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Abstract— We present a simple extension to the MINC loss
estimator which can be used to perform loss tomography with
less feedback bits per probe. In MINC loss inference, each
receiver in the multicast tree reports one bit of feedback per
probe. This poses constraints when MINC is used with RTCP
and feedback bandwidth must not exceed5% of data bandwidth.
In the Extended MINC loss estimator (EMLE), receivers report
feedbacks for groups of w consecutive probes. Each feedback
requires only 1 bit per w probes. EMLE leverages the analysis
of MINC loss estimator itself and results in the reduction of
feedback bits without substantial loss of accuracy.

I. I NTRODUCTION

Multicast-based Inference of Network internal Characteris-
tics (MINC) [1] is a method of performing network tomogra-
phy in which internal characteristics of a network are inferred
from end-to-end multicast measurements. MINC can infer
internal characteristics of a network that lies under a multicast
tree. MINC can infer loss rates and delay distributions of
internal network links [2], [3]. To infer loss rates, the source
injects a stream of probe packets into the multicast tree.
Corresponding to each probe, each receiver reports whether
it received the probe packet (1) or not (0). Using the binary
feedbacks collected from all receivers, per link loss rates in
the multicast tree are inferred. In this way, one bit of feedback
is needed per probe in MINC.

Since dedicated infrastructures to perform large scale mea-
surements are generally complex to deploy, authors of [4] pro-
posed an architecture which couples the process of performing
end-to-end multicast measurements with RTP/RTCP [5]. In
this method, RTP data packets of a multicast session act as
probes and the feedbacks to perform MINC loss inference are
piggybacked on RTCP packets. One of the constraints here is
that in large multicast groups, receivers are unable to provide
one bit feedback per probe since this can cause the feedback
bandwidth to exceed5% of data bandwidth [4]. In this work,
we consider the problem of performing loss tomography with
less feedback bits. We have designed a simple extension to the
MINC loss estimator which uses information from available
probes but reports less feedback bits.

II. EXTENDED MINC L OSSESTIMATOR (EMLE)

In EMLE, N probe packets are injected from the source of
the multicast tree as in MINC. Instead of providing a feedback
corresponding to every probe, receivers report feedbacks for
windows ofw consecutive probes. Each receiver reports only
two values - whether it observed0 losses or more than0 losses

in windows of w consecutive probes. The window sizew is
constant and common to all receivers. In total, receivers report
N/w feedbacks which requireN/w bits.

Using these feedbacks, the passage probability of each link
in the multicast tree is estimated in the following manner.
With usual notation, letV denote the set of all nodes in the
logical multicast tree, letR ⊂ V denote the set of receiver
nodes, and letS ∈ V denote the source node. Letf(k) denote
the father of nodek and letd(k) denote the set of children
of node k. Instead of modeling the passage of each probe
packet as in MINC, we model the passage ofw consecutive
probe packets through the multicast tree. For each nodek ∈
V , we estimate the quantityAk(0|w) that is the probability
of observing0 losses on the path from sourceS to k given
that w probe packets are sent fromS. From this, the passage
probability of the path fromS to k, denoted bypk is calculated
as pk = (Ak(0|w))1/w. Then, the passage probability of the
link terminating atk, denoted byαk is calculated asαk =
pk/pf(k).

For each nodek, Ak(0|w) is estimated as follows. Let
γk(0|w) denote the probability that at least one receiver in
the subtree rooted atk observes0 losses given thatw probes
are sent fromS. For each nodek, γk(0|w) can be calculated
directly from the feedback data. Then,

AS(0|w) = 1

Ak(0|w) = γk(0|w),∀k ∈ R

For all k ∈ V − R − S, Ak(0|w) is estimated by finding the
root of the following polynomial

γk(0|w) = Ak(0|w)
{

1−
∏

d∈d(k)

(1− γd(0|w)
Ak(0|w)

)
}

When window sizew = 1, EMLE reduces to MINC and the
passage probability of the path fromS to k is estimated as
pk = Ak(0|1).

EMLE does not require any explicit implementation. The
quantities defined above are analogous to those used in MINC
loss estimator, but have extended meanings. Any implemen-
tation of MINC loss estimator can be used for estimating
passage probabilities, if receivers report binary feedbacks in
the following manner

feedback=

{
1 if 0 losses amongw probes,

0 if 1 or more losses amongw probes.
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(a) Model-based Simulation
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(b) NS Simulation

Fig. 1. Relative Error for windows of different sizes

Giving these ”new” feedbacks to an implementation of MINC
loss estimator will result in the estimation of quantity(αk)w

for each link terminating atk. Quantitiesαk are then obtained
in a straight forward manner.

III. E XPERIMENTS

Fig 1 shows the behavior of EMLE for Model-based and NS
simulations. For these experiments, we simulated an8-receiver
complete binary tree. In Model-based simulations, losses on
links are created using Bernoulli losses. In NS simulations,
losses on links occur due to buffer overflows on nodes as the
probe packet competes with background TCP and exponential
on-off UDP traffic. For NS simulations, the parameters were
set as in [3]. For both cases, passage rates of links varied from
85% to 95% and the simulations were run100 times. Fig 1
plots the average absolute relative error for one of the links in
the tree for window sizes1 to 7. Window size1 corresponds
to MINC.

The accuracy of EMLE depends on the estimation of
A(0|w) for each node. As the window sizew increases,

A(0|w) estimated is less accurate since the number of feed-
backs used for its estimation decrease (feedbacks corre-
sponding to all probes in a window having been received).
In Model-based simulations, the Bernoulli loss assumption
holds perfectly. Thus, estimating the passage probability as
(A(0|w))1/w yields low errors as compared to NS simulations,
where the Bernoulli loss assumption holds only approximately.
With a window of size7, EMLE spends1/7 bits of feedback
per probe. In MINC,1 bit of feedback is spent per probe.

IV. CONCLUSIONS ANDFUTURE WORK

In this abstract, we introduced the Extended MINC Loss
Estimator which can be used to perform loss tomography
with less feedback bits per probe. We showed its behavior
for Model-based and NS simulations. When used with RTCP,
it can help in the reduction of feedback bandwidth. When
MINC is used with RTCP, thinning is used, i.e., receivers
report feedbacks corresponding to selective probes. EMLE like
MINC can be used both on the original or thinned probes.

At present, EMLE estimates only the first element ofloss
distribution i.e., A(0|w). If receivers report the number of
losses in each window (i.e., values0..w), we would like to
know if all elements of loss distribution can be estimated,
i.e. elementsA(i|w), 0 ≤ i ≤ w − 1. If all elements of
loss distribution are available, the passage probability can be
estimated in the following manner.

pk =
j=w−1∑

j=0

(w − j)Ak(j|w)
w

If receivers report the number of losses observed in each
window, thendlog2(w + 1)e bits are needed per feedback.

EMLE has two limitations: (a) when loss rates are high,
large window sizes cannot be used since the loss distribution
elementA(0|w) cannot be estimated accurately, (b) at present,
EMLE does not handle the loss of feedbacks. If the feedback
loss process is MAR (missing at random), we would like to
know if ideas of MINC loss estimator with missing data [6]
apply to EMLE as well. In future, we shall work on these
problems and on ways of estimating loss rates of links with
less feedback bits.
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