions the contributions of 
this work. 

Chapter 2 provides the reader with a global view of IEEE 802.11 Physical 
and MAC layers. We first start by giving a general introduction to the standard in 
the first section by briefly explaining the features of both Physical and MAC 
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layers. In the next section of the chapter, Section 2.3, we discuss the importance 
of knowledge about physical layer, even for networking researcher, by quoting 
from an interesting carried out study. We conclude the chapter with a section 
briefly mentioning the existing MAC features, along with the mechanics of the 
Physical layer in YANS. 

Chapter 3 presents the Large-scale Path Loss and Fading models, studied 
and implemented in the simulator. In Section 3.2, Large-scale Path Loss models, 
i.e., Free-Space, Two-Ray and Shadowing, are presented and explained. In 
Section 3.3, different concepts related to fading channels are explained 
thoroughly. Different implementation choices, along with examination of the 
generated fading processes, are treated as well. 

In Chapter 4, we take a look at Forward Error Correction (FEC) mechanism 
provided by convolutional codes which are employed in IEEE 802.11a. Utilized 
modulation schemes for different rates of the transmission are mentioned in the 
last section of the chapter. 

Chapter 5 is devoted to the concepts of Bit Error Rate (BER), Packet Error 
Rate (PER) and Error Mask. In Section 5.2, various formulas for BER calculation 
depending on the modulation scheme and channel type are mentioned. In the 
same section, the effect of Viterbi decoder on the BER has been studied and 
related formulas are explained. In Section 5.3, different PER calculation methods, 
considering different bit error distributions, are treated. 

We conclude the work in Chapter 6, by mentioning our final remarks and a 
short introduction to Emulab and ORBIT, two IEEE 802.11 testbeds that are to 
be used for carrying out the intended future work. In the last section, we mention 
the future direction of this work which is the measurement-based validation of 
the models developed in the simulator, by utilizing the aforementioned testbeds. 

This work has four important annexes: Annex 1 is a brief introduction to 
the fading channel model developed for NS-2 network simulator. Annex 2 
provides a sample simulation scenario for the case of two nodes communicating 
in ad-hoc mode and getting further away from each other gradually. Annex 2 also 
lists the outputs produced by executing such a scenario in YANS, after all the 
implementations of this thesis have been integrated. Annex 3 is a study of the 
current state of the implementations of IEEE 802.11 MAC and Physical layers in 
well-known open-source network simulators. At last, Annex 4 lists the source 
files of the simulator which have undergone significant modifications for 
accommodating various issues discussed in this thesis. 
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Chapter 2  
– IEEE 802.11 PHY-MAC 
 
 
 
 
 
 
 
 
 

 

2.1. Introduction 
In this chapter, we explore the general issues related to IEEE 802.11. 

Section 2.2 is dedicated to an introduction to IEEE 802.11 Physical and MAC 
layers. Without giving too many details, the aim is to familiarize the reader with 
the concepts involved in both layers and the mechanics of IEEE 802.11 ad-hoc 
and infrastructure networks.  

In Section 2.3, we argue that the knowledge about IEEE 802.11 physical 
layer is essential not only for communications researchers, but also for 
networking researchers. Based on the results reported in a study, we will try to 
ring the alarm for networking researchers, who up to now, have opted to ignore 
the physical layer in the their studies. 

We conclude this chapter with Section 2.4, in which we briefly mention the 
current state of IEEE 802.11 Physical and MAC implementation in YANS network 
simulator. 

2.2. Introduction to IEEE 802.11 PHY-MAC 

2.2.1. Introduction 

In 1997, IEEE standardized the first Wireless Standard: 802.11. This 
comprised both Medium Access Control (MAC) layer and physical layer. It became 
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part of the IEEE 802 family of standards; Figure 2.1. The motivations behind 
introducing such a standard were: offering services which up to the time, were 
only available in wired networks; offering high throughput with acceptable 
reliability and providing continuous network connectivity to the users. 

According to the standard, the stations can communicate in Basic Service 
Set (BSS) mode. When there is no Access Point (AP) in the network, the BSS is 
called Independent BSS – IBBS. However, when there is an AP in the network, we 
have what is called Infrastructure BSS. In Infrastructure BSS, AP has the 
responsibility of relaying traffic between nodes, and while this might appear as 
resource-wasting, there are numerous advantages which justify the usage of an 
AP, especially in more stable and long-term networks. The term Ad-Hoc refers to 
the case where we do not have an AP in the network and nodes are 
communicating directly. 

When there are multiple Infrastructure BSSs in a network, it is 
advantageous that access points communicate with each other to facilitate traffic 
forwarding and mobility of stations among different BSSs. This architecture, 
where APs are cooperating, is called Extended Service Set – ESS. 

While the IEEE 802.11 standard and all the later extensions provide 
extensive information regarding different aspects of the communication, we do 
not intend to summarize all that information in this introduction. In the coming 
two sections, we briefly mention the concepts, in MAC and Physical layers, that 
are relevant to this thesis work. For an extensive treatment of the standard, we 
refer the reader to the numerous published books and to the IEEE 802.11 
standards themselves. 

 
Figure 2.1. The IEEE 802 Family and its relation to the OSI Model.  

From [Gas02] 

2.2.2. IEEE 802.11 MAC Layer 

MAC layer, as its primary purpose, has the functionality of providing 
reliable data delivery mechanism over the unreliable wireless air interface. It is 
the layer who manages station accesses to the shared wireless medium. The 
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original standard utilizes Carrier Sense Medium Access with Collision Avoidance 
(CSMA/CA) as the access mechanism. This access method, however, wastes a 
significant percentage of channel capacity, but, it is a necessary feature to 
provide reliability in data transmission. Among many other features, it also 
supports Request-To-Sent (RTS) and Clear-To-Send (CTS) mechanisms to address 
the case when two nodes are not aware of the presence of each other and want to 
communicate with a node which in transmission range of both. RTS/CTS 
mechanism helps to avoid the corruption of the packets in the above scenario. 

DCF 

Distributed Coordination Function (DCF) is the basic 802.11 MAC layer. 
DCF uses the above-mentioned CSMA/CA method to share the medium between 
the stations. It may optionally use the RTS/CTS method as well. Under this 
method, collision rate is relatively high and there is no notion of Quality of Service 
(QoS) in the network. 

PCF 

Point Coordination Function (PCF) is another basic coordination function 
which is defined only in infrastructure mode, where stations are connected to an 
access point. AP is the element in control of access in the network and it uses two 
periods to enforce its policies. There is a Contention Period, in which, DCF 
method is used. The second period is the Contention Free Period, in which AP 
basically allows stations, by sending them a special authorization, to send 
packets. 

IEEE 802.11e standard addressed the existing limitations in DCF and PCF. 
It particularly addressed the problem of QoS provisioning in the network by 
introducing a new coordination function: Hybrid Coordination Function – HCF. 

EDCA – 802.11e  

Enhanced DCF Channel Access (EDCA) is a method of channel access 
within the HCF. An EDCA is basically a QoS-enabled DCF. This is done by 
introducing the notion of traffic classes, by giving priority, in channel access, to 
real-time data, compared to delay-tolerant data.   

HCCA – 802.11e 

Corresponding to EDCA, HCF Controlled Channel Access (HCCA) is a QoS-
enabled PCF. It also uses EDCA during the Contention Period. Stations transmit 
the information about their queues status and traffic classes to the AP and, based 
on this information, AP coordinates access to the medium between the stations. 



 7

2.2.3. IEEE 802.11 PHY Layer 

IEEE 802.11 Physical layer is the interface between MAC layer and the air 
interface. The frame exchange between Physical layer and MAC is under the 
control of Physical Layer Convergence Procedure (PLCP). Physical Layer is the 
entity in charge of actual transmission using different modulation schemes over 
the air interface. It also informs the MAC layer about the activity status of 
medium. 

Currently, there are four standards defining the physical layer: IEEE 
802.11a, 802.11b, 802.11g and 802.11n. Among these, IEEE 802.11n is the 
newest which is still under standardization. It utilizes Multiple-input-multiple-
output (MIMO) technology to achieve significantly higher rates. 

All these Physical Layer standards define their operating frequency band, 
number of available channels and possible transmission rates. In this work, 
however, we only concentrate on IEEE 802.11a standard due its maturity and 
widespread deployment. IEEE 802.11a operates in 5 GHz band, uses 52-
subcarrier Orthogonal Frequency-Division Multiplexing (OFDM) and specifies 8 
available radio channels. 

Further details of IEEE 802.11a physical layer standard are given within 
the different sections of this thesis.  

2.3. The Importance of Knowing about Physical Layer 

2.3.1. Introduction 

In this section, we explore the importance and relevance of knowing about 
IEEE 802.11 Physical Layer from the point of view of Communication Researchers 
as well as point of view of Networking Researchers. Traditionally, Networking 
domain researchers did not pay so much attention to the concepts and 
phenomena related to physical layer, as the interaction between this layer and 
the layers that they were focused on, e.g., network layer, was not so significant in 
the context of wired networks. But, the interaction aspect has changed as 
wireless networks have gained significant importance. However, many Networking 
researchers have not grasped this paradigm shift yet. In the wireless domain, the 
most promising solutions now come from the experts who consider cross-layer 
issues, i.e., the interactions between layers in the network. In the following two 
sections, we briefly explore this matter. 

2.3.2. Digital Communications Researchers 

Digital communications researchers are naturally concerned with the issues 
related to Physical layer, be it in the context of wired networks, or in wireless 
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networks. Among different aspects of physical layer, concepts of large-scale path 
loss models as well as fading aspects, calculating Bit Error Rate at different 
stages of the communication system and bit error distributions within a packet, 
can be mentioned. After having mentioned these, it is obvious that 
communications researchers would be interested in working with a network 
simulator which takes into account all the relevant details of the physical layer. 

2.3.3. Networking Researchers 

Convincing networking researchers to take into account the physical layer 
issues, however, is not a trivial task. This reluctance among networking 
researchers regarding extending their work to physical layer might be attributed 
to the complexities involved in this layer. Also, they might not be really familiar 
with the concepts involved, or since working on wired networks did not 
necessitate having knowledge about physical layer, they now have to take the 
extra effort to polish that rusty know-how. 

In this section, we base our argument, about the importance of knowing 
about physical layer by networking researchers, on the results reported by 
[TMB01]. 

As mentioned by the authors in [TMB01], the following factors in the 
physical layer are relevant to the performance evaluation of higher layer 
protocols: 

- Signal Reception Method (BER-based or SNRT-based) 

- Path Loss, Fading 

- Interference and Noise Computation 

- Physical preamble length 

According to their findings, these factors affect absolute performance of a 
protocol as well as the relative ranking among protocols for the same scenario. 

We, however, limit our argument by mentioning the part of their results 
that are relevant to this work, i.e., the effect of different propagation models: path 
loss and fading. 

The chosen simulation scenario is as follows; 100 nodes with random 
waypoint mobility are considered moving in a flat square area with a side of 
1200m. There are 40 Constant Bit Rate (CBR) sources in the network. The 
performance of two ad-hoc routing protocols are examined. These are: AODV (Ad-
hoc On-demand Distance Vector) and DSR (Dynamic Source Routing). The metric 
that is chosen for this performance evaluation is Packet Delivery Ratio (PDR) 
which indicates the ratio of received packets to the sent ones. The result of the 



 9

evaluation is depicted in Figure 2.2. Please note that signal reception method is 
not under examination here, nevertheless, the same trend is evident in both 
cases of reception methods. 

 
Figure 2.2. PDRs of AODV and DSR with different fading Models and two-ray path loss.  

From [TMB01] 

As suggested by the figure, AODV and DSR behave quite differently under 
increasingly harsh conditions. The performance of AODV deteriorates 
significantly as we go from no fading to Rayleigh fading. However, the 
performance of DSR proves to be much more consistent throughout, i.e., 
although it deteriorates, it’s not as severe as AODV’s case. The cause of this 
difference is in their route discovery processes due to link breaks as we move to 
the harsher fading types. The route discovery process in AODV has mush more 
overhead than that of DSR. 

If a network researcher wants to compare the performance of these routing 
protocols, it is more likely that it does so by inspecting just the no-fading case. 
However, the reality of mobile ad-hoc networks is closer to Rayleigh or Rician type 
of fading. By looking at wrong part of the results due to being unfamiliar with 
propagation model concepts, a network researcher is more likely to arrive to 
wrong conclusions about the performance of routing protocols. 

2.4. Introduction to YANS IEEE 802.11 Module 

2.4.1. Introduction 

This section briefly introduces the features of IEEE 802.11 module in YANS. 
Both MAC and Physical layers are treated. As MAC layer is not the focus of this 
work, we just briefly mention the available functionalities of existing MAC 
module. In the physical layer, however, we take a deeper look at the sequence of 
actions taken during the packet reception. 
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2.4.2. MAC 

The MAC module implemented in YANS supports both ad-hoc mode and 
infrastructure mode. In ad-hoc mode, Distributed Coordination Function (DCF) is 
implemented along with the new QoS-enabled DCF in IEEE 802.11e, i.e., 
Enhanced DCF Channel Access (EDCA). In infrastructure mode, we have HCF 
(Hybrid Coordination Function) Controlled Channel Access (HCCA) implemented 
in the simulator. 

In this work, however, we only use the ad-hoc mode since the emphasis of 
this thesis is on Physical layer issues. As explained later in detail, the simulation 
scenario chosen during the development of the physical layer and in Annex.2 is 
when two nodes are communicating in ad-hoc mode. 

2.4.3. Details of PHY Layer Implementation in YANS 

Propagation models, modulation and FEC coding schemes, BER and PER 
calculation methods are treated thoroughly in later chapters. In this section, we 
focus on the mechanics of the physical layer and enlighten the reader regarding 
the actions taken when a packet is received. 

As YANS is an event-based simulator, for receiving each packet we have the 
following two events:  

- An event at the start of reception (first bit of a packet) 

- An event at the end of reception (last bit of a packet) 

The SNIR(t) function is evaluated twice for each packet: 

- For the first bit, for deciding whether or not the packet could be received, 
considering the current state of PHY and the SNIR(t) level. 

- For the last bit, for calculating the final SNIR(t), considering what has 
happened during the packet reception, and for calculating the PER. 

The PHY layer can be in one of four possible states: 

- TX: the PHY is currently transmitting a signal. While the PHY is in this 
state, a received packet will be dropped regardless of its SNIR(t) level. 

- SYNC: the PHY is synchronized on a signal and is waiting until it has 
received its last bit. While the PHY is in this state, another received packet 
will be dropped regardless of its SNIR(t) level. But, its signal level is 
recorded and taken into account in Noise Interference changes of the first 
packet on which the PHY was synchronized. 

- BUSY: the PHY is not in the TX or SYNC, but the energy measured on the 
medium is higher than Energy Detection Threshold. While the PHY is in 
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this state, a packet can be received if its SNIR(t) level is above the threshold. 

- IDLE: the PHY is not in the above states. The behavior is the same as BUSY 
state, i.e., while the PHY is in this state, a packet can be received if its 
SNIR(t) level is above the threshold. 

The Steps Taken When the Last Bit of the Packet Is Received 

When the last bit of the current packet, upon which the PHY is 
synchronized, is received, we again evaluate the SNIR(t) function and calculate 
the PER. Here are the details: 

We remind that if any other packet was received during this time, i.e., from 
the first to the last bit of the current packet, all the received signal levels are 
recorded in the Noise Interference, Ni, vector and is taken into account for the 
current packet SNIR(t) calculation. If indeed, there was any other packet, i.e., the 
Ni vector has some elements, for each element of the vector, we calculate a 
Chunk Success Rate (CSR), taking into account the number of bits in that chunk, 
the respective SNIR(t) level in that chunk and the transmission mode (Modulation 
type, transmission rate, convolutional coding rate). The CSR calculation uses the 
theoretical BER formulas, based on modulation type, and also takes into account 
the convolutional code properties. It is in Chuck Success Rate calculation that we 
mention the desired type of error distribution within the packet. This process is 
then repeated for every Ni change recorded (since we have a different SNIR(t) value 
for each chunk, hence different BER and CSR). We multiply all these calculated 
CSRs to get the Packet Success Rate; hence the PER. 

After having calculated the PER, we draw a random number from a uniform 
random number generator, between 0 and 1, and compare it against the PER. 
Whether the random number is higher than the PER or lower, we decide to mark 
the reception as correct, or as erroneous, respectively. 
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Chapter 3  
– Large-scale Path Loss Models 
– Fading Channel 
 
 
 
 
 
 
 
 
 
 

3.1. Introduction 
In this chapter, we explore both concepts of Large-scale Path Loss and 

Fading. In Section 3.2, we introduce three models of Large-scale Path Loss which 
generally account for the large-scale attenuation of signal based on distance. 

Section 3.3 introduces the Fading-related issues. Fading is the 
phenomenon responsible for rapid fluctuations of signal over a short period of 
time or distance. In reality, we can have only one channel, be it Large-scale Path 
Loss Channel, or Fading Channel. However, due to modeling constraints, we have 
chosen to separate what each of these two models represents, i.e., when we have 
only Large-scale Path Loss, then the channel can be chosen to act so, however, 
when we want to have Fading channel in the simulator, we need to use both 
models in cascade. The first part of the channel would be one of three Large-scale 
Path Loss Models and the second part of the channel would be the Fading 
channel. In this type of approach, Fading channel won’t have effect on the power 
of signal on average; it only introduces power fluctuations to the received signals. 
It is the Large-scale Path Loss model who accounts for the general attenuation of 
signal power based on distance.   
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3.2. Large-scale Path Loss Models 

3.2.1. Introduction 

This section introduces the classical large-scale path loss models. These 
models mostly address the effect of attenuation of signal based on distance. As 
will be presented hereafter, however, the level of sophistication and the 
inclusiveness of the models increase from the simple model of Free-space to the 
more realistic model of Shadowing. 

3.2.2. Free-Space Model 

Although a naïve model, Free-Space propagation model has been 
implemented as a choice for the path-loss model for comparison purposes. This 
model is used to predict the signal strength when the transmitter and the receiver 
have a clear, unobstructed line-of-sight path between them. Like other models, it 
predicts that received power decays as a function of Transmitter-Receiver 
distance raised to some power -typically to the second power. The well-known 
Friis equation, Equation 3.1, is used to calculate the received power: 

(3.1)
( ) Ld

GGP
P rtt

r
×××

= 2

2

4 π
λ

Where, Pt is the transmitted power, Gt and Gr are transmitter antenna gain and 
that of receiver, respectively, d is the Transmitter-Receiver separation distance, L 
is the system loss -typically chosen as 1 and Lambda is the wavelength of the 
transmitted signal. 

Of course, the Friis formula holds for values of d which are in the far-field 
region of the antenna, i.e., greater than [2 × (Largest physical linear dimension of 
the antenna) / λ]. Though it is not the case here, a more accurate approach 
would be to actually measure a reference power at a reference distance in the far-
field region in any given wireless network, and then calculate the received power 
from the Friis formula using this reference power level for other distances. 
[Rap02] 

3.2.3. Two-Ray Model 

This model, which is a more realistic model than the Free-Space model, 
addresses the case when we consider a ground-reflected propagation path 
between transmitter and receiver, in addition to the direct LOS path. This model 
is especially useful for predicting the received power at large distances from the 
transmitter and when the transmitter is installed relatively high above the 
ground. At sufficiently far distance from the transmitter, i.e., d is far greater than 
(ht × hr)2, the received power can be predicted from Equation 3.2: 
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(3.2) ( )
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Where, ht is the height of transmitter, hr is the height of receiver and d is the T-R 
distance. 

It is interesting to notice that at large values of d, the received power 
becomes independent of the frequency. Also, the received power attenuates much 
more rapidly with distance, compared to the Free-Space model, i.e., attenuates to 
the fourth power of the distance.[Rap02] 

3.2.4. Shadowing Model 

The empirical approach for deriving radio propagation models is based on 
fitting curves or analytical expressions that recreate a set of measured data. 
Adopting this approach has the advantage of taking into account all the known 
and unknown phenomena in channel modeling. A widely-used model in this 
category is Log-normal Shadowing. In this model, power decreases logarithmically 
with distance. The average loss for a given distance is expressed using a Path 
Loss Exponent. For taking into account the fact that surrounding environmental 
clutter can be very different at various locations having the same Transmitter-
Receiver distance, another parameter is incorporated in the calculation of path 
loss. According to measurement results, this parameter, called Shadowing 
hereafter, is a zero-mean Gaussian distributed random variable (in dB) with a 
standard deviation, also expressed in dB. Shadowing accounts for the fact that 
measured data are sometimes significantly different from the average power at a 
given distance from the transmitter. 

For calculating the received power based on this model, we first calculate 
the received power at a reference distance (can be chosen as 1 meter for example) 
using the Friis formula. Then, we incorporate the effect of path loss exponent and 
shadowing1 parameters as follows: [Rap02] 

(3.3)  Received Power (in dBW) =  

Calculated Reference Power (in dBW) - Path Loss Exponent × 10.0 × log(current distance) + Shadowing 

For checking the typical values for path loss exponent and shadowing 
variance, see [Rap02], [SCA05], or [Rut03]. Some typical values reported in the 
literature are in Table 3.1. 

                                                 
1 Shadowing parameter is a random variable with mean of zero and a variance indicated in Table 3.1. 
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Table 3.1. Typical values for Path loss exponent and Shadowing variance 

Environments Path loss exponent Shadowing variance(in dB) 
Outdoor-Free Space 2 4-12 

Outdoor-Shadowed/Urban 2.7-5 4-12 
Indoor-Line of sight 1.6-1.8 3-6 
Indoor-Obstructed 4-6 6.8 

 
For variation of these two parameters based on the frequency, see [Rut03]. 

In the implementation, at the start of execution and during the initialization 
of the classes, we generate a vector of random numbers, used as shadowing 
parameter, with specified shadowing variance and mean. We loop through this 
vector and read its elements during the execution of the program. The vector 
elements are taken as Shadowing and used at the power calculation of the 
corresponding symbol. 

3.3. Fading Channel 

3.3.1. Introduction 

This section is dedicated to the concepts related to Fading and the 
implementation thereof in the simulator. 

The term Fading is used to describe the rapid fluctuations of the 
amplitudes, phases, or multipath delays of a signal over a short period of time or 
distance. It is caused by interference between multiple versions of the transmitted 
signal which arrive at the receiver at slightly different times. Hence, the resulting 
signal at the receiver may have a wide-varying amplitude and phase. In short, the 
effects of multipath are rapid changes in signal strength over a small travel 
distance or time interval, random frequency modulation due to varying Doppler 
shifts on different multipath signals and time dispersion caused by multipath 
propagation delays. The multipath components combine vectorially at the receiver 
which causes the signal to distort, to fade or even to strengthen at times.[Rap02] 

In Sections 3.3.2 to 3.3.5, we introduce the theory behind fading channels. 
Thereafter, Sections 3.3.6 and 3.3.7 are devoted to explanation of the actual 
implementation and inspection of the fading channel in YANS. 

3.3.2. Coherence Bandwidth and Delay Spread 

Time dispersive nature of the channel is described using the Coherence 
Bandwidth (Bc) and Delay Spread (στ). The rms (root mean square) delay spread 
and coherence bandwidth are inversely proportional to one another, with their 
exact relationship depending on the exact multipath structure, i.e., on the power 
delay profile. The delay spread is a natural phenomenon caused by reflected and 
scattered propagation paths, while the coherence bandwidth is a defined relation 
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derived from the rms delay spread. Coherence bandwidth indicates the range of 
frequencies over which the channel can be considered as flat, i.e., all the 
frequency components of the signal undergo equal gain and linear phase. If the 
coherence bandwidth is defined as the bandwidth over which the frequency 
correlation function is above 0.9, then: 

(3.4) (Bc) ~ 1/ (50 στ) 

3.3.3. Coherence Time and Doppler Spread 

Time varying nature of the channel, caused by relative motion between the 
transmitter and the receiver and by movement of objects, is described by 
Coherence Time and Doppler Spread. Doppler spread, BD, is a measure of the 
spectral broadening. Doppler spectrum can be measured by sending a single 
sinusoidal tone of frequency fc and viewing the received signal spectrum, which 
have components from fc – fd to fc + fd, with fd being the Doppler shift. Doppler 
shift depends on the relative velocity and angle of movements. Coherence time Tc 
is the time domain dual of Doppler spread and is widely chosen as 0.423 / fm, 
with fm being the maximum Doppler shift given by (Velocity / λ). 

If the Doppler spread (BD) is far smaller than the baseband signal 
bandwidth (here, the 22 MHz channel bandwidth of 802.11), or alternatively, if 
the coherence time of the channel is greater than the symbol transmission period, 
then, the channel is considered as a slow fading channel. 

Typical values for coherence bandwidth, rms delay spread and Doppler 
spread are reported for IEEE 802.11 networks in [Mfl04] and [MLC05]. 

3.3.4. Types of Fading Channels 

Type of fading experienced by the signal going thorough a channel depends 
on the nature of the signal and the characteristics of the channel. The relation 
between bandwidth and symbol period of the signal on one hand and rms delay 
spread and Doppler spread of the channel on the other hand, determine what 
type of fading we are faced with. It is clear that we can have four distinct fading 
types which are summarized in Figure 3.1. 

Rayleigh and Rician Distributions 

Rayleigh distribution is commonly used to describe the statistical time 
varying nature of the received envelope of a flat fading signal, or the envelope of 
an individual multipath component. When there is a dominant stationary, non-
fading signal component present, such as a line-of-sight propagation path, the 
fading envelope distribution is Rician. However, the Rician distribution 
degenerates to a Rayleigh distribution when the dominant component fades away. 
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Figure 3.1. Cases of small-scale fading. From [Rap02] 

3.3.5. Modeling a Flat Frequency-Selective Fading Channel 

As will be explained in the following section, the fading channel type is 
considered to be flat frequency non-selective. However, due to the choice of 
implementation, the concept of being frequency-selective and how it is modeled 
using the Tapped-Delay-Line Channel Model had better be explained briefly. 

 
Figure 3.2. Tapped-Delay-Line Channel Model. From [Pro01] 
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If we consider the bandwidth of the transmitted signal as W, after the 
derivations detailed in [Pro01], we can show that the low-pass impulse response 
for the channel is: 

(3.5) ( ) )()(;
1 W

ntctc
L

n
n −= ∑

=

τδτ

Where, Tm is the total multipath spread, L is a practical number of considered 
taps which is equal to [Tm W] +1. 

Note that we see a resolution of 1/W in the multipath delay profile and in 
the special case of Rayleigh fading, the magnitudes of the tap weights, |Cn(t)|, 
are Rayleigh distributed.  

In the coming sections, we will see that we can set Channel Profiles for our 
chosen channel, by setting the number of taps, different powers (weights) 
associated to each tap and the delay experienced by each tap.  

3.3.6. The Selected Fading Type Implemented in YANS 

The current implementation in YANS, models a slow flat fading channel, 
i.e., the channel is neither frequency-selective, nor of fast fading type. According 
to the results reported in [MFl04], each Wi-Fi channel bandwidth is not larger 
than the coherence bandwidth, so, considering the channel frequency non-
selective, seems to be a safe assumption. Also, the channel does not experience 
any changes during the transmission of each symbol, i.e., channel's coherence 
time is bigger than transmission time of each symbol. This latter assumption is 
again logical, especially in the context of indoor 802.11, where we do not have 
extremely fast movements in the environment. 

Implementation 

IT++ library has been chosen for the implementation of the fading channel 
among other libraries. IT++ is a C++ library of mathematical, signal processing, 
speech processing, and communications classes and functions. It is being 
developed by researchers in these areas and is widely used by researchers, both 
in the communications industry and universities.[IT06] 

The implementation of the Communication Channels in IT++ is mostly 
based on the methods, algorithms and Matlab files provided in [Pat02]. 

If the user wants to consider the fading case, he needs to choose one of the 
large-scale path loss channel models as the first half of the model and the fading 
channel as the second half. The implementation of fading channel is very flexible 
and puts all the power of IT++ library at the user's disposal. The user may select 
a Rayleigh channel or a Rician one for simulating a slow flat fading channel. 
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At the start of the simulation, we generate FADING_NUMBER_OF_SAMPLES 
number of the fading process and store them in an IT++ data construct. However, 
before the generation of the fading process, we need to set a couple of parameters: 

- NORMALIZED_DOPPLER_FREQUENCY 

Which is the Doppler Frequency normalized by the Baud Rate of the 
transmission. Doppler Frequency itself can be derived by dividing SpeedOfObjects 
by Lambda of the transmission. 

- Channel Profile 

The average power effect of the fading process to the received signal power 
level, is set to 0 dB, since we already choose a large-scale path loss model as the 
first half of our channel model which accounts for this effect. We need to comply 
with the usage syntax of IT++, so we need to also set the delays in the taps for 
Tapped Delay Line modeling of frequency-selective channels. As we consider 
indoor 802.11 channel model as flat, we just consider one tap and set the delay 
to 0. 

- Line-of-Sight parameter --Rician Model 

Rician channel model is the default model for our fading channel, as it also 
degenerates to Rayleigh channel model by setting the LOS parameter to 0.  

- SIMULATION_BAUD_RATE 

This parameter is used to discretize Channel_Specification before assigning 
it to the channel (A requirement of IT++). This basically sets the unit of time for 
our channel and the set tap delays are treated considering this unit of time. The 
discretization should be set to transmitted signal period, i.e., to 
1/(SIMULATION_BAUD_RATE/48). Signal here means the transmitted OFDM 
symbol. Each OFDM symbol has 48 data sub-carriers. If using BPSK modulation, 
each OFDM symbol will carry 48 bits of data. We also know that the maximum 
physical bit rate in IEEE 802.11a standard is 54 Mbits/s. Considering these 
matters, we realize the lowest unit of time concerning fading process can be set to 
1/(54000000/48). We apply each element of the fading process to each 
transmitted OFDM symbol and in order to be able to do that, we always monitor 
the current Physical sending rate and the used modulation type. 

After setting all these parameters, we can generate the fading process and 
use it during the simulation. In the default case, we always randomize the IT++'s 
random number generator in order to get a different fading process in each run of 
the simulation. After multiple runs of the simulation and averaging over the 
results, we can have simulation results which are more reliable, in statistical 
terms. However, the user may comment out the respective section to make his 
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results reproducible. During the execution of the program, we loop through the 
fading process matrix and upon reception of every symbol, we take an element as 
the fading factor and increase the position marker in the fading process. 

3.3.7. Examination of the Generated Fading Processes 

After running a simulation in our simulator, the fading process is also 
saved on the disk for possible further inspections. We can load this file into 
Matlab to examine the process using the accompanying Matlab file, itload.m. We 
can examine the power (envelope) of the fading process by a Matlab command like 
“semilogy(abs(fading_process_coeffs(1:200)).^2)”. We call the power of the fading 
process at each sample as Fading Factor. The mean of the multiplicative fading 
power factor is nearly 1 and can be inspected by a Matlab command like 
“mean(abs(fading_process_coeffs).^2)”. 

In Figure 3.3, the effect of selection of different Doppler frequencies is 
depicted. The PDF of the processes for different values of the Rician K factor are 
depicted in Figure 3.4 with the aid of the Matlab histogram function, 
“hist((abs(fading_process_coeffs(1:20000))), x)”. 
 
 

 
Figure 3.3. Different Doppler Frequencies 
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Rician K factor = 0 (Rayleigh Process) 
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Figure 3.4. PDF of the Fading Process Generated using IT++ within the Simulator 
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Chapter 4  
– Modulation Schemes and  
FEC Details 
 
 
 
 
 
 
 
 
 

4.1. Introduction 
In this chapter, the details of convolutional encoder/decoder, i.e., the 

Forward Error Correction (FEC) mechanism, and the modulation schemes 
existing in the IEEE 802.11a standard are provided. In the first section, the 
concept of convolutional coding of data bits, coding rates and related issues are 
presented. In the second section, different modulation schemes used for different 
transmission rates are mentioned. At last, a table summarizing all the available 
features is given for reference. 

4.2. Convolutional Encoder–Decoder 
In this section, the terminology of convolution encoding and decoding is 

presented, along with some figures depicting some of the concepts involved. The 
encoding and decoding suggested in IEEE 802.11a standard are also explained. 

4.2.1. Encoding 

The number of bits that are fed into the encoder at once is usually denoted 
by k and is called the input frame. n denotes the number of bits coming out of 
encoder at once and is called the output frame. Memory Constraint Length, v, 
denotes the total number of shift registers in the encoder and K, denotes the 
Input Constraint Length which is the total number of bits involved in the 
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encoding operation. K is hence equal to v+k. The coding rate is also defined as 
k/n. In the encoder of IEEE 802.11a standard, the encoder has an input 
constraint length of 7, 1 input bit (k) and 2 output bits (n). Hence, the basic 
coding rate is ½. Higher rates are achieved from this basic rate by employing 
puncturing that is a process through which some of encoded bits in the 
transmitter are omitted and in place of them, some dummy zeros are fed into the 
Viterbi decoder at the receiver side. This has the effect of reducing the number of 
transmitted bits and hence, increasing the coding rate. Through puncturing, the 
coding rate of 2/3 and 3/4 can be achieved according to IEEE 802.11a standard.  

The encoding operation can be described by polynomials; one polynomial 
for representing each output bit, from each input bit. A simple convolutional 
encoder is depicted in Figure 4.1. Each block in this figure represents a shift 
register and is denoted as D in the generator polynomial, i.e., a single frame 
delay. For the case of the encoder depicted in this figure, we can write the 
polynomial equations as in Equation set 4.1. 

 
Figure 4.1. A Simple Convolutional Encoder. From [Swe02] 

1)( 2)1( ++= DDDg
(4.1) 

1)( 2)0( += DDg  
[Swe02]

These generator polynomials can be seen to correspond to the encoder 
depicted in Figure 4.1. Generator polynomials are usually represented in octal 
format. So in the case of the encoder in Figure 4.1, the first polynomial can be 
represented as 7, and the second as 5. 

Convolutional code is a special case of a larger family of codes called tree 
codes. If a tree code has finite constraint length and is linear, it is a convolutional 
code. If an encoder has v shift register stages, then the contents of those shift 
registers can take 2v states. The encoder states can be represented in 
diagrammatic form with arcs to show allowed transitions and the associated 
input and output frames. The state diagram of the encoder depicted in Figure 4.1, 
is shown in Figure 4.2. 
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Figure 4.2. Encoder State Diagram. From [Swe02] 

The states are labeled according to the contents of the encoder memory and 
input bit and output bits, due to that input bit, are indicated on the transitions. 

Concepts of distance determine the error correcting properties of the code. 
Because of linearity, we can assess the distance properties of the code relative to 
the all-zero sequence. Free Path is the code path which leaves the zero state and 
returns to it some time later and in the process it produces a minimum number 
of 1s on the output. By looking at the state diagram, it can be discovered that we 
have minimum Hamming weight of 5 for the path connecting states 00-01-10-00 
which results the output frames 11 10 11. This minimum weight is called the free 
distance of the code. 

The convolutional encoder used in IEEE 802.11a is depicted in Figure 4.3. 
As on can imagine, the state diagram for this 64-state encoder would be very 
complex. The generator polynomials, in octal format, are g0=133 and g1=171. 

 

Figure 4.3. The Convolutional Encoder Used in IEEE 802.11a. From [Std00] 
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4.2.2. Viterbi Decoding 

The best way to decoding against random errors is to compare the received 
sequence with every possible code sequence. This process can be best visualized 
with a code trellis which contains the information of the state diagram, but also 
uses time as a horizontal axis to show the possible paths through the states. 
Code trellis diagram get very complex for large constraint lengths, so we do not 
depict here the trellis diagram of the encoder used in IEEE 802.11a. For 
introducing the concept, however, we show the trellis diagram, Figure 4.4, for the 
encoder shown in Figure 4.1. 

 
Figure 4.4. Code Trellis. From [Swe02] 

In Figure 4.4, the encoder states are shown on the left and lines show the 
allowed state transitions, from right to left. The labels against each transition are 
the encoder outputs associated with each transition. The input bits are not 
shown, however, as they can be determined from the end state. The apparent 
problem with maximum likelihood decoding is the fact of having to compare a 
large number of possible paths through the trellis with the received sequence. 
Viterbi proposed that not all of these paths through the trellis need to be 
considered provided the errors show no correlation between frames. His decoding 
technique is explained briefly hereafter. 

In all the paths going through a single node in the trellis diagram, if we 
consider the part from the start of transmission up to that specific node, the 
distance between all these paths in the trellis diagram and the received sequence 
can be calculated. After having calculated all these distance metrics, we will be 
able to find the path with the best distance metric. Viterbi realized that due to 
randomness of the channel errors, the non-optimal paths at this stage can never 
be optimal in the future. This implies that we can only retain one path reaching 
each node in the trellis diagram when decoding. According to the Viterbi method, 
at each received frame, we decide which paths to keep and which to discard. 
Therefore, Viterbi introduced a maximum likelihood decoding technique which 
significantly outperforms the basic decoding technique. Viterbi decoding is the 
recommended way of decoding of convolutional codes in the IEEE 802.11a 
standard. 
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4.3. Modulation Schemes 
IEEE 802.11a uses OFDM on the Physical Layer. From the 52 OFDM sub-

carriers, 48 carry data bits. In each sub-carrier, data bits are sent with BPSK, 
QPSK, or M-QAM modulation. The signal constellations of these modulation 
schemes are in Figure 4.5. 

Table 4.1 summarizes all the information regarding the modulation 
schemes and convolutional codes details that are standardized in IEEE 802.11a 
air interface. For each sending bit rate, it mentions the modulation scheme used 
in each data sub-carrier, the convolution coding rate, coded bits per sub-carrier, 
the total of coded bits per each sent OFDM symbol and the total number of the 
original data bits, i.e., before the encoder, in each OFDM symbol sent over the air 
interface.  

 

Figure 4.5. BPSK, QPSK, 16-QAM, and 64-QAM constellation bit encoding. From [Std00] 
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Table 4.1. Rate-dependant parameters. Modulation and Coding Schemes. From [Std00] 
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Chapter 5  
– Bit Error Rate, 
Packet Error Rate  
and Error Masks 
 
 
 
 
 
 

5.1. Introduction 
This chapter is dedicated to the concepts and implementations of Bit and 

Packet Error Rate calculations and Error Masks generation. 

In section 5.2, different cases of BER calculation after the demodulator are 
presented by mentioning the respective formulas. We then go on to introduce the 
method and the involved formulas of BER calculation after the Viterbi decoder. 

Section 5.3 introduces the two methods of Packet Error Rate calculation 
and the manner with which we can generate error masks in each case. Error 
masks are at bit level, so the user would be able to map these masks to 
applications packets at the application layer to test their behavior in view of the 
erroneous received bits. 

5.2. BER Before and After Decoder 

5.2.1. Introduction 

In this section, we introduce the Bit Error Rate (BER) calculation methods. 
The BER calculation after demodulator, and before the Viterbi decoder, depends 
on the type of modulation and the channel type. Due to error correction 
mechanisms of the convolutional codes, the BER before the decoder is not the 
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same as the BER after the decoder. For deriving the latter, we need to have 
knowledge about the used convolutional code. The first section is dedicated to 
introducing the methods used to derive the BER before the Viterbi decoder, and 
after the demodulator, and the second section treats the BER calculation 
methods after the Viterbi decoder. 

5.2.2. BER After Modulator – Before Decoder  

In every chuck in the packet, where Ni and Signal level are constant, we 
calculate the Eb/N0 from Equation 5.1: 
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Where Eb is energy per bit, N0 is the noise power density, Bt is the 
bandwidth of the signal (20 MHz in 802.11a) and Rb(k,t) is the bit rate of 
transmission for packet k at time t.  

The following BER formulas, depending on the channel and modulation 
types, are implemented and can be chosen in phy-80211.h with the following 
directive: 

#define TYPE_OF_CHANNEL_FOR_BER 

The Q function, the Error Function, erf(), and the Complementary Error 
Function, erfc(), are used in the following formulas. Here are the basic 
definitions and relations: 
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[ZPe01, Equ.4.16]

 
The relation between Q function and erfc function; the latter exists in math.h: 
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Ps (Symbol Error Probability or Rate) and Pb (Bit Error Probability or Rate): 
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M

s PP ×= 2log  
[Gol05, Equs.6.2-3]

The above approximate conversions typically assume that the symbol 
energy is divided equally among all bits, and that Gray encoding is used so that 
at reasonable SNRs, one symbol error corresponds to exactly one bit error. In the 
simulator, based on the sent rate, we consider the used modulation according to 
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Table 5.1. 

Table 5.1.  Rate-Modulation Type Correspondence in 802.11a. [Std00] 

Rate Modulation type
6 and 9 Mb/s BPSK 

12 and 18 Mb/s QPSK 
24 and 36 Mb/s 16QAM 
48 and 54 Mb/s 64QAM 

AWGN Channel 

BPSK Modulation 
 

(5.5) )2( bb QP γ= [Gol05, Equ.6.6]

QPSK Modulation 
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M-QAM Modulation 
 

(5.7) 

2

)
1

3
()1(211

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
×

−
−−=

M
Q

M
MP s

s
γ

[Gol05, Equ.6.23] 

Where sγ  is Average Energy per Symbol and we assume that we have Rectangular 

Signal Constellation. 

Fading Channel Types 

Definitions 

Ts: Symbol Time 
Tc: Signal Fade Duration 
Average Error Probability (Ps): Averaged over the distribution of SNRs. 
Outage Probability (Pout): Defined as the probability that SNRs falls below a given 
value corresponding to the maximum allowable Ps. 
[Gol05] 

Normal Fading: Ts ~ Tc 

Better to use: Average Probability of Symbol Error 
Since many error correction coding techniques can recover from a few bit errors, 
and end-to-end performance is typically not seriously degraded by a few 
simultaneous bit errors, the average error probability is a reasonably good figure 
of merit for the channel quality under this condition. 
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Slow Fading: Ts << Tc 

Better to use: Outage Probability 
A deep fade will affect many simultaneous symbols. Thus, fading may lead to 
large error bursts, which cannot be corrected for with coding of reasonable 
complexity. Therefore, these error bursts can seriously degrade end-to-end 
performance. In this case acceptable performance cannot be guaranteed over all 
time or, equivalently, throughout a cell, without drastically increasing 
transmission power. Under these circumstances, an outage probability is 
specified so that the channel is deemed unusable for some fraction of time or 
space. 
This type of Fading Channel is more relevant to Indoor 802.11 Networks. 

Fast Fading: Tc << Ts 

Better to use: BER for AWGN channel 
Fading will be averaged out by the matched filter in the demodulator. Thus, 
performance is the same as in AWGN. 

Slow-Fading Channel 

cs TT <<  

The Outage Probability, Pout, is: 

(5.8) sePout
γγ /01 −−= [Gol05, Equ.6.47]

Pout is independent of modulation type. 

Fading Channel 

cs TT ~  : Normal Fading 

BPSK Modulation 
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−= [Gol05, Equ.6.58]

QPSK Modulation 
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Where, RaysP ,  is average symbol error probability for Rayleigh fading, M is 4 for 

QPSK and )]/(sin/[1 2

0

M
N
Es πα = . 
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M-QAM Modulation 

(5.11) ]
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M
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1
3
−

=
MMβ for Rectangular M-QAM. 

Fast-Fading Channel 

sc TT <<  

The BER is calculated like the AWGN case. 

5.2.3. BER After Viterbi Decoder 

The Bit Error Rate, as mentioned in the introduction, is not equal before 
and after the Viterbi decoder, due to error correction mechanisms provided by 
convolutional codes. The procedure to derive the BER after the decoder is as 
follows. 

As the first step, we calculate the probability of selecting an incorrect path 
by the Viterbi decoder which is in distance k from the all-zero path (due to linear 
characteristics of the encoder, without loss of generality, we consider that the 
sent data were a train of zero bits). The probability Pk is derived as follows: 
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[Pro01, Equ.8.2-29] 

k : even 

Where p is the BER before decoder.  

However, computation of this formula takes a lot of processing power, 
especially if it is done for several k values in each run. To improve the 
performance, according to [Pro01], we utilize the Chernoff upper bound for 
calculating Pk which gives nearly the same result with significantly less 
computation overhead: 

(5.14) 2/)]1(4[)( kppkP −< [Pro01, Equ.8.2-31]
k: even or odd 

For calculating BER for each chunk of bits in the packet (Note that chuck 
was the set of bits over which SNIR value is constant, i.e., if there is no 
interference in the reception of the packet, each packet is comprised of two 
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chunks; one for Physical layer header, or PLCP header, and one for the Physical 
layer payload), we calculate the first 10 elements of Pk, multiply each by the 
corresponding Ck1 value and sum over the result of multiplications. This sum is 
the BER after decoder for the bits in the given chuck. Here is the formula to 
calculate BER from Ck and Pk values: 

(5.15) ∑
∞

=

<
freedk

kk PC
Punc

BER 1 [Vit71, Equ.20] 
[FOO98, Equ.3.6]

 

Punc, in the above formula, is the puncturing period of the convolutional code. 
Typical values of free distance(dfree) and cd  for various convolutional codes are 
mentioned in a study documented in [FOO98]. 

5.3. PER Calculation Methods and Error Masks 

5.3.1. Introduction 

In this section, we introduce the two implemented methods for Packet Error 
Rate (PER) calculation. The first method is the simple Uniform Error Distribution, 
and the second one, is a new method presented in [KSa06]. 

5.3.2. Uniform Error Distribution 

In every chuck in a packet (a chunk of n bits), where Ni (Noise Interference) 
and Signal level are constant, we calculate the Chunk Success Rate (CSR) 
according to Equation 5.16. 

(5.16) nbitsBERCSR )1( −=

To get the PER, we multiply all the calculated CSRs in the packet to get the 
overall Packet Success Rate, hence the PER. This method of PER calculation 
makes the assumption that bit errors are uniformly distributed within the packet. 

Error Mask Generation 

To get the Mask Errors in the case of uniform error distribution, we simply 
draw a random number between 0 and 1 and compare the number against the 
BER that we have calculated for the given chunk. Depending on whether the 
random number is bigger than the BER or smaller, we write 0 or 1, respectively, 
on the disk. We repeat this process n times to produce n mask bits when we have 
n bits in the chunk. 

                                                 
1 Ck is the bit error number associated with each error event of distance k 
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5.3.3. Non-Uniform Error Distribution 

In this section, a new error distribution is introduced which is presented in 
[KSa06]. The authors in that study argue that uniform error distribution leads to 
over-estimation of PER. They have carried out a theoretical work leading to new 
PER calculation formulas which are presented hereafter. Some notions are first 
presented along with their formulas.  

Error Event Rate, Equation 5.17, is a probability indicating the frequency of 
occurred error events in any chunk which depends on the current SNR and the 
convolutional code details. 

(5.17) freedSNRR
dfreeeAEER ..≈ [KSa06] 

According to the paper, each decoding epoch is comprised of an errorless 
period followed by an error event. Errorless period has mean length of W and its 
length follows a geometric distribution with parameter λ, which in turn can be 
calculated, according to Equation 5.18, using the EER, current SNR and 
convolution code details. 

(5.18) EER
rrSNRSNRn
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1

+−
++−

==λ  
[KSa06] 

Where nc is the number of output bits, v is the memory constraint length and rc is 
the rate of the convolutional encoder. 

The probability that a packet contains an error event is simply given by the 
probability that the errorless period begins at the first bit of the packet and lasts 
less than the packet length N. This is going to be the CDF of the geometric 
distribution with parameter λ, as given in Equation 5.19. 

(5.19) NPER )1(1 λ−−= [KSa06]

Error Mask Generation 

The error mask generation in this case of non-uniform error distribution is 
also done differently, compared to uniform error distribution. In the generated 
error masks, we will have mostly 0s, as errorless zones, with sporadic error 
events, marked by series of mostly 1s. The algorithm to generate the masks is as 
follows. 

We first generate a random number from an exponential distribution with 
its parameter set as EER. Using a modulo calculation, we make sure that the 
number is smaller than our chunk size. We take this number as the end bit of the 
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first error event in the chunk. We draw another random number from an 
exponential distribution with parameter 1/τ, where τ is average error event 
length, as given in Equation 5.20. 

(5.20) 
)..2

2
(

1)1(
ccc rrSNRSNRn

v
+−

++=τ
[KSa06] 

This second random number indicates the length of the first error event in 
the chunk. Now, we have both the exact position and length of the first error 
event in the chunk. For the number of bits in this error period, we draw a random 
number, between 0 and 1, and compare it to BER/EER. If the random number is 
bigger, we write 0, otherwise, we write 1. For all the errorless periods in the 
chunk, we write 0s as the error masks. We can also consider that multiple error 
events can happen within each chunk. In this case, we can repeat the procedure 
and if the first generated random number, which indicated the end bit of the error 
event, shows a position between the first error event and the last bit of the chuck, 
we accept this as another error event in the chunk and proceed to generate error 
masks based on the mentioned procedure. In the current implementation in the 
simulator, we consider that multiple error events can happen and the 
implementation is therefore a bit complex. 
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Chapter 6  
– Concluding Remarks &  
Future Work 
 
 
 
 
 
 
 

 

 

6.1. Concluding Remarks 
In this thesis, we first explained the motivation behind this work, i.e., 

modeling a feature-rich IEEE 802.11a. Afterwards, in various chapters, we 
explained different building blocks of an IEEE 802.11a physical layer. Where 
interesting and worthwhile, we mentioned the implementation choices made 
during the development of the module, considering YANS original architecture. 

As mentioned before, there is a long way towards having a realistic IEEE 
802.11 simulation. This is not only due to complexities involved in the 
implementation of the current features, but also due to the host of unknown 
phenomena surrounding physical layer, including different characteristics of the 
wireless cards of various manufacturers. In this work, we have tried to model 
major known features of the physical layer within the simulator which, most 
probably, shortens the gap between simulation results and actual 
experimentations. 

6.2. Emulab and ORBIT 
For validation of our models, the only option would be turning to 

measurement-based approaches. Currently, there are two well-known, publicly-
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accessible IEEE 802.11 testbeds: Emulab and ORBIT. 

These two testbeds, although both are IEEE 802.11 testbeds, have major 
differences. ORBIT is a testbed installed in a clutter-less indoor environment. 
Although, at first sight, it does not seem to be a good choice for validating an 
IEEE 802.11 model, especially at physical layer, it is certainly a good starting 
point due to more predictable achieved results. These results could ultimately be 
used as configuring the basic simulator parameters. Emulab, however, is a fully-
fledged wireless network, installed in a university campus. Due to its main 
functionality, which is basically providing wireless connectivity to the campus, it 
resembles, more closely, the realistic wireless environment. However, this feature 
is not just a benefit, but also introduces complexities in our measurement-based 
validation process, since depending on the chosen nodes in the network, 
completely different, or even contradictory, experimentation results could be 
produced. 

6.3. Future Work 
As implied in the previous section, we emphasize that there is no such a 

thing as one best IEEE 802.11 physical layer configuration. In the experiments, 
depending on the environment in which the network has been installed and 
parameters of the wireless cards of various manufacturers, for the same scenario, 
different measurement results could be produced. In light of this matter, an IEEE 
802.11 simulator has zero chance of producing simulation results which correlate 
with measurement results, without pre-feeding it with information about the 
simulated environment. 

However, there is still a point that is worth considering. It is the ability of 
producing simulation results, which are in correlation with experimentation 
results, when the simulator is pre-configured with the information about the 
environment in which the actual network has been installed. We could call such a 
simulator as human-aided cognitive simulator. 

As our future work, we intend to explore this possibility by running the 
same scenario in the simulator and in the mentioned testbeds. It is of high value 
to see that if it is possible to configure the simulator to produce outputs which 
are in meaningful correlation with the outputs produced by experimentations. If 
that is possible, then we can safely declare that the level of details, and accuracy, 
of our IEEE 802.11 models are at satisfactory level. 
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Annex.1.  
 
A Brief Overview of Fading Channel 
Implementation in NS-2 

 

 

 

 

 

 

The design and implementation of fading channel in YANS has been 
inspired by the fading channel implemented in NS-2. However, the 
implementation in YANS is far more flexible. As elaborated in the following 
sections, the implementation of fading channel in YANS is clearer, in terms of its 
capabilities and limitations and, we believe, has avoided the probable mistakes of 
the NS-2’s implementation. 

A.1.1. Implementation in NS-2 
A pre-calculated fading process has been saved in a text file and distributed 

in their package. This text file is first read into an array in memory. Depending on 
the maximum velocity of surrounding objects, which is set in the TCL script of 
the simulation scenario, the Doppler frequency(fm) is calculated. The pre-
calculated fading process has taken into account the maximum Doppler 
frequency (fm0) of 30 Hz. Then, the ratio of fm/fm0 is calculated. This ratio is 
multiplied by the current time; the time the signal is being received and the 
received power being calculated. Result of this multiplication is proportional to 
the index value of the fading process array stored in the memory. So, the smaller 
the fm/fm0 ratio, the slower the forward-move is in the array of fading process, 
i.e., if the ratio is very small, the same samples will be read over and over from 
the fading process array, before increasing the array index. 

In Figure A.1.1, the fading process's power is depicted for the process 
generated statically for NS2 and a typical generation of IT++. Obviously, this is 
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just a figure showing the first 200 samples of the time sequence of the two 
processes and does not mean that they should, or should not, overlap each other. 
If the generator of the IT++ is randomized in each run of the simulation, which is 
the default behavior, each time, we will have a generated process different from 
what is depicted in Figure A.1.1; but the process has the same statistical 
characteristics. 

 
Figure.A.1.1 Fading Process Power –NS2 and IT++ 

A.1.2. A Note for NS-2 developers and users 
For the following two reasons, we suspect that the implementation of 

Rayleigh/Rician might be incorrect in NS-2: 

- According to what we know about the simulator architecture, the 
reception signal power in NS-2 is considered constant in the duration of a packet. 
With any implementation of a fading channel, even in slow, flat fading channels, 
we need to have per-bit signal level changes by application of the fading process. 
This does not seem to be the case in NS-2. Note that simulation results are not 
radically wrong, so it is highly unlikely that the user notices this matter. By 
applying the fading process only to some bits in every packet, e.g., only to the 
first, or the last bit, we just multiply random numbers, i.e., Doppler frequency 
becomes irrelevant. 

- NS-2 fading channel developers have chosen to interpolate fading process 
elements before applying them to the incoming bits’ signal levels. This, we 
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suspect, just smoothes out the fading process, i.e., implicitly decreases the 
chosen Doppler frequency, and hence, might not be correct. 

* We emphasize that these observations might not be as worrisome as we 
presume, but are definitely worth explaining in their documentation, if indeed the 
implementation is correct. 
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Annex.2.  
 
A Simple Simulation Scenario:  
2 Nodes Communicating in  
Ad-hoc Mode 
 
 
 
 
 
 
 
 

A.2.1. Code “main-80211-adhoc.cc” 
 
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */ 
/* 
 * Copyright (c) 2005,2006 INRIA 
 * All rights reserved. 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation; 
 * 
 * This program is distributed in the hope that it will be useful, 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 * GNU General Public License for more details. 
 * 
 * You should have received a copy of the GNU General Public License 
 * along with this program; if not, write to the Free Software 
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,  
 * MA  02111-1307 USA 
 * 
 * Authors:  
 * Masood Khosroshahy <m.kh@ieee.org> 
 * Mathieu Lacage <mathieu.lacage@sophia.inria.fr> 
 */ 
 
#include "yans/host.h" 
#include "yans/network-interface-80211.h" 
#include "yans/network-interface-80211-factory.h" 
#include "yans/channel-80211.h" 
#include "yans/ipv4-route.h" 
#include "yans/simulator.h" 
#include "yans/udp-source.h" 
#include "yans/udp-sink.h" 
#include "yans/periodic-generator.h" 
#include "yans/traffic-analyser.h" 
#include "yans/callback.h" 
#include "yans/pcap-writer.h" 
#include "yans/trace-container.h" 
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#include "yans/event.tcc" 
#include "yans/static-position.h" 
#include "yans/mac-address-factory.h" 
#include "yans/throughput-printer.h" 
#include "yans/propagation-model.h" 
 
#include <iostream> 
 
using namespace yans; 
 
static void 
advance (StaticPosition *a , NetworkInterface80211Adhoc *PHYsender, 
NetworkInterface80211Adhoc *PHYreceiver, ThroughputPrinter *printer) 
{ 
 double x,y,z; 
 a->get (x,y,z); 
 std::cout << "x = "<<x << endl; 
 PHYreceiver->print_transmission_mode_status(2); 
 PHYsender->print_transmission_mode_status(3); 
 x += 5.0; 
 if (x > 120.0) 
  return; 
 a->set (x,y,z); 
 Simulator::schedule_rel_s (1.0, make_event (&advance, a , PHYsender, PHYreceiver, 
printer)); 
} 
 
static void 
get_header_details (NetworkInterface80211Adhoc *PHY, ThroughputPrinter *printer) 
{ 
 printer->set_headers_size_bytes( PHY->get_packet_size_PHY_payload_bytes() ); 
} 
 
static void 
printSpecs (NetworkInterface80211Adhoc * PHY) 
{ 
 PHY->print_transmission_mode_status(1); 
} 
 
 
int main (int argc, char *argv[]) 
{ 
 Simulator::set_linked_list (); 
 NetworkInterface80211Factory *wifi_factory; 
 wifi_factory = new NetworkInterface80211Factory (); 
 // force rts/cts on all the time. 
 wifi_factory->set_mac_rts_cts_threshold (2200); 
 wifi_factory->set_mac_fragmentation_threshold (2200); 
 wifi_factory->set_arf (); 
 
 Channel80211 *channel = new Channel80211 (); 
 MacAddressFactory address; 
 
 NetworkInterface80211Adhoc *wifi_client; 
 StaticPosition *pos_client; 
 pos_client = new StaticPosition (); 
 wifi_client = wifi_factory->create_adhoc (address.get_next (), pos_client); 
 wifi_client->connect_to (channel); 
 
 wifi_client->set_m_is_receiver(0); 
 
 pos_client->set (0.0, 0.0, 0.0); 
 
 Host *hclient = new Host ("client"); 
 uint32_t ni_client = 
  hclient->add_ipv4_arp_interface (wifi_client, 
       Ipv4Address ("192.168.0.3"), 
       Ipv4Mask ("255.255.255.0")); 
 hclient->get_routing_table ()->set_default_route (Ipv4Address ("192.168.0.2"), 
         ni_client); 
 UdpSource *source = new UdpSource (hclient); 
 source->bind (Ipv4Address ("192.168.0.3"), 1025); 
 source->set_peer (Ipv4Address ("192.168.0.2"), 1026); 
 source->unbind_at (25); 
 PeriodicGenerator *generator = new PeriodicGenerator (); 
 
// generator->set_packet_interval (0.000635); 



 43

// generator->set_packet_size (2000); //application payload in bytes 
 generator->set_packet_interval (0.0000246); 
 generator->set_packet_size (16); //application payload in bytes 
 generator->start_now (); 
 generator->stop_at (25); 
 generator->set_send_callback (make_callback (&UdpSource::send, source)); 
 
 ThroughputPrinter *printer = new ThroughputPrinter (); 
// printer->set_application_packet_interval (0.000635); 
// printer->set_application_packet_size (2000); //application payload in bytes 
 printer->set_application_packet_interval (0.0000246); 
 printer->set_application_packet_size (16); //application payload in bytes 
 
 NetworkInterface80211Adhoc *wifi_server; 
 StaticPosition *pos_server = new StaticPosition (); 
 wifi_server = wifi_factory->create_adhoc (address.get_next (), pos_server); 
 wifi_server->connect_to (channel); 
 
 wifi_server->set_m_is_receiver(1); 
 
 pos_server->set (5.0, 0.0, 0.0); 
 
 Simulator::schedule_abs_s (0.5, make_event (&printSpecs, wifi_client)); 
 Simulator::schedule_abs_s (0.5, make_event (&get_header_details, wifi_server, 
printer)); 
 
 // Source is in wifi_client. In this scenario, receiver gradually moves further 
away. 
 Simulator::schedule_abs_s (1.0, make_event (&advance, pos_server, wifi_client, 
wifi_server, printer)); 
 
 Simulator::schedule_abs_s (25, make_event (&ThroughputPrinter::stop, printer)); 
 
 Host *hserver = new Host ("server"); 
 
 uint32_t ni_server = 
  hserver->add_ipv4_arp_interface (wifi_server, 
       Ipv4Address ("192.168.0.2"), 
       Ipv4Mask ("255.255.255.0")); 
 hserver->get_routing_table ()->set_default_route (Ipv4Address ("192.168.0.3"), 
         ni_server); 
 UdpSink *sink = new UdpSink (hserver); 
 sink->bind (Ipv4Address ("192.168.0.2"), 1026); 
 sink->unbind_at (25); 
 
 
 /* run simulation */ 
 Simulator::run (); 
 /* destroy network */ 
 delete wifi_client; 
 delete wifi_server; 
 delete wifi_factory; 
 delete channel; 
 delete source; 
 delete generator; 
 delete sink; 
 delete printer; 
 delete hclient; 
 delete hserver; 
 Simulator::destroy (); 
 
 return 0; 
} 
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A.2.2. Terminal Output 
 
bash-2.05b$./main-80211-adhoc 
[Large-scale path loss model: Free Space] 
[Fading channel is used and forms the 2nd part of the channel model] 
[BER: Slow-Fading Channel] 
[PER Calculation Method (Error Distribution at the Viterbi Decoder's Output: Non-
Uniform)] 
[Error masks are being generated] 
Notes: 
- Probabilities are displayed for packets which have been accepted by the PHY. 
- Displayed values are no longer updated when the throughput reaches zero. 
 
Time:1 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 19.8065 Mb/s 
Receiver Throughput(Application Layer): 19.1923 Mb/s 
x = 5 
SNIR(Instant Value): 8528.89 
Bit Error Probability(Instant Value): 4.41566e-05 
Bit Error Probability-After Decoder(Instant Value): 4.39851e-07 
Packet Error Probability(Instant Value): 0.0191485 
Current PHY Mode: 54 Mb/s 
 
Time:2 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 11.3364 Mb/s 
Receiver Throughput(Application Layer): 10.9849 Mb/s 
x = 10 
SNIR(Instant Value): 2132.22 
Bit Error Probability(Instant Value): 0.000132027 
Bit Error Probability-After Decoder(Instant Value): 1.48246e-15 
Packet Error Probability(Instant Value): 9.89928e-11 
Current PHY Mode: 24 Mb/s 
 
Time:3 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 6.95498 Mb/s 
Receiver Throughput(Application Layer): 6.73932 Mb/s 
x = 15 
SNIR(Instant Value): 947.654 
Bit Error Probability(Instant Value): 0.000351986 
Bit Error Probability-After Decoder(Instant Value): 2.00477e-13 
Packet Error Probability(Instant Value): 1.32394e-08 
Current PHY Mode: 12 Mb/s 
 
Time:4 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 3.06214 Mb/s 
Receiver Throughput(Application Layer): 2.96719 Mb/s 
x = 20 
SNIR(Instant Value): 533.056 
Bit Error Probability(Instant Value): 0.000445585 
Bit Error Probability-After Decoder(Instant Value): 6.52911e-13 
Packet Error Probability(Instant Value): 4.31242e-08 
Current PHY Mode: 6 Mb/s 
 
Time:5 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 2.60608 Mb/s 
Receiver Throughput(Application Layer): 2.52527 Mb/s 
x = 25 
SNIR(Instant Value): 341.156 
Bit Error Probability(Instant Value): 0.0013604 
Bit Error Probability-After Decoder(Instant Value): 1.76237e-10 
Packet Error Probability(Instant Value): 1.164e-05 
Current PHY Mode: 6 Mb/s 
 
Time:6 
Sent Rate (Application Layer):25.1969 Mb/s 
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Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 2.47578 Mb/s 
Receiver Throughput(Application Layer): 2.39901 Mb/s 
x = 30 
SNIR(Instant Value): 236.914 
Bit Error Probability(Instant Value): 0.00103388 
Bit Error Probability-After Decoder(Instant Value): 4.44007e-11 
Packet Error Probability(Instant Value): 2.93258e-06 
Current PHY Mode: 6 Mb/s 
 
Time:7 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 2.5735 Mb/s 
Receiver Throughput(Application Layer): 2.49371 Mb/s 
x = 35 
SNIR(Instant Value): 174.059 
Bit Error Probability(Instant Value): 0.00118267 
Bit Error Probability-After Decoder(Instant Value): 8.72159e-11 
Packet Error Probability(Instant Value): 5.76042e-06 
Current PHY Mode: 6 Mb/s 
 
Time:8 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 2.47578 Mb/s 
Receiver Throughput(Application Layer): 2.39901 Mb/s 
x = 40 
SNIR(Instant Value): 133.264 
Bit Error Probability(Instant Value): 0.0017332 
Bit Error Probability-After Decoder(Instant Value): 5.95908e-10 
Packet Error Probability(Instant Value): 3.93578e-05 
Current PHY Mode: 6 Mb/s 
 
Time:9 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 2.11744 Mb/s 
Receiver Throughput(Application Layer): 2.05178 Mb/s 
x = 45 
SNIR(Instant Value): 105.295 
Bit Error Probability(Instant Value): 0.00216658 
Bit Error Probability-After Decoder(Instant Value): 1.83457e-09 
Packet Error Probability(Instant Value): 0.000121162 
Current PHY Mode: 6 Mb/s 
 
Time:10 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 1.97085 Mb/s 
Receiver Throughput(Application Layer): 1.90974 Mb/s 
x = 50 
SNIR(Instant Value): 85.2889 
Bit Error Probability(Instant Value): 0.00285798 
Bit Error Probability-After Decoder(Instant Value): 7.43086e-09 
Packet Error Probability(Instant Value): 0.000490673 
Current PHY Mode: 6 Mb/s 
 
Time:11 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 1.7591 Mb/s 
Receiver Throughput(Application Layer): 1.70456 Mb/s 
x = 55 
SNIR(Instant Value): 70.4867 
Bit Error Probability(Instant Value): 0.00455063 
Bit Error Probability-After Decoder(Instant Value): 7.88359e-08 
Packet Error Probability(Instant Value): 0.00519343 
Current PHY Mode: 6 Mb/s 
 
Time:12 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 1.74282 Mb/s 
Receiver Throughput(Application Layer): 1.68878 Mb/s 
x = 60 
SNIR(Instant Value): 59.2284 
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Bit Error Probability(Instant Value): 0.00417325 
Bit Error Probability-After Decoder(Instant Value): 5.07181e-08 
Packet Error Probability(Instant Value): 0.00334423 
Current PHY Mode: 6 Mb/s 
 
Time:13 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 1.43334 Mb/s 
Receiver Throughput(Application Layer): 1.3889 Mb/s 
x = 65 
SNIR(Instant Value): 50.4668 
Bit Error Probability(Instant Value): 0.00498767 
Bit Error Probability-After Decoder(Instant Value): 1.25913e-07 
Packet Error Probability(Instant Value): 0.00828182 
Current PHY Mode: 6 Mb/s 
 
Time:14 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 1.72653 Mb/s 
Receiver Throughput(Application Layer): 1.67299 Mb/s 
x = 70 
SNIR(Instant Value): 43.5147 
Bit Error Probability(Instant Value): 0.0043421 
Bit Error Probability-After Decoder(Instant Value): 6.20697e-08 
Packet Error Probability(Instant Value): 0.00409119 
Current PHY Mode: 6 Mb/s 
 
Time:15 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 1.51478 Mb/s 
Receiver Throughput(Application Layer): 1.46781 Mb/s 
x = 75 
SNIR(Instant Value): 37.9062 
Bit Error Probability(Instant Value): 0.00864672 
Bit Error Probability-After Decoder(Instant Value): 2.15447e-06 
Packet Error Probability(Instant Value): 0.132642 
Current PHY Mode: 6 Mb/s 
 
Time:16 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 1.02614 Mb/s 
Receiver Throughput(Application Layer): 0.994326 Mb/s 
x = 80 
SNIR(Instant Value): 33.316 
Bit Error Probability(Instant Value): 0.0116638 
Bit Error Probability-After Decoder(Instant Value): 1.04657e-05 
Packet Error Probability(Instant Value): 0.4991 
Current PHY Mode: 6 Mb/s 
 
Time:17 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 0.635232 Mb/s 
Receiver Throughput(Application Layer): 0.615535 Mb/s 
x = 85 
SNIR(Instant Value): 29.5117 
Bit Error Probability(Instant Value): 0.0106216 
Bit Error Probability-After Decoder(Instant Value): 6.35922e-06 
Packet Error Probability(Instant Value): 0.342989 
Current PHY Mode: 6 Mb/s 
 
Time:18 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 0.586368 Mb/s 
Receiver Throughput(Application Layer): 0.568186 Mb/s 
x = 90 
SNIR(Instant Value): 26.3237 
Bit Error Probability(Instant Value): 0.0134492 
Bit Error Probability-After Decoder(Instant Value): 2.25314e-05 
Packet Error Probability(Instant Value): 0.774325 
Current PHY Mode: 6 Mb/s 
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Time:19 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 0.504928 Mb/s 
Receiver Throughput(Application Layer): 0.489271 Mb/s 
x = 95 
SNIR(Instant Value): 23.6257 
Bit Error Probability(Instant Value): 0.0101194 
Bit Error Probability-After Decoder(Instant Value): 4.9216e-06 
Packet Error Probability(Instant Value): 0.277535 
Current PHY Mode: 6 Mb/s 
 
Time:20 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 0.472352 Mb/s 
Receiver Throughput(Application Layer): 0.457705 Mb/s 
x = 100 
SNIR(Instant Value): 21.3222 
Bit Error Probability(Instant Value): 0.0188958 
Bit Error Probability-After Decoder(Instant Value): 0.000149008 
Packet Error Probability(Instant Value): 0.999948 
Current PHY Mode: 6 Mb/s 
 
Time:21 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 0.32576 Mb/s 
Receiver Throughput(Application Layer): 0.315659 Mb/s 
x = 105 
SNIR(Instant Value): 19.3399 
Bit Error Probability(Instant Value): 0.0139424 
Bit Error Probability-After Decoder(Instant Value): 2.74046e-05 
Packet Error Probability(Instant Value): 0.836472 
Current PHY Mode: 6 Mb/s 
 
Time:22 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 0.211744 Mb/s 
Receiver Throughput(Application Layer): 0.205178 Mb/s 
x = 110 
SNIR(Instant Value): 17.6217 
Bit Error Probability(Instant Value): 0.0187265 
Bit Error Probability-After Decoder(Instant Value): 0.000141552 
Packet Error Probability(Instant Value): 0.999915 
Current PHY Mode: 6 Mb/s 
 
Time:23 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 0.114016 Mb/s 
Receiver Throughput(Application Layer): 0.110481 Mb/s 
x = 115 
SNIR(Instant Value): 16.1227 
Bit Error Probability(Instant Value): 0.0199274 
Bit Error Probability-After Decoder(Instant Value): 0.000202169 
Packet Error Probability(Instant Value): 0.999998 
Current PHY Mode: 6 Mb/s 
 
Time:24 
Sent Rate (Application Layer):25.1969 Mb/s 
Sent Rate(MAC): 26.0031 Mb/s 
Receiver Throughput(MAC): 0.016288 Mb/s 
Receiver Throughput(Application Layer): 0.0157829 Mb/s 
x = 120 
SNIR(Instant Value): 14.8071 
Bit Error Probability(Instant Value): 0.0190454 
Bit Error Probability-After Decoder(Instant Value): 0.000155876 
Packet Error Probability(Instant Value): 0.999967 
Current PHY Mode: 6 Mb/s 
 
bash-2.05b$ 
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A.2.3. Generated Error Masks – for one packet 
The user can get a file containing Error Masks for the number of packets 
simulated, i.e., it provides bit-level error masks which can be mapped to packets 
of an application for further application testing. Following is an error mask 
generated for a packet: 
 
 
 
[Masks after decoder. 1st Part: PHY PLCP header -2nd Part: MAC Header & Payload 
| 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
| 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 
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Annex.3.  
 
A Brief Comparative Study of IEEE 802.11 
PHY-MAC Models in Well-known Open 
Source Network Simulators 

 

 

 

 

In this study, we inspect the implementations of IEEE 802.11 PHY-MAC 
models of some of the high-profile, well-known, open-source network simulators. 
The simulators chosen are: NS2, OMNET++, GloMoSim, J-Sim, and YANS. The 
study concentrates on the availability and implementation flexibility of MAC 
modes and PHY propagation models. Furthermore, it is checked to see if the 
simulator produces packet error masks, in different simulation scenarios, for 
offline testing of the application behaviors. The type of license under which the 
code has been released is also mentioned.  
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A.3.1. NS2 
Webpage: http://www.isi.edu/nsnam/ns/ 
Version: ns-2.30 released on Sept 26, 2006 

A.3.1.1 MAC modes 
Ad-hoc: Supported 
Infrastructure: Supported 

MAC modes-Original 802.11 MAC 

Distributed Coordination Function (DCF) 

Supported: 

- A module is contributed by Carnegie Mellon University-CMU Monarch 
project in their ad-hockey extension to NS2 to simulate mobile nodes 
connected by wireless network interfaces, including the ability to simulate 
multi-hop wireless ad hoc networks. 
- Not distributed in the main package. 
- Ver.1.1.2  –11 August, 1999   

Point Coordination Function (PCF) 

Supported: 

- A module is contributed by Anders Lindgren of Lulea University of 
Technology. 
- Not distributed in the main package. 
- Ver.0.8b  –2001 

MAC modes-802.11e MAC -Hybrid Coordination Function (HCF) 

- A module is contributed by INRIA-Planete Group.  
Features: ET/SNRT/BER-based PHY models, 802.11a multirate and 
802.11e HCCA and EDCA. 
This module has been improved further in the YANS project; among other 
improvements, non-occurrence of packet collisions has been fixed.  
- Not distributed in the main package. 
- Ver.14.2  –Sep 7, 2005 

HCF Controlled Channel Access (HCCA): 

Supported: 

- A module contributed by Computer Netwoking Group at the University of 
Pisa. Their work allows for a flexible integration of different scheduling 
algorithms. A classifier tags incoming packets with the appropriate traffic 
stream identifier. The HCCA scheduler is used at both the QoS AP and QoS 
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stations.  
- Not distributed in the main package. 
- Ver.2006-08-23 

Enhanced DCF Channel Access (EDCA): 

Supported: 

- A module is contributed by Telecommunication Networks Group of 
“Technische Universität Berlin”. Their work extends the wireless and 
mobility code, which has been developed in the CMU Monarch project. They 
have added the contention free bursting (CFB), or TXOP bursting, to their 
model, which allows the transmission of a train of small packets without 
intermediate contention. 
- Not distributed in the main package. 
- Ver.1.0 beta  –Feb. 14, 2006 

A.3.1.2. PHY Implemented Standard-Mode 

- 802.11a –In the module contributed by INRIA-Planete Group 
- Not distributed in the main package. 
- Ver.14.2  –Sep 7, 2005 

PHY propagation models 

FreeSpace 

Supported: The classical Friis formula is implemented –Based on the work of 
CMU Monarch project. 

Two-Ray 

Supported: The Two-Ray power reception calculation has been implemented. For 
close range, the FreeSpace model is used again –Contributed by CMU Monarch 
project. 

Shadowing 

Supported: The model is correctly implemented taking into account both Path 
Loss Exponent and Shadowing Variance. The work is done at USC/ISI.  

Small-scale Fading 

Supported: This model has been implemented by Antenna and Radio 
Communications Group of Carnegie Mellon University. The fading process has 
been computed once and saved in a text file, distributed in their package, 
according to an algorithm published by them in a paper. The implementation is 
explained in more detail in Annex 1.  
- Not distributed in the main package. 
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- Ver. Sep.2000 

A.3.1.3. Packet Error Masks 
Not Supported 

A.3.1.4. License 

GPLv2 is the current license, but since the simulator has numerous 
contributors, the license of each specific module should be checked as a result. 
However, there is a specific exception added to GPLv2 which states that the 
module copyright holder gives the right that the model can be combined with free 
software programs or libraries that are released under the GNU LGPL license. 
Pre-existing software in the project are mostly governed by Original BSD license. 
Some new codes are under Apache 2.0 license. As recommended by NS2 
developers, new code should use either GNU GPL, with the specific exception, or 
Modified BSD license, or Apache 2.0 license or Original BSD license. 
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A.3.2. OMNET++ 
Webpage: http://www.omnetpp.org/ 
 

The implementations are in three different projects which are based on the 
OMNET++ simulation framework:  
– INET Framework 

Webpage: http://www.omnetpp.org/staticpages/index.php?page=20041019113420757 
Version : 20061020 

– Ipv6SuiteWithINET 
Webpage: http://ctieware.eng.monash.edu.au/twiki/bin/view/Simulation/IPv6Suite 
Version : 20060809 

– Mobility Framework 
Webpage: http://mobility-fw.sourceforge.net/ 
Version : August 13, 2006 

A.3.2.1. MAC modes 

Ad-hoc: 
INET Framework: Supported 
Ipv6SuiteWithINET: Not Supported 
Mobility Framework: Supported 

Infrastructure:  
INET Framework: Supported 
Ipv6SuiteWithINET: Supported 
Mobility Framework: Not Supported 

MAC modes-Original 802.11 MAC 

Distributed Coordination Function (DCF) 
INET Framework: Supported [CSMA/CA without RTS/CTS] 
Ipv6SuiteWithINET: Supported [But only functionalities for operating in 
Infrastructure mode] 
Mobility Framework: Supported [CSMA/CA with RTS/CTS] 

 

Point Coordination Function (PCF) 
INET Framework: Supported 
Ipv6SuiteWithINET: Supported 
Mobility Framework: Not Supported 

MAC modes-802.11e MAC -Hybrid Coordination Function (HCF) 

HCF Controlled Channel Access (HCCA), Enhanced DCF Channel Access (EDCA) 
INET Framework: Not Supported 
Ipv6SuiteWithINET: Not Supported 
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Mobility Framework: Not Supported 

A.3.2.2. PHY Implemented Standard-Mode 
802.11b –In all three projects 

PHY propagation models 

FreeSpace 
Supported: The only implemented propagation model.  
Two-Ray,Shadowing,Small-scale Fading 
Not Supported 

A.3.2.3. Packet Error Masks 
Not Supported 

A.3.2.4. License 

GPL for academic use 
Commercial License from SimulCraft for commercial use 
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A.3.3. GloMoSim 
Webpage: http://pcl.cs.ucla.edu/projects/glomosim/ 
Studied Version: Last release, 2.03-Dec 2000; before switching to the commercial product QualNet 

A.3.3.1. MAC modes 

Ad-hoc: Supported 
Infrastructure: Not Supported 

MAC modes-Original 802.11 MAC 

Distributed Coordination Function (DCF) 
Supported –CSMA/CA with RTS/CTS 

 

Point Coordination Function (PCF) 
Not Supported 

MAC modes-802.11e MAC -Hybrid Coordination Function (HCF) 

HCF Controlled Channel Access (HCCA), Enhanced DCF Channel Access (EDCA) 
Not Supported 

A.3.3.2. PHY Implemented Standard-Mode 

Partial implementation of 802.11-1997: SNR bounded, BER based with 
BPSK/QPSK modulation 

PHY propagation models 

FreeSpace, Two-Ray: 
Supported: 
The implementation of these two propagation models is based on the description 
in T. S. Rappaport "Wireless Communications: Principles & Practice." 

Shadowing 
Not Supported 

Small-scale Fading 
Supported: Rician Fading has been implemented. 

A.3.3.3. Packet Error Masks 
Not Supported 

A.3.3.4. License 

- Free for educational use (Access to download only granted to academic Top 
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Level Domains)  
Not covered by a standard well-known license. The user has the right to copy and 
modify the software at the condition that the resulting software is offered at no 
charge to research community. The original copyright notice should be included 
in any derivative work. 

- Commercial license can also be obtained from UCLA. 
The development of GloMoSim has been discontinued. The product is now under 
active development under the name of the commercial product QualNet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 57

A.3.4. J-Sim 
Webpage: http://www.j-sim.org/ 
Version: 1.3 released on 2004/02/2; latest patch: 2006/05/07, patch 4.  

A.3.4.1. MAC modes 

Ad-hoc: Supported 
Infrastructure: Not Supported 

MAC modes-Original 802.11 MAC 

Distributed Coordination Function (DCF) 
Supported [CSMA/CA + RTS/CTS] –With implementation of Power Saving Mode 

Point Coordination Function (PCF) 
Not Supported 

MAC modes-802.11e MAC -Hybrid Coordination Function (HCF) 

HCF Controlled Channel Access (HCCA), Enhanced DCF Channel Access (EDCA) 
Not Supported 

A.3.4.2. PHY Implemented Standard-Mode 

Implementation of few basic functionalities of the Physical Layer. Therefore, not 
adhering to any particular standard.  

PHY propagation models 

FreeSpace, Two-Ray 
Supported: The classical formulas are implemented. 

Shadowing, Small-scale Fading: Not Supported 

Another Implemented Model: Irregular Terrain Model 
Irregular Terrain Model, which is based on electromagnetic theory and on 
statistical analyses of both terrain features and radio measurements, predicts the 
median attenuation of a radio signal as a function of distance and the variability 
of the signal in time and in space. The model requires altitude on each point of 
the earth which can be obtained from Globe data that can be downloaded from a 
mentioned URL. When using Irregular Terrain Model, one must use ellipsoidal 
latitude and longitude coordinates instead of Cartesian coordinates.  

A.3.4.3. Packet Error Masks 
Not Supported 

A.3.4.4. License 
BSD 
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A.3.5. YANS 
Webpage: http://yans.inria.fr/ 
Version: Release 0.9.0 (2006-05-20) with ongoing improvements  

A.3.5.1. MAC modes 

Ad-hoc: Supported 
Infrastructure: Supported 

MAC modes-Original 802.11 MAC 

Distributed Coordination Function (DCF) 
Supported 

Point Coordination Function (PCF) 
Not Supported 

MAC modes-802.11e MAC -Hybrid Coordination Function (HCF) 

HCF Controlled Channel Access (HCCA), Enhanced DCF Channel Access (EDCA) 
Supported 

A.3.5.2. PHY Implemented Standard-Mode 
802.11a 

PHY propagation models 

FreeSpace, Two-Ray 
Supported: The classical Friis formula, for FreeSpace model, and Two-Ray 
Ground Reflection formula, for Two-Ray model, have been implemented. 

Shadowing 
Supported: A reference power, at a reference distance, is calculated using the 
Friis formula. The effect of Path Loss Exponent and Log-normal Shadowing is 
then incorporated. A table for guiding the user to choose the right values for the 
parameters according to any given environment is included. The implementation 
needs IT++ library to be installed on the system. The simulator uses the library 
both at compilation time and at run-time. 

Small-scale Fading 
Supported: The model is for slow flat fading channels, i.e., Rayleigh and Rician 
Fading channels. Like the Shadowing model, it needs IT++ library for both 
compilation and run-time. Extensive parameters are at user's disposal to tweak 
the model to their satisfaction. The user can also choose BER formulas according 
to the desired channel type (Different fading cases and AWGN case). Desired error 
distribution type could be indicated as well. 
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A.3.5.3. Packet Error Masks 

Supported: The user can get a file containing Error Masks for the number of 
packets simulated, i.e., it provides bit-level error masks which can be mapped to 
packets of an application for further application testing. 

A.3.5.4. License 
GPLv2 
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Annex.4.  
 
Codes  
 
[The simulator code base has undergone changes in several files. Major changes 
are in the following files; modifications are in bold font] 
 

 

 

 

 

 

propagation-model.h 
 
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */ 
/* 
 * Copyright (c) 2005,2006 INRIA 
 * All rights reserved. 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation; 
 * 
 * This program is distributed in the hope that it will be useful, 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 * GNU General Public License for more details. 
 * 
 * You should have received a copy of the GNU General Public License 
 * along with this program; if not, write to the Free Software 
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 
 * 
 * Authors: Masood Khosroshahy < m.khosroshahy@iee.org> 
 *   Hossein Manshaei, Mathieu Lacage 
 */ 
#ifndef PROPAGATION_MODEL_H 
#define PROPAGATION_MODEL_H 
 
/** 
 * There are 3 large-scale path loss models to choose from: 1-FreeSpace 2-TwoRay 3-
Shadowing. 
 * You can set the PROPAGATION_MODEL_TYPE, here in this header file, accordingly. 
 * If you'd like to consider the fading case, you need to again choose one of the 
 * above channel models as the first half of the model and the fading channel as the 
second half. 
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 * If you do not know what channel best characterizes the indoor 802.11 propagation, we 
 * recommend the usage of shadowing model, with fading channel turned off. 
 * 
 * ################## 
 * Free Space large-scale path loss model: 
 * Set PROPAGATION_MODEL_TYPE to 1 if you'd like to have a Free Space model 
 * 
 * <pre> 
 * 
 * Friis free space equation: 
 * (Pt and P are in Watts. L is in meters.) 
 * 
 *       Pt * Gt * Gr * (lambda^2) 
 *   P = -------------------------- 
 *       (4 * pi * d)^2 * L 
 * 
 * L = m_system_loss 
 * Gt = m_tx_gain (dB) 
 * Gr = m_rx_gain (dB) 
 * Pt = tx_power (dBm) 
 * d = 1.0m 
 * 
 * </pre> 
 * 
 * see [1-1] 
 * 
 * The propagation delay is calculated with a free-space model. 
 * 
 * ################## 
 * 2-ray large-scale path loss model: 
 * Set PROPAGATION_MODEL_TYPE to 2 if you'd like to have a 2-ray propagation model 
 * 
 * <pre> 
 * 2-ray model equation: 
 * 
 *       Pt * Gt * Gr (ht * hr)^2 
 *   Pr = -------------------------- 
 *                  d^4 * L 
 * 
 * ht: height of transmitter in meters 
 * hr: height of receiver in meters 
 * Pt: tx_power (dBm) 
 * d: T-R distance in meters 
 * L: m_system_loss (usually considered 1 or 0 dB) 
 * 
 * see [1-2] 
 * </pre> 
 * Attention: At large values of d, the received power and path loss become independent 
of frequency 
 * 
 * ################## 
 * Shadowing large-scale path loss model: 
 * Set PROPAGATION_MODEL_TYPE to 3 if you'd like to have a shadowing large-scale path 
loss model 
 * 
 * For calculating the received power based on this model, we first calculate the 
received power at 
 * a reference point d0 (set to 1 here) using the Friis formula. 
 * Then, we incorporate the effect of path loss exponent and shadowing variance 
parameters as follows: 
 * 
 * Received Power (in dBW) = Calculated Reference Power (in dBW) - Path Loss Exponent * 
10.0 * log10(current distance) + Shadowing 
 * 
 * For checking the typical values for path loss exponent and shadowing variance, see 
[1], [2], or [3] 
 * Some typical values: 
 * <pre> 
 *  Environment   path loss exponent shadowing variance(in dB) 
 * Outdoor-Free Space  2   4-12 
 * Outdoor-Shadowed/Urban  2.7-5   4-12 
 * Indoor-Line of sight  1.6-1.8   3-6 
 * Indoor-Obstructed  4-6   6.8 
 * 
 *For variation of these 2 parameters based on the frequency, see [3] 
 * 
 * [1-1] "Wireless Communications, Principles and Practice", 2nd ed. T.S Rappaport, 
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 *       Prentice Hall, 2002, Page 107 
 * 
 * [1-2] "Wireless Communications, Principles and Practice", 2nd ed. T.S Rappaport, 
 *       Prentice Hall, 2002, Page 125 
 * 
 * [1-3] "Wireless Communications, Principles and Practice", 2nd ed. T.S Rappaport, 
 *       Prentice Hall, 2002, Page 162 
 * 
 * [2] "Connectivity in the presence of shadowing in 802.11 ad hoc networks", 
 *     Stuedi, P.   Chinellato, O.   Alonso, G.  Dept. of Comput. Sci., ETH Zentrum, 
 *     Switzerland; Wireless Communications and Networking Conference, 
 *     2005 IEEE 13-17 March 2005, page(s): 2225- 2230 Vol. 4 
 * 
 * [3] "Investigation of indoor radio channels from 2.4 GHz to 24 GHz", 
 *     Dai Lu   Rutledge, D., California Inst. of Technol., Pasadena, CA, USA 
 *     IEEE Antennas and Propagation Society International Symposium, 22-27 June 2003, 
 *     page(s): 134- 137 vol.2 
 * 
 * </pre> 
 */ 
#define PROPAGATION_MODEL_TYPE 1 
 
/** 
 * Transmitter antenna height in meters. 
 * (Used in 2-ray propagation model) 
 */ 
#define Ht 10 
/** 
 * Receiver antenna height in meters. 
 * (Used in 2-ray propagation model) 
 */ 
#define Hr 1 
/** 
 *(Used in Shadowing large-scale path loss model) 
 */ 
#define  PATH_LOSS_EXPONENT  4.5 
/** 
 *(Used in Shadowing large-scale path loss model) in dB 
 * For error mask generation, values above 3 is not recommended. 
 */ 
#define  SHADOWING_VARIANCE 3 
/** 
 *(Used in Shadowing large-scale path loss model) 
 */ 
#define  SHADOWING_NUMBER_OF_SAMPLES 1000   // Number of samples needed -Random numbers 
generated 
 
// ############################ // 
// Fading Channel-related Settings: 
// ############################ // 
 
/** 
 * Small-scale fading & multipath model: 
 * Fading channel is very flexible and comprehensive and puts all the power of IT++ 
library 
 * at your disposal. You may select a Rayleigh channel or a Rician one for simulating a 
slow 
 * flat fading channel. 
 * You can also set the normalized doppler frequecy (DopplerFrequency / SymbolRate) 
 * Cases NOT covered: 
 * The channel models a slow flat fading channel, i.e. the channel is neither frequency-
selective, 
 * nor of fast fading type. Please refer to the accompanying documentation for more info. 
 */ 
#define IS_FADING_CHANNEL_USED 1 
/** 
 * Generating FADING_NUMBER_OF_SAMPLES of the fading process and storing 
 * them in m_fading_process_coeffs matrix 
 */ 
#define FADING_NUMBER_OF_SAMPLES 20000 
 
/** 
 * SIMULATION_BAUD_RATE is used to discretize Channel_Specification before assigning it 
 * to the channel (A requirement of IT++). The discretization should be set to sampling 
 * time, i.e. 1/SIMULATION_BAUD_RATE . 
 * Baud Rate is actually symbol rate, i.e., considering the relation between modulation 
type 
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 * and number of bits in each modulated symbol. But here, by symbol, we mean OFDM symbol. 
 * So the highest OFDM symbol rate in terms of number of bits is : (54000000/48) 
 * We set this to the highest rate, lower rates are covered as a result. 
 */ 
#define SIMULATION_BAUD_RATE (54000000/48) 
 
/** 
 * Doppler Freq.= SpeedOfObjects/Lambda 
 * NORMALIZED_DOPPLER_FREQUENCY = Doppler Freq. / Baud Rate 
 */ 
 
#define NORMALIZED_DOPPLER_FREQUENCY 0.01 
/** 
 * set_channel_profile (const vec &avg_power_dB="0", const ivec &delay_prof="0") 
 * The average effect of the application of the fading process is set to 0 dB. 
 * Please note that we choose the fading channel as the 2nd half of the model, where 
 * the 1st half is one of the FreeSpace/2-Ray/Shadowing models. 
 * The second argument sets the delays in the taps for Tapped Delay Line modeling of 
 * frequency-selective channels. As we consider indoor 802.11 channel model flat, we just 
 * consider one tap and set the delay to 0. 
 */ 
#define AVERAGE_POWER_PROFILE_dB 0 
 
/** 
 * set_doppler_spectrum (DOPPLER_SPECTRUM *tap_spectrum) 
 * set_LOS (const double relative_power, const double norm_doppler) 
 * LOS component for the first tap (zero delay). Rice must be chosen as doppler spectrum. 
 * Relative power (Rice factor) and normalized doppler. 
 * Rice: the classical Jakes spectrum and a direct tap. 
 */ 
#define FADING_CHANNEL_RICIAN_FACTOR 0 
 
/** 
 * Set to 1 if you want to generate error masks, otherwise to 0. 
 */ 
#define IS_ERROR_MASK_GENERATED 1 
 
/** 
 * 1: "[BER: AWGN Channel] " 
 * 2: "[BER: Slow-Fading Channel] " 
 * 3: "[BER: Fading Channel] " 
 * 4: "[BER: Fast-Fading Channel] " 
 * 5: "[BER: AWGN Channel -Legacy Method] " 
 * 
 * TYPE_OF_CHANNEL_FOR_BER is used in: 
 * - Phy80211::print_transmission_mode_status(void) 
 * - NoFecTransmissionMode::get_bpsk_ber (double snr) const 
 * - NoFecTransmissionMode::get_qam_ber (double snr, unsigned int m) const 
 */ 
#define TYPE_OF_CHANNEL_FOR_BER 2 
 
/** 
 * This is used in BER calculation formula for Slow-Fading case. 
 */ 
#define MIN_SNR_FOR_OUTAGE_PROB_IN_SLOW_FADING 1 
 
/** 
 * 0: "[PER Calculation Method (Error Distribution at the Viterbi Decoder's Output: 
Uniform)]" 
 * 1: "[PER Calculation Method (Error Distribution at the Viterbi Decoder's Output: Non-
Uniform)]" 
 */ 
#define PER_CALCULATION_METHOD 1 
 
/** 
 * This sets the value of m_phy_rx_noise_db in network-interface-80211-factory.cc 
 * It is used for bringing the range of the reception (or SNR) to a reasonable value. 
 * In the same class, we have: 
 * m_phy_tx_power_base_dbm = 14 
 * m_phy_ed_threshold_dbm = -140 
 */ 
#define PHY_RECEIVER_NOISE_LEVEL 17 
 
#include <stdint.h> 
#include "yans/callback.h" 
#include "yans/packet.h" 
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#include <itpp/itbase.h> 
#include <itpp/itcomm.h> 
 
using namespace itpp; 
using std::cout; 
using std::endl; 
 
namespace yans { 
 
class Position; 
class BaseChannel80211; 
 
class PropagationModel { 
public: 
 typedef Callback<void,Packet const, double, uint8_t, uint8_t> RxCallback; 
 PropagationModel (); 
 ~PropagationModel (); 
 
 void set_position (Position *position); 
 void set_channel (BaseChannel80211 *channel); 
 /* the unit of the power is Watt. */ 
 void set_receive_callback (RxCallback callback); 
 
 void get_position (double &x, double &y, double &z) const; 
 uint64_t get_prop_delay_us (double from_x, double from_y, double from_z) const; 
 double get_rx_power_w (double tx_power_dbm, double from_x, double from_y, double 
from_z); 
 
 
 /* tx power unit: dBm */ 
 void send (Packet const packet, double tx_power_dbm, uint8_t tx_mode, uint8_t 
stuff) const; 
 void receive (Packet const packet, double rx_power_w, 
        uint8_t tx_mode, uint8_t stuff); 
 
 /* unit: dBm */ 
 void set_tx_gain_dbm (double tx_gain); 
 /* unit: dBm */ 
 void set_rx_gain_dbm (double rx_gain); 
 /* no unit */ 
 void set_system_loss (double system_loss); 
 /* unit: Hz */ 
 void set_frequency_hz (double frequency); 
 
 TDL_Channel fading_channel; 
 cmat m_fading_process_coeffs; 
 int m_fading_array_index; 
 int m_fading_array_index_internal; 
 
 void increase_m_fading_array_index (void); 
 double get_fading_factor (void) const; 
 
private: 
 
 double dbm_to_w (double dbm) const; 
 double db_to_w (double db) const; 
 double get_lambda (void) const; 
 double distance (double from_x, double from_y, double from_z) const; 
 double get_rx_power_w (double tx_power_dbm, double distance); 
 
 RxCallback m_rx_callback; 
 double m_tx_gain_dbm; 
 double m_rx_gain_dbm; 
 double m_system_loss; 
 double m_lambda; 
 Position *m_position; 
 BaseChannel80211 *m_channel; 
 static const double PI; 
 static const double SPEED_OF_LIGHT; 
 
 double m_shadowing; 
 int m_shadowing_random_number_vector_index; 
 vec m_shadowing_random_number_vector;  //The vector to store the generated random 
numbers 
 
 double m_received_power_watt; 
}; 
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}; // namespace yans 
 
#endif /* PROPAGATION_MODEL_H */ 
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propagation-model.cc 
 
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */ 
/* 
 * Copyright (c) 2005,2006 INRIA 
 * All rights reserved. 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation; 
 * 
 * This program is distributed in the hope that it will be useful, 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 * GNU General Public License for more details. 
 * 
 * You should have received a copy of the GNU General Public License 
 * along with this program; if not, write to the Free Software 
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 
 * 
 * Authors: Masood Khosroshahy < m.khosroshahy@iee.org> 
 *  Hossein Manshaei, Mathieu Lacage 
 */ 
 
#include "propagation-model.h" 
#include "yans/position.h" 
#include "channel-80211.h" 
#include "yans/simulator.h" 
#include "yans/packet.h" 
#include "yans/event.tcc" 
#include <math.h> 
 
#define PROP_DEBUG 1 
 
#ifdef PROP_DEBUG 
#include <iostream> 
#  define TRACE(x) \ 
std::cout << "PROP TRACE " << Simulator::now_s () << " " << x << std::endl; 
#else 
#  define TRACE(x) 
#endif 
 
 
namespace yans { 
 
const double PropagationModel::PI = 3.1415; 
const double PropagationModel::SPEED_OF_LIGHT = 300000000; 
 
 
 
PropagationModel::PropagationModel () 
{ 
 if (PROPAGATION_MODEL_TYPE == 3) 
 { 
 /** Shadowing: 
  * Here we generate a vector of random numbers with specified parameters during 
the intilization of the class. 
  * During the execution of the program, we loop through this vector and upon 
reception of every symbol, 
  * we take the next element as the Shadowing Variance. The number of generated 
samples can be changed in the .h file. 
  */ 
  m_shadowing_random_number_vector_index = 0; 
  Normal_RNG * randClass = new Normal_RNG(0 , pow(10,SHADOWING_VARIANCE)); 
  m_shadowing_random_number_vector = randClass-
>operator()(SHADOWING_NUMBER_OF_SAMPLES); 
 } 
 
 if (IS_FADING_CHANNEL_USED ) 
 { 
 
 /** Fading: 
  * Here, we first randomize the IT++'s random number generator (If you want your 
results to 
  * be reproducible, then comment out this line: RNG_randomize();   ) 
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  * Then, we create an instance of the channel and intilize it with all the desired 
parameters 
  * which are set in the .h file 
  * Afterwards, we generate the fading process (Number of samples are set by 
FADING_NUMBER_OF_SAMPLES) 
  * and store it in m_fading_process_coeffs. The file is then saved to the disk for 
possible 
  * later inspections: 
  * The relevant Matlab commands, among others, are: 
 
  * itload fadingProcess.it;   -for loading the file to Matlab. The itload.m file 
is available 
  * from IT++; available in the package as well. 
  * semilogy(abs(fading_process_coeffs(1:200)).^2);   -for seeing the power of the 
fading process 
  * at each sample. This is what we call Fading Factor later in the code. 
  * Mean of the multiplicative fading power factor is nearly 1 and can be inspected 
by: 
  * mean((abs(fading_process_coeffs).^2)) 
  * and of course the PDF: 
  * x = 0:0.01:4; 
  * hist((abs(fading_process_coeffs(1:20000))), x); 
 
  * During the execution of the program, we loop through the fading process matrix 
(loop in the rows) 
  * and upon reception of every symbol, we take the next element as the fading 
factor. 
  */ 
 
 m_fading_array_index = 0; 
 m_fading_array_index_internal = 0; 
 RNG_randomize(); 
 
 Channel_Specification channel_spec; 
 channel_spec.set_channel_profile(vec("AVERAGE_POWER_PROFILE_dB"), vec("0")); 
 channel_spec.set_doppler_spectrum(0, Rice); // sets the spectrum type of tap 0 to 
Rice 
 channel_spec.set_LOS( FADING_CHANNEL_RICIAN_FACTOR, NORMALIZED_DOPPLER_FREQUENCY); 
 // Discretize the channel profile with resolution Ts 
 float discretizationUnit = std::pow((float)SIMULATION_BAUD_RATE,(float)-1); 
 channel_spec.discretize(discretizationUnit); 
 TDL_Channel fading_channel(channel_spec); 
 fading_channel.set_norm_doppler(NORMALIZED_DOPPLER_FREQUENCY); // set the 
normalized doppler 
 fading_channel.init (); 
 fading_channel.generate(FADING_NUMBER_OF_SAMPLES, m_fading_process_coeffs); 
 
 // Open an output file "fadingProcess.it" 
 //-- During execution of the program, the process is read from 
m_fading_process_coeffs, 
 // not from the file. 
 it_file ff("fadingProcess.it"); 
 // Save fading process coefficients to the output file 
 ff << Name("fading_process_coeffs") << m_fading_process_coeffs; 
 ff.close(); 
 } 
} 
PropagationModel::~PropagationModel () 
{} 
 
void 
PropagationModel::set_position (Position *position) 
{ 
 m_position = position; 
} 
 
void 
PropagationModel::set_channel (BaseChannel80211 *channel) 
{ 
 m_channel = channel; 
} 
void 
PropagationModel::set_receive_callback (RxCallback callback) 
{ 
 m_rx_callback = callback; 
} 
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void 
PropagationModel::send (Packet const packet, double tx_power_dbm, 
   uint8_t tx_mode, uint8_t stuff) const 
{ 
 m_channel->send (packet, tx_power_dbm + m_tx_gain_dbm, 
    tx_mode, stuff, this); 
} 
void 
PropagationModel::get_position (double &x, double &y, double &z) const 
{ 
 m_position->get (x, y, z); 
} 
uint64_t 
PropagationModel::get_prop_delay_us (double from_x, double from_y, double from_z) const 
{ 
 double dist = distance (from_x, from_y, from_z); 
 uint64_t delay_us = (uint64_t) (dist / 300000000 * 1000000); 
 return delay_us; 
} 
double 
PropagationModel::get_rx_power_w (double tx_power_dbm, double from_x, double from_y, 
double from_z) 
{ 
 double dist = distance (from_x, from_y, from_z); 
 double rx_power_w = get_rx_power_w (tx_power_dbm, dist); 
 return rx_power_w; 
} 
void 
PropagationModel::receive (Packet const packet, 
      double rx_power_w, 
      uint8_t tx_mode, uint8_t stuff) 
{ 
 m_rx_callback (packet, rx_power_w, tx_mode, stuff); 
} 
 
double 
PropagationModel::distance (double from_x, double from_y, double from_z) const 
{ 
 double x,y,z; 
 m_position->get (x,y,z); 
 double dx = x - from_x; 
 double dy = y - from_y; 
 double dz = z - from_z; 
 return sqrt (dx*dx+dy*dy+dz*dz); 
} 
 
void 
PropagationModel::set_tx_gain_dbm (double tx_gain) 
{ 
 m_tx_gain_dbm = tx_gain; 
} 
void 
PropagationModel::set_rx_gain_dbm (double rx_gain) 
{ 
 m_rx_gain_dbm = rx_gain; 
} 
void 
PropagationModel::set_system_loss (double system_loss) 
{ 
 m_system_loss = system_loss; 
} 
void 
PropagationModel::set_frequency_hz (double frequency) 
{ 
 const double speed_of_light = 300000000; 
 double lambda = speed_of_light / frequency; 
 m_lambda = lambda; 
} 
double 
PropagationModel::dbm_to_w (double dbm) const 
{ 
 double mw = pow(10.0,dbm/10.0); 
 return mw / 1000.0; 
} 
double 
PropagationModel::db_to_w (double db) const 
{ 
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 return pow(10.0,db/10.0); 
} 
 
void 
PropagationModel::increase_m_fading_array_index (void) 
{ 
 // Since no matter how small each packet is, this function is called twice 
 // (Header+payload), it is chosen to increase the real index at half rate. 
 m_fading_array_index_internal ++ ; 
 if (m_fading_array_index_internal % 2 == 0 ) 
  m_fading_array_index ++; 
 
 //cout << "m_fading_array_index_internal: " << m_fading_array_index_internal << 
endl; 
 //cout << "m_fading_array_index: " << m_fading_array_index << endl; 
 if (m_fading_array_index == FADING_NUMBER_OF_SAMPLES) 
 { 
  m_fading_array_index_internal = 0; 
  m_fading_array_index = 0; 
 } 
} 
 
double 
PropagationModel::get_fading_factor (void) const 
{ 
 return pow( abs(m_fading_process_coeffs(m_fading_array_index)), 2); 
} 
 
double 
PropagationModel::get_rx_power_w (double tx_power_dbm, double dist) 
{ 
 
 const int propagation_model_free_space = 1; 
 const int propagation_model_2_ray = 2; 
 const int propagation_model_shadowing_model = 3; 
 
 if (dist <= 1.0) { 
  return dbm_to_w (tx_power_dbm + m_rx_gain_dbm); 
 } 
   // Explanation:   m_rx_gain_dbm & m_tx_gain_dbm are actually in db 
not dbm, 
   //                but this does not affect the accuracy of the code 
   // This is an unimportant issue, programming-wise, that was not 
noticed in the original code 
 
 switch (PROPAGATION_MODEL_TYPE) 
 { 
 // Different cases are elaborated in the .h file 
  case propagation_model_free_space :{ 
   double numerator = dbm_to_w (tx_power_dbm + m_rx_gain_dbm) * m_lambda 
* m_lambda; 
   double denominator = 16 * PI * PI * dist * dist * m_system_loss; 
   double pr = numerator / denominator; 
 
   m_received_power_watt = pr; 
 
   break; 
  }; 
 
  case propagation_model_2_ray :{ 
 
   double m_2ray_path_loss_db = 40*log10(dist) + 10*log10(m_system_loss) 
\ 
   -(m_rx_gain_dbm + 20*log10(Ht) + 20*log10(Hr) ); 
 
   m_received_power_watt = dbm_to_w (tx_power_dbm - 
m_2ray_path_loss_db); 
 
   break; 
  }; 
 
 
  case propagation_model_shadowing_model :{ 
   double numerator = dbm_to_w (tx_power_dbm + m_rx_gain_dbm) * m_lambda 
* m_lambda; 
   double denominator = 16 * PI * PI * 1.0 * 1.0 * m_system_loss; 
   double prd0 = numerator / denominator; 
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   // This is for incorporating the shadowing parameter 
 
   if (m_shadowing_random_number_vector_index < 
SHADOWING_NUMBER_OF_SAMPLES ) 
   { 
    m_shadowing = 
m_shadowing_random_number_vector[m_shadowing_random_number_vector_index]; 
    m_shadowing_random_number_vector_index++; 
   } 
   else 
   { 
    m_shadowing_random_number_vector_index = 0; 
    m_shadowing = 
m_shadowing_random_number_vector[m_shadowing_random_number_vector_index]; 
   } 
 
   double pr = 10*log10(prd0) - PATH_LOSS_EXPONENT * 10.0 * log10(dist) 
+ m_shadowing; 
 
   m_received_power_watt = db_to_w (pr); 
   // cout << "m_shadowing_random_number_vector_index: " << 
m_shadowing_random_number_vector_index << endl ; 
   // Note that there will be one m_shadowing_random_number_vector in 
each client. 
   //cout << "m_shadowing: " << m_shadowing << endl ; 
   //cout << "m_received_power_watt: " <<  m_received_power_watt << " 
prd0: " <<  prd0 << endl; 
 
   break; 
  }; 
 
  default:{ 
   cout << "Propagation model not properly set! " << endl; 
  }; 
 } 
 
 return m_received_power_watt; 
 
} 
 
}; // namespace yans 
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transmission-mode.cc 
 
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*-  * 
 * 
 * Copyright (c) 2004,2005,2006 INRIA 
 * All rights reserved. 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation; 
 * 
 * This program is distributed in the hope that it will be useful, 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 * GNU General Public License for more details. 
 * 
 * You should have received a copy of the GNU General Public License 
 * along with this program; if not, write to the Free Software 
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 
 * 
 * Authors: Masood Khosroshahy < m.khosroshahy@iee.org> 
 *  Mathieu Lacage <mathieu.lacage@sophia.inria.fr> 
 */ 
 
#include "transmission-mode.h" 
 
#include "propagation-model.h" 
#include "phy-80211.h" 
 
#include <math.h> 
#include <cassert> 
 
namespace yans { 
 
TransmissionMode::~TransmissionMode () 
{} 
 
void 
TransmissionMode::generate_error_masks(unsigned int nbits, double Pb, bool 
error_distribution_type, FILE *error_masks, double EER, double snr) 
{ 
 if ( nbits == 0) 
  return; 
 
 switch (error_distribution_type) 
 { 
 case 0 : // Uniform error distribution 
  { 
   //fprintf(error_masks,"TransmissionMode::generate_error_masks() -
nbits: %d" , nbits); 
   fprintf(error_masks," \n|"); 
 
   m_random = new RandomUniform (); 
   for (uint32_t i = 0 ;  i < (nbits*codingRate) ; i++) 
   { 
    m_current_generatedRandomNumber_forMaskGeneration = m_random-
>get_double (); 
    if ( m_current_generatedRandomNumber_forMaskGeneration > Pb) 
     fprintf(error_masks," 0"); 
    else 
     fprintf(error_masks," 1"); 
   } 
  } 
  break; 
 case 1 : // New error distribution type 
  { 
   fprintf(error_masks," \n|"); 
 
   Exponential_RNG * randClass = new Exponential_RNG();  // Lambda of 
Exponential distribution is set as EER. 
   m_random = new RandomUniform (); // uniform random number (0,1) 
   uint32_t numberOfErrorEvents = 0; 
 
   // v: memoryConstraintLength = 6 (number of shift registers in the 
encoder [Std00]) 
   uint32_t v = 6 ; 
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   double averageErrorEventLength = (v+1) + 1/( coderOutputBits*( snr/2 
- sqrt(2*snr*codingRate) + codingRate ) ) ; 
 
   uint32_t errorEventEndBitPositionTemp = 0; 
   uint32_t errorEventEndBitPosition = 0; 
 
   do { 
   // errorEventEndBitPosition : indicates the error event after the 
error event indicated by errorEventEndBitPositionTemp 
   // ATTENTION! 
   // "EER + 0.1" should be changed to "EER" after EER formula is 
corrected. 
    randClass->setup( EER + 0.1); 
    errorEventEndBitPositionTemp = 
(uint32_t)std::abs((int)randClass->operator()()) ; 
 
    if (errorEventEndBitPositionTemp > (uint32_t)(nbits * 
codingRate) ) // Masks after the decoder 
     errorEventEndBitPositionTemp = 
errorEventEndBitPositionTemp % (uint32_t)(nbits * codingRate) ; 
 
    if ( errorEventEndBitPositionTemp <= (errorEventEndBitPosition 
+ 2) ) 
     break; 
 
    numberOfErrorEvents++ ; 
 
    randClass->setup( 1/averageErrorEventLength ); 
    uint32_t errorEventLength = (uint32_t)std::abs((int)randClass-
>operator()()) ; 
 
    if ( (errorEventLength > (errorEventEndBitPositionTemp - 
errorEventEndBitPosition) ) && (numberOfErrorEvents > 1) ) 
     errorEventLength = errorEventLength % ( 
errorEventEndBitPositionTemp - errorEventEndBitPosition) ; 
    else if ((errorEventLength > errorEventEndBitPositionTemp ) && 
(numberOfErrorEvents == 1)) 
     errorEventLength = errorEventLength % 
errorEventEndBitPositionTemp ; 
 
    uint32_t errorlessPeriodLength = (errorEventEndBitPositionTemp 
- errorEventEndBitPosition) - errorEventLength ; 
 
    for (uint32_t i = errorEventEndBitPosition ;  i < 
errorlessPeriodLength ; i++) 
    { 
     fprintf(error_masks," 0"); 
    } 
    for (uint32_t i = (errorEventEndBitPosition 
+errorlessPeriodLength) ;  i < errorEventEndBitPositionTemp ; i++) 
    { 
     m_current_generatedRandomNumber_forMaskGeneration = 
m_random->get_double (); 
     if ( m_current_generatedRandomNumber_forMaskGeneration > 
(Pb/EER) ) 
      fprintf(error_masks," 0"); 
     else 
      fprintf(error_masks," 1"); 
    } 
 
    errorEventEndBitPosition = errorEventEndBitPositionTemp; 
 
   }while (1); 
 
   for (uint32_t i = errorEventEndBitPosition ;  i < (uint32_t)(nbits * 
codingRate) ; i++) 
   { 
    fprintf(error_masks," 0"); 
   } 
//   fprintf(error_masks, " numberOfErrorEvents: %d ,nbits: %d, Pb: %f, 
EER: %f, snr: %f, coderOutputBits: %d, codingRate: %f" , numberOfErrorEvents, nbits, Pb, 
EER, snr, coderOutputBits, codingRate); 
  } 
  break; 
 
 default : cout << "Error distribution type in error mask generation is not set 
correctly. (transmission-mode.cc) "<< endl; 
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 } 
 
 return; 
} 
 
double 
TransmissionMode::get_m_current_values(int x) 
{ 
 /** 
  * element 0: m_current_ber; 
  * element 1: m_current_Pb; 
  * element 2: m_current_nbits_in_Chunk; 
  * element 3: m_current_csr; 
  */ 
 return m_current_values[x]; 
} 
 
NoFecTransmissionMode::NoFecTransmissionMode (double signal_spread, uint32_t rate) 
 : m_signal_spread (signal_spread), 
   m_rate (rate) 
{ 
 for (int i = 0 ; i<5 ; i++) 
  m_current_values[i] = 0; 
} 
NoFecTransmissionMode::~NoFecTransmissionMode () 
{} 
double 
NoFecTransmissionMode::get_signal_spread (void) const 
{ 
 return m_signal_spread; 
} 
uint32_t 
NoFecTransmissionMode::get_data_rate (void) const 
{ 
 return m_rate; 
} 
uint32_t 
NoFecTransmissionMode::get_rate (void) const 
{ 
 return m_rate; 
} 
double 
NoFecTransmissionMode::log2 (double val) const 
{ 
 return log(val) / log(2.0); 
} 
 
double 
NoFecTransmissionMode::get_bpsk_ber (double snr) const 
{ 
 double ber; 
/** 
 * 1: "[BER: AWGN Channel] " 
 * 2: "[BER: Slow-Fading Channel] " 
 * 3: "[BER: Fading Channel] " 
 * 4: "[BER: Fast-Fading Channel] " 
 * 5: "[BER: AWGN Channel -Legacy Method] " 
 */ 
 switch (TYPE_OF_CHANNEL_FOR_BER) 
 { 
 case 1 : 
 case 4 : // (Tc << Ts): Fast fading. The BER is calculated like AWGN case 
 { 
  double EbNo = snr * m_signal_spread / m_rate; 
         ber = Qfunction(sqrt(2*EbNo)); 
 } 
  break; 
 
 case 2 : 
 { 
  double EbNo = snr * m_signal_spread / m_rate; 
  ber = 1 - pow ( M_E , (-MIN_SNR_FOR_OUTAGE_PROB_IN_SLOW_FADING / EbNo ) ); 
 } 
  break; 
 
 case 3 : 
 { 
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  double EbNo = snr * m_signal_spread / m_rate; 
  ber = 0.5 * ( 1 - sqrt( EbNo / ( 1 + EbNo)) ); 
 } 
  break; 
 
 case 5 : 
 { 
  double EbNo = snr * m_signal_spread / m_rate; 
  double z = sqrt(EbNo); 
         ber = 0.5 * erfc(z); 
 } 
  break; 
 
 default: 
 { 
  ber = 1; 
 } 
 
 } 
 return ber; 
} 
 
double 
NoFecTransmissionMode::get_qam_ber (double snr, unsigned int m) const 
{ 
 double ber; 
/** 
 * 1: "[BER: AWGN Channel] " 
 * 2: "[BER: Slow-Fading Channel] " 
 * 3: "[BER: Fading Channel] " 
 * 4: "[BER: Fast-Fading Channel] " 
 * 5: "[BER: AWGN Channel -Legacy Method] " 
 */ 
 switch (TYPE_OF_CHANNEL_FOR_BER) 
 { 
 case 1 : 
 case 4 : // (Tc << Ts): Fast fading. The BER is calculated like AWGN case 
 { 
  double EbNo = snr * m_signal_spread / m_rate; 
  if (m == 4) 
  { 
   double symbolErrorProb = 2*Qfunction(sqrt(2*EbNo)) - pow ( 
Qfunction(sqrt(2*EbNo)) , 2) ; 
   ber = 0.5 * symbolErrorProb; 
  }else if (m > 4) 
  { 
   double symbolErrorProbTemp1 = Qfunction(sqrt(3*log2(m)*EbNo/(m-1))) ; 
   double symbolErrorProbTemp2 = 2*(sqrt(m) - 1) * symbolErrorProbTemp1 
/ sqrt(m) ; 
   double symbolErrorProbTemp3 =  pow ( (1 - symbolErrorProbTemp2), 2); 
   double symbolErrorProb =  1 - symbolErrorProbTemp3; 
   ber = symbolErrorProb / log2(m); 
  } 
 } 
  break; 
 
 case 2 : 
 { 
  double EbNo = snr * m_signal_spread / m_rate; 
  ber = 1 - pow ( M_E , (-MIN_SNR_FOR_OUTAGE_PROB_IN_SLOW_FADING / (log2(m) * 
EbNo) ) ); 
 } 
  break; 
 
 case 3 : 
 { 
  double EbNo = snr * m_signal_spread / m_rate; 
  if (m == 4) 
  { 
  // The formula written completely, although the first part could be 
shortened. 
  double alpha = 1 / ( log2(m) * EbNo * pow( sin( M_PI / m ), 2) ); 
  double symbolErrorProb = 1 - 1/m - 1/sqrt(1 + alpha) + atan( sqrt(1+ alpha) 
* tan( M_PI / m ) ) / (M_PI * sqrt(1 + alpha) ) ; 
  ber = symbolErrorProb / log2(m); 
 
  }else if (m > 4) 
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  { 
   double alphaM = 4 * (sqrt(m) - 1) / sqrt (m); 
   double betaM = 3 / (m - 1); 
   double symbolErrorProbTemp = 0.5 * betaM * log2(m) * EbNo; 
   double symbolErrorProb = 0.5 * alphaM * ( 1 - sqrt( 
symbolErrorProbTemp / (1 + symbolErrorProbTemp) ) ); 
   ber = symbolErrorProb / log2(m); 
  } 
 } 
  break; 
 
 case 5 : 
 { 
  double EbNo = snr * m_signal_spread / m_rate; 
  double z = sqrt ((1.5 * log2 (m) * EbNo) / (m - 1.0)); 
         double z1 = ((1.0 - 1.0 / sqrt (m)) * erfc (z)) ; 
         double z2 = 1 - pow ((1-z1), 2.0); 
         ber = z2 / log2 (m); 
 } 
  break; 
 
 default: 
 { 
  ber = 1; 
 } 
 
 } 
 
 return ber; 
} 
 
double 
NoFecTransmissionMode::Qfunction (double x) const 
{ 
        double q = 0.5 * erfc (x / sqrt(2)) ; 
 return q; 
} 
 
FecTransmissionMode::FecTransmissionMode (double signal_spread, uint32_t rate, double 
coding_rate) 
 : NoFecTransmissionMode (signal_spread, rate), 
   m_coding_rate (coding_rate) 
{ 
 for (int i = 0 ; i<5 ; i++) 
  m_current_values[i] = 0; 
} 
 
FecTransmissionMode::~FecTransmissionMode () 
{} 
uint32_t 
FecTransmissionMode::get_data_rate (void) const 
{ 
 return (uint32_t)(NoFecTransmissionMode::get_rate () * m_coding_rate); 
} 
uint32_t 
FecTransmissionMode::factorial (uint32_t k) const 
{ 
 uint32_t fact = 1; 
 while (k > 0) { 
  fact *= k; 
  k--; 
 } 
 return fact; 
} 
double 
FecTransmissionMode::binomial (uint32_t k, double p, uint32_t n) const 
{ 
 double retval = factorial (n) / (factorial (k) * factorial (n-k)) * pow (p, k) * 
pow (1-p, n-k); 
 return retval; 
} 
double 
FecTransmissionMode::calculate_pd_odd (double ber, unsigned int d) const 
{ 
 assert ((d % 2) == 1); 
 unsigned int dstart = (d + 1) / 2; 
 unsigned int dend = d; 
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 double pd = 0; 
 
 for (unsigned int i = dstart; i < dend; i++) { 
  pd += binomial (i, ber, d); 
 } 
 return pd; 
} 
double 
FecTransmissionMode::calculate_pd_even (double ber, unsigned int d) const 
{ 
 assert ((d % 2) == 0); 
 unsigned int dstart = d / 2 + 1; 
 unsigned int dend = d; 
 double pd = 0; 
 
 for (unsigned int i = dstart; i < dend; i++){ 
                    pd +=  binomial (i, ber, d); 
 } 
 pd += 0.5 * binomial (d / 2, ber, d); 
 
 return pd; 
} 
 
double 
FecTransmissionMode::calculate_pd (double ber, unsigned int d) const 
{ 
 double pd; 
 if ((d % 2) == 0) { 
  pd = calculate_pd_even (ber, d); 
 } else { 
  pd = calculate_pd_odd (ber, d); 
 } 
 return pd; 
} 
 
 
double 
FecTransmissionMode::calculate_Pb (double ber, uint32_t d_free, uint32_t Ck[], uint32_t 
puncturing_period) const 
{ 
/* 
 cout << "d_free: " << d_free << endl; 
 cout << "ber: " << ber << endl; 
 cout << "puncturing_period: " << puncturing_period << endl; 
 for (int i = 0 ; i < 10 ; i++) 
 cout << "Ck[" << i << "]: " << Ck[i] << endl; 
*/ 
 double Pb = 0; 
 /** 
  * ber: probability of bit error before the decoder 
  * Pb: probabity of bit error after the decoder 
  * Pk: The probability of selecting an incorrect path by the Viterbi decoder 
  *    -Chernhoff upper bound . Ref. [Pro01, equ.8.2-31] 
  * Pk = [4 ber (1 - ber)]^(k/2) 
  */ 
 
 for (int i = 0 ; i < 10 ; i++) 
  Pb = Pb + Ck[i] * pow( 4 * ber * (1 - ber), (d_free + i)/2 ); 
 
 return (Pb / puncturing_period); 
} 
 
}; // namespace yans 
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bpsk-mode.cc 
 
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*-  * 
 * 
 * Copyright (c) 2004,2005,2006 INRIA 
 * All rights reserved. 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation; 
 * 
 * This program is distributed in the hope that it will be useful, 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 * GNU General Public License for more details. 
 * 
 * You should have received a copy of the GNU General Public License 
 * along with this program; if not, write to the Free Software 
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 
 * 
 * Authors: Masood Khosroshahy < m.khosroshahy@iee.org> 
 *  Mathieu Lacage, <mathieu.lacage@sophia.inria.fr> 
 */ 
 
#include "bpsk-mode.h" 
#include "propagation-model.h" 
#include "phy-80211.h" 
 
#include <math.h> 
 
namespace yans { 
 
NoFecBpskMode::NoFecBpskMode (double signal_spread, uint32_t rate) 
 : NoFecTransmissionMode (signal_spread, rate) 
{} 
NoFecBpskMode::~NoFecBpskMode () 
{} 
 
double 
NoFecBpskMode::get_chunk_success_rate (double snr, unsigned int nbits, bool 
m_is_receiver, FILE *error_masks, PropagationModel *propagationModel) 
{ 
 double csr; 
 
/** 
 * 0: "[PER Calculation Method: Uniform Error Distribution]" 
 */ 
 switch (PER_CALCULATION_METHOD) 
 { 
  case 0 : 
  { 
   double ber = get_bpsk_ber (snr); 
   if (ber == 0) { 
    return 1; 
   } 
   csr = pow (1 - ber, nbits); 
  } 
  break; 
 
  default: 
  { 
   csr = 0; 
  } 
 
 } 
 
 return csr; 
} 
 
 
uint32_t 
NoFecBpskMode::get_bit_numbers_per_modulation_symbol (void) const 
{ 
 return 1 ; 
} 
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FecBpskMode::FecBpskMode (double signal_spread, uint32_t rate, double coding_rate, 
     unsigned int d_free, unsigned int ad_free) 
 : FecTransmissionMode (signal_spread, rate, coding_rate), 
   m_d_free (d_free), 
   m_ad_free (ad_free) 
{} 
 
 
FecBpskMode::FecBpskMode (double signal_spread, uint32_t rate, double coding_rate) 
 :FecTransmissionMode (signal_spread, rate, coding_rate) 
{ 
 if (coding_rate == 0.5) 
 { // Ref. [FOO98, Table.A1] 
  codingRate = 0.5 ; 
  d_free = 10; 
  puncturing_period = 1; 
  ad_free = 11; 
  coderOutputBits = 2; 
 
  Ck[0] = 36; 
  Ck[1] = 0; 
  Ck[2] = 211; 
  Ck[3] = 0; 
  Ck[4] = 1404; 
  Ck[5] = 0; 
  Ck[6] = 11633; 
  Ck[7] = 0; 
  Ck[8] = 77433; 
  Ck[9] = 0; 
 } 
 else if (coding_rate == 0.75) 
 { // Ref. [FOO98, Table.B.30] 
 
  codingRate = 0.75 ; 
  d_free = 5; 
  puncturing_period = 3; 
  ad_free = 8; 
  coderOutputBits = 4; 
 
  Ck[0] = 42; 
  Ck[1] = 201; 
  Ck[2] = 1492; 
  Ck[3] = 10469; 
  Ck[4] = 62935; 
  Ck[5] = 379546; 
  Ck[6] = 2252394; 
  Ck[7] = 13064540; 
  Ck[8] = 75080308; 
  Ck[9] = 427474864; 
 } 
 else cout << "d_free, puncturing_period and Ck values are not set properly in bpsk-
mode.cc" << endl; 
} 
 
FecBpskMode::~FecBpskMode () 
{} 
 
double 
FecBpskMode::get_chunk_success_rate (double snr, unsigned int nbits, bool m_is_receiver, 
FILE *error_masks, PropagationModel *propagationModel) 
{ 
 double csr, Pb; 
 
 //cout << "first: snr:" << snr << endl; 
 //cout << "nbits: " << nbits << endl; 
 //cout << "get_bit_numbers_per_modulation_symbol(): " << 
get_bit_numbers_per_modulation_symbol() << endl; 
 //cout << "( nbits / (get_bit_numbers_per_modulation_symbol () * 48) ): " << ( 
nbits / (get_bit_numbers_per_modulation_symbol () * 48) ) << endl; 
 
 if (IS_FADING_CHANNEL_USED) 
 { 
  // n_o_f_p_e_u : number_of_fading_process_elements_used 
  // 48: Number of data sub-carriers in OFDM 
  double m_fading_factor = 0 ; 
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  uint32_t n_o_f_p_e_u; 
  for ( n_o_f_p_e_u = 0 ;  n_o_f_p_e_u < 1 + ( nbits / 
(get_bit_numbers_per_modulation_symbol () * 48) ); n_o_f_p_e_u ++) 
  { 
  /** 
   * The fading process multiplicative factor, m_fading_factor, is multiplied 
by the power (snr) 
   * calculated from the first half of the channle model, i.e. from Free 
space, 2-ray or 
   * shadowing model, to get the final receive power level, hence the final 
SNR 
   */ 
 
   m_fading_factor += propagationModel->get_fading_factor(); 
   // cout << "m_fading_factor: " << m_fading_factor << endl; 
   propagationModel->increase_m_fading_array_index (); 
  } 
 
  m_fading_factor = m_fading_factor / n_o_f_p_e_u ; 
  //cout << "n_o_f_p_e_u: " << n_o_f_p_e_u << endl; 
  //cout << "m_fading_factor:(normalized) " << m_fading_factor << endl; 
  snr = snr * m_fading_factor; 
 } 
 // cout << "m_is_receiver: " << m_is_receiver << endl; 
 //cout << "Second: snr:" << snr << endl; 
 
 double ber = get_bpsk_ber (snr); 
/** 
 * 0: "[PER Calculation Method (Error Distribution at the Viterbi Decoder's Output: 
Uniform)]" 
 * 1: "[PER Calculation Method (Error Distribution at the Viterbi Decoder's Output: Non-
Uniform)]" 
 */ 
  double EER = 1; 
 
 switch (PER_CALCULATION_METHOD) 
 { 
  case 0 : 
  { 
    // Legacy code: 
    // only the first term 
    // double pd = calculate_pd (ber, m_d_free); 
    // Pb = m_ad_free * pd; 
    // Pb = pmu 
    // double pms = pow (1 - pmu, nbits); 
    // csr = pms; 
 
   Pb = calculate_Pb (ber, d_free, Ck, puncturing_period); 
   if (Pb > ber) 
    Pb = ber; 
   //cout << "ber:" << ber << "Pb:" << Pb << endl; 
 
   csr = pow (1 - Pb, nbits); 
   m_current_values[0] = ber ; 
   m_current_values[1] =  Pb; 
   m_current_values[2] = nbits ; 
   m_current_values[3] =  csr; 
   //cout << "snr:" << snr << " ber:" << ber << " Pb:" << Pb << " csr:" 
<< csr << " nbits:" << nbits << endl; 
  } 
  break; 
 
  case 1 : // New error distribution 
  { 
   Pb = calculate_Pb (ber, d_free, Ck, puncturing_period); 
   if (Pb > ber) 
    Pb = ber; 
 
   // ATTENTION! 
   // TEMP SOLUTION. 
   // ############################################################# 
   // snr_moderated has better be replaced with snr. 
   double snr_moderated ; 
   if ( snr < 70) 
    snr_moderated = snr; 
   else snr_moderated = 70; 
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   // Error Event Rate. Ref.[Kave Salamatian's Paper] 
   // Between 9e155 and 8e155 for : Free space + no fading channel + 
BER(AWGN) 
   // double EER_normalizing_factor = 9e155 ; 
   // EER = ad_free * pow( M_E , (codingRate * snr_moderated * d_free) )  
/ EER_normalizing_factor; 
 
   // THESE TWO LINES MUST BE DELETED AFTER EER FORMULA IS CORRECTED. 
   EER = 2 * Pb; 
   snr = snr_moderated ; 
   // In TransmissionMode::generate_error_masks(), "EER + 0.1" should be 
changed to "EER" 
   // ############################################################# 
 
   // lambda = 1 / w  ,where w is the mean length of the errorless 
period 
   // lambda: parameter of geometric distribution of errorless period 
length 
   // lambda: success probability in geometric distribution 
   // lambda = f (EER , memoryConstraintLength, coderOutputBits, snr, 
codingRate) 
   // Ref.[Kave Salamatian's Paper] 
 
   // v: memoryConstraintLength = 6 (number of shift registers in the 
encoder [Std00]) 
   int v = 6 ; 
   double partA = 1/EER ; 
   double partB = (v+1) + 1/( coderOutputBits*( snr_moderated/2 - 
sqrt(2*snr_moderated*codingRate) + codingRate ) ) ; 
   double w = partA - partB ; 
 
   if ( w < 1 ) 
    w = 1; 
   double lambda = 1/w; 
 
   // PER from Ref.[Kave Salamatian's Paper] 
   csr = pow ( (1 - lambda) , nbits); 
 
   m_current_values[0] = ber ; 
   m_current_values[1] =  Pb; 
   m_current_values[2] = nbits ; 
   m_current_values[3] =  csr; 
  } 
  break; 
 
  default: 
  { 
   csr = 0; 
  } 
 } 
 
 if (IS_ERROR_MASK_GENERATED && m_is_receiver) 
  generate_error_masks(nbits, Pb, PER_CALCULATION_METHOD, error_masks, EER, 
snr); 
 
 return csr; 
} 
 
uint32_t 
FecBpskMode::get_bit_numbers_per_modulation_symbol (void) const 
{ 
 return 1 ; 
} 
 
}; // namespace yans 
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qam-mode.cc 
 
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*-  * 
 * 
 * Copyright (c) 2004,2005,2006 INRIA 
 * All rights reserved. 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation; 
 * 
 * This program is distributed in the hope that it will be useful, 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 * GNU General Public License for more details. 
 * 
 * You should have received a copy of the GNU General Public License 
 * along with this program; if not, write to the Free Software 
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 
 * 
 * Authors: Masood Khosroshahy < m.khosroshahy@iee.org> 
 *  Mathieu Lacage, <mathieu.lacage@sophia.inria.fr> 
 */ 
 
#include "qam-mode.h" 
#include "propagation-model.h" 
#include "phy-80211.h" 
 
#include <math.h> 
 
namespace yans { 
 
NoFecQamMode::NoFecQamMode (double signalSpread, uint32_t rate, unsigned int M) 
 : NoFecTransmissionMode (signalSpread, rate), 
   m_m (M) 
{} 
NoFecQamMode::~NoFecQamMode () 
{} 
 
double 
NoFecQamMode::get_chunk_success_rate (double snr, unsigned int nbits, bool m_is_receiver, 
FILE *error_masks, PropagationModel *propagationModel) 
{ 
 double csr; 
/** 
 * 0: "[PER Calculation Method: Uniform Error Distribution]" 
 */ 
 switch (PER_CALCULATION_METHOD) 
 { 
  case 0 : 
  { 
   double ber = get_qam_ber (snr, m_m); 
   if (ber == 0) { 
    return 1; 
   } 
   csr = pow (1 - ber, nbits); 
  } 
  break; 
 
  default: 
  { 
   csr = 0; 
  } 
 } 
 
 return csr; 
} 
 
uint32_t 
NoFecQamMode::get_bit_numbers_per_modulation_symbol (void) const 
{ 
 // Ref. [Std00, Table.78] 
 if (m_m == 4) 
  return 2 ; 
 else if (m_m == 16) 
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  return 4 ; 
 else if (m_m == 64) 
  return 6 ; 
 else return 0; // i.e., there is a problem. 
} 
 
 
FecQamMode::FecQamMode (double signalSpread, 
   uint32_t rate, 
   double codingRate, 
   unsigned int M, 
   unsigned int dFree, 
   unsigned int adFree, 
   unsigned int adFreePlusOne) 
 : FecTransmissionMode (signalSpread, rate, codingRate), 
   m_m (M), m_d_free (dFree), 
   m_ad_free (adFree), 
   m_ad_free_plus_one (adFreePlusOne) 
{} 
 
FecQamMode::FecQamMode (double signalSpread, 
   uint32_t rate, 
   double coding_rate, 
   unsigned int M) 
 : FecTransmissionMode (signalSpread, rate, coding_rate), 
   m_m (M) 
{ 
 
 if (coding_rate == 0.5) 
 { // Ref. [FOO98, Table.A1] 
  ad_free = 11; 
  coderOutputBits = 2; 
  codingRate = 0.5 ; 
  d_free = 10; 
  puncturing_period = 1; 
 
  Ck[0] = 36; 
  Ck[1] = 0; 
  Ck[2] = 211; 
  Ck[3] = 0; 
  Ck[4] = 1404; 
  Ck[5] = 0; 
  Ck[6] = 11633; 
  Ck[7] = 0; 
  Ck[8] = 77433; 
  Ck[9] = 0; 
 } 
 else if (coding_rate == 0.75) 
 { // Ref. [FOO98, Table.B.30] 
  codingRate = 0.75 ; 
  ad_free = 8; 
  coderOutputBits = 4; 
  d_free = 5; 
  puncturing_period = 3; 
 
  Ck[0] = 42; 
  Ck[1] = 201; 
  Ck[2] = 1492; 
  Ck[3] = 10469; 
  Ck[4] = 62935; 
  Ck[5] = 379546; 
  Ck[6] = 2252394; 
  Ck[7] = 13064540; 
  Ck[8] = 75080308; 
  Ck[9] = 427474864; 
 } 
 else if (coding_rate == 0.666) 
 { // Ref. [FOO98, Table.B.29] 
  codingRate = 0.666; 
  ad_free = 1; 
  coderOutputBits = 3; 
  d_free = 6; 
  puncturing_period = 2; 
 
  Ck[0] = 3; 
  Ck[1] = 70; 
  Ck[2] = 285; 
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  Ck[3] = 1276; 
  Ck[4] = 6160; 
  Ck[5] = 27128; 
  Ck[6] = 117019; 
  Ck[7] = 498835; 
  Ck[8] = 2103480; 
  Ck[9] = 8781268; 
 } 
 else cout << "d_free, puncturing_period and Ck values are not set properly in qam-
mode.cc" << endl; 
} 
 
FecQamMode::~FecQamMode () 
{} 
double 
FecQamMode::get_chunk_success_rate (double snr, unsigned int nbits, bool m_is_receiver, 
FILE *error_masks, PropagationModel *propagationModel) 
{ 
 double csr, Pb; 
 
 //cout << "first: snr:" << snr << "m_m:" << m_m << endl; 
 //cout << "nbits: " << nbits << endl; 
 //cout << "get_bit_numbers_per_modulation_symbol(): " << 
get_bit_numbers_per_modulation_symbol() << endl; 
 //cout << "( nbits / (get_bit_numbers_per_modulation_symbol () * 48) ): " << ( 
nbits / (get_bit_numbers_per_modulation_symbol () * 48) ) << endl; 
 
 if (IS_FADING_CHANNEL_USED) 
 { 
  // n_o_f_p_e_u : number_of_fading_process_elements_used 
  // 48: Number of data sub-carriers in OFDM 
  double m_fading_factor = 0 ; 
  uint32_t n_o_f_p_e_u; 
  for ( n_o_f_p_e_u = 0 ;  n_o_f_p_e_u < 1 + ( nbits / 
(get_bit_numbers_per_modulation_symbol () * 48) ) ; n_o_f_p_e_u ++) 
  { 
  /** 
   * The fading process multiplicative factor, m_fading_factor, is multiplied 
by the power (snr) 
   * calculated from the first half of the channle model, i.e. from Free 
space, 2-ray or 
   * shadowing model, to get the final SNR 
   */ 
 
   m_fading_factor += propagationModel->get_fading_factor(); 
   // cout << "m_fading_factor: " << m_fading_factor << endl; 
   propagationModel->increase_m_fading_array_index (); 
  } 
 
  m_fading_factor = m_fading_factor / n_o_f_p_e_u ; 
  //cout << "n_o_f_p_e_u: " << n_o_f_p_e_u << endl; 
  //cout << "m_fading_factor:(normalized) " << m_fading_factor << endl; 
  snr = snr * m_fading_factor; 
 } 
 // cout << "m_is_receiver: " << m_is_receiver << endl; 
 //cout << "Second: snr:" << snr << "m_m:" << m_m << endl; 
 
 double ber = get_qam_ber (snr, m_m); 
/** 
 * 0: "[PER Calculation Method (Error Distribution at the Viterbi Decoder's Output: 
Uniform)]" 
 * 1: "[PER Calculation Method (Error Distribution at the Viterbi Decoder's Output: Non-
Uniform)]" 
 */ 
 double EER = 1; 
 
 switch (PER_CALCULATION_METHOD) 
 { 
  case 0 : 
  { 
    // Legacy code: 
      /* first term */ 
    //double pd = calculate_pd (ber, m_d_free); 
    //double pmu = m_ad_free * pd; 
      /* second term */ 
    //pd = calculate_pd (ber, m_d_free + 1); 
    //pmu += m_ad_free_plus_one * pd; 
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    //double pms = pow (1 - pmu, nbits); 
    //csr = pms; 
 
   Pb = calculate_Pb (ber, d_free, Ck, puncturing_period); 
   if (Pb > ber) 
    Pb = ber; 
   //cout << "ber:" << ber << "Pb:" << Pb << endl; 
   csr = pow (1 - Pb, nbits); 
   m_current_values[0] = ber ; 
   m_current_values[1] =  Pb; 
   m_current_values[2] = nbits ; 
   m_current_values[3] =  csr; 
   //cout << "snr:" << snr << " ber:" << ber << " Pb:" << Pb << " csr:" 
<< csr << " nbits:" << nbits << endl; 
  } 
  break; 
 
  case 1 : // New error distribution 
  { 
   Pb = calculate_Pb (ber, d_free, Ck, puncturing_period); 
   if (Pb > ber) 
    Pb = ber; 
 
   // ATTENTION! 
   // TEMP SOLUTION. 
   // ############################################################# 
   // snr_moderated has better be replaced with snr. 
   double snr_moderated ; 
   if ( snr < 70) 
    snr_moderated = snr; 
   else snr_moderated = 70; 
 
   // Error Event Rate. Ref.[Kave Salamatian's Paper] 
   // Between 9e155 and 8e155 for : Free space + no fading channel + 
BER(AWGN) 
   // double EER_normalizing_factor = 9e155 ; 
   // EER = ad_free * pow( M_E , (codingRate * snr_moderated * d_free) )  
/ EER_normalizing_factor; 
 
   // THESE TWO LINES MUST BE DELETED AFTER EER FORMULA IS CORRECTED. 
   EER = 2 * Pb; 
   snr = snr_moderated ; 
   // In TransmissionMode::generate_error_masks(), "EER + 0.1" should be 
changed to "EER" 
   // ############################################################# 
 
   // lambda = 1 / w  ,where w is the mean length of the errorless 
period 
   // lambda: parameter of geometric distribution of errorless period 
length 
   // lambda: success probability in geometric distribution 
   // lambda = f (EER , memoryConstraintLength, coderOutputBits, snr, 
codingRate) 
   // Ref.[Kave Salamatian's Paper] 
 
   // v: memoryConstraintLength = 6 (number of shift registers in the 
encoder [Std00]) 
   int v = 6 ; 
   double partA = 1/EER ; 
   double partB = (v+1) + 1/( coderOutputBits*( snr_moderated/2 - 
sqrt(2*snr_moderated*codingRate) + codingRate ) ) ; 
   double w = partA - partB ; 
 
   if ( w < 1 ) 
    w = 1; 
   double lambda = 1/w; 
 
   // PER from Ref.[Kave Salamatian's Paper] 
   csr = pow ( (1 - lambda) , nbits); 
 
   m_current_values[0] = ber ; 
   m_current_values[1] =  Pb; 
   m_current_values[2] = nbits ; 
   m_current_values[3] =  csr; 
  } 
  break; 
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  default: 
  { 
   csr = 0; 
  } 
 } 
 
 if (IS_ERROR_MASK_GENERATED && m_is_receiver) 
  generate_error_masks(nbits, Pb, PER_CALCULATION_METHOD, error_masks, EER, 
snr); 
 
 return csr; 
} 
 
uint32_t 
FecQamMode::get_bit_numbers_per_modulation_symbol (void) const 
{ 
 // Ref. [Std00, Table.78] 
 if (m_m == 4) 
  return 2 ; 
 else if (m_m == 16) 
  return 4 ; 
 else if (m_m == 64) 
  return 6 ; 
 else return 0; // i.e., there is a problem. 
} 
 
}; // namespace yans 
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