
IEEE 802.11 Rate Adaptation: A Practical Approach

Mathieu Lacage, Mohammad Hossein Manshaei, and Thierry Turletti
Institut National de Recherche en Informatique et en Automatique (INRIA)

Planete Project, 2004 route des Lucioles
06902 Sophia Antipolis, France

{lacage,manshaei,turletti}@sophia.inria.fr

ABSTRACT
Today, three different physical (PHY) layers for the IEEE
802.11 WLAN are available (802.11a/b/g); they all provide
multi-rate capabilities. To achieve a high performance un-
der varying conditions, these devices need to adapt their
transmission rate dynamically. While this rate adaptation
algorithm is a critical component of their performance, only
very few algorithms such as Auto Rate Fallback (ARF) or
Receiver Based Auto Rate (RBAR) have been published and
the implementation challenges associated with these mech-
anisms have never been publicly discussed. In this paper,
we first present the important characteristics of the 802.11
systems that must be taken into account when such algo-
rithms are designed. Specifically, we emphasize the contrast
between low latency and high latency systems, and we give
examples of actual chipsets that fall in either of the dif-
ferent categories. We propose an Adaptive ARF (AARF)
algorithm for low latency systems that improves upon ARF
to provide both short-term and long-term adaptation. The
new algorithm has very low complexity while obtaining a
performance similar to RBAR, which requires incompatible
changes to the 802.11 MAC and PHY protocol. Finally, we
present a new rate adaptation algorithm designed for high
latency systems that has been implemented and evaluated
on an AR5212-based device. Experimentation results show
a clear performance improvement over the algorithm previ-
ously implemented in the AR5212 driver we used.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms
Algorithms, Design, Measurement, Experimentation

Keywords
IEEE 802.11, MADWIFI, PHY Rate Selection, ARF, RBAR

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSWiM’04, October 4-6, 2004, Venezia, Italy.
Copyright 2004 ACM 1-58113-953-5/04/0010 ...$5.00.

1. INTRODUCTION
IEEE 802.11 is the most popular WLAN system in the

world today and it is likely to play an important role in
the next generation of wireless and mobile communication
systems. Originally, IEEE 802.11 DSSS (Direct Sequence
Spread Spectrum) offered only two physical data rates: all
transmission was done at either the 1Mbps or the 2Mbps
rate. In 1999, the IEEE defined two high rate extensions:
802.11b based on DSSS technology, with data rates up to
11Mbps in the 2.4GHz band, and 802.11a, based on OFDM
(Orthogonal Frequency Division Multiplexing) technology,
with data rates up to 54 Mbps in the 5GHz band. In 2003,
the 802.11g standard that extends the 802.11b PHY layer
to support data rates up to 54 Mbps in the 2.4 GHz band
was finalized.

There are many reasons for the highly volatile nature of
the wireless medium used by the IEEE 802.11 standard: fad-
ing, attenuation, interference from other radiation sources,
interference from other 802.11 devices in an ad hoc network,
etc. We can classify these transmission quality variations
as either transient short-term modifications to the wireless
medium or durable long-term modifications to the transmis-
sion environment.

Typically, if someone walks around, closes a door, or moves
big objects, this will have an effect on the transmission
medium for a very short time. Its throughput capacity might
drop sharply but not for long. If one decides to move to an-
other office, thus approaching the AP (Access Point), the
attenuation will decrease and this will have a longer lasting
effect on the energy of the radio signal that will probably
decrease the BER (Bit Error Rate). This, in turn, will allow
higher application-level throughput since the PER (Packet
Error Rate) is lower.

Algorithms that adapt the transmission parameters to the
channel conditions can be designed to optimize a number of
parameters depending on the network topology and the type
of device:

• Power consumption: mobile devices which implement
802.11 radios usually have a fixed energy budget (due
to finite battery life). As such, it is of utter importance
to minimize the amount of energy consumed by their
private 802.11 radios.

• Throughput: the higher 802.11 transmission rates of-
ten provide important potential throughput but they
usually have higher BERs. Higher BERs require more
retransmissions for error-free transmissions, which de-
creases the application-level throughput.

In this paper, we focus on the task of maximizing the
application-level throughput in infrastructure networks thro-
ugh practical rate-adaptation algorithms. Because no pub-
lished paper discusses the issues surrounding real implemen-
tations of 802.11 rate adaptation algorithms, we believe our
main contribution to be the identification of two classes
of 802.11 devices: low latency and high latency systems.
Low latency systems allow the implementation of per-packet
adaptation algorithms while high latency systems require
periodic analysis of the transmission characteristics and up-
dates to the transmission parameters.

Our second contribution is the proposal of two simple
novel algorithms each designed for one of the two classes
of devices identified. Their performance is close to the op-
timum represented by the impractical RBAR[3] in the case
of infrastructure networks. We present experimental results
that show that our new algorithms can be readily imple-
mented on existing hardware and offer considerable perfor-
mance improvements over existing solutions.

This paper is organized as follows. In Section 2, we present
the existing algorithms that try to address the task of rate
adaptation and their shortcomings. Then, we identify in
Section 3 the key architectural feature of a 802.11 system
that must be taken into account when designing a rate adap-
tation algorithm: namely, the distinction between low and
high communication latency between the radio baseband
and the block that implements the rate control algorithm.
We describe in Section 4 the AARF algorithm designed for
low communication latency systems that is based on per-
packet short-term adaptation but introduces a specific long-
term adaptation mechanism to improve the application level
throughput. In Section 5, we present a new rate control al-
gorithm named Adaptive Multi Rate Retry (AMRR) based
on the same ideas developed for AARF that has been de-
signed, implemented, and evaluated on a high communica-
tion latency system based on an Atheros AR5212 chipset.
The experimental measurements obtained confirm the sim-
ulation results and offer convincing evidence that our AMRR
algorithm achieves higher performance than the previously
implemented algorithm. Finally, we present a summary of
our work in Section 6.

2. RELATED WORK

2.1 ARF
ARF [4] was the first rate adaptation algorithm to be pub-

lished. It was designed to optimize the application through-
put in WaveLan II devices, which implemented the 802.11
DSSS standard1. In ARF, each sender attempts to use a
higher transmission rate after a fixed number of successful
transmissions at a given rate and switches back to a lower
rate after 1 or 2 consecutive failures. Specifically, the orig-
inal ARF algorithm decreases the current rate and starts
a timer when two consecutive transmissions fail in a row.
When either the timer expires or the number of successfully
received per-packet acknowledgments reaches 10, the trans-
mission rate is increased to a higher data rate and the timer
is reset. When the rate is increased, the first transmission

1Rumors claim that ARF has been used in Agere and Intersil
Prism II 802.11b devices but it is hard to come up with
any meaningful information since this is considered sensitive
intellectual property.

after the rate increase (commonly referred to as the probing
transmission or probing packet) must succeed or the rate
is immediately decreased and the timer is restarted rather
than trying the higher rate a second time. This scheme suf-
fers from two problems:

• If the channel conditions change very quickly, it can-
not adapt effectively. For example, in an ad hoc net-
work where the interference bursts are generated by
other 802.11 packet transmissions, the optimum rate
changes from one packet to the next. Because ARF
requires 1 or 2 packet failures to decrease its rate and
up to 10 successful packet transmissions to increase
it, it will never be synchronized with the sub-packet
channel condition changes.

• If the channel conditions do not change at all, or change
very slowly, it will try to use a higher rate every 10 suc-
cessfully transmitted packets; this results in increased
retransmission attempts and thus decreases the appli-
cation throughput.

2.2 RBAR
RBAR [3] is the only other published rate adaptation algo-

rithm whose goal is to optimize the application throughput.
This algorithm requires incompatible changes to the IEEE
802.11 standard: the interpretation of some MAC control
frames is changed and each data frame must include a new
header field. While this algorithm is of little practical in-
terest because it cannot be deployed in existing 802.11 net-
works, it is of important theoretical interest because it can
be used as a performance reference.

The RBAR algorithm mandates the use of the RTS/CTS
mechanism: a pair of Request To Send/Clear To Send con-
trol frames are exchanged between the source and the des-
tination nodes prior to the start of each data transmission.
The receiver of the RTS frame calculates the transmission
rate to be used by the upcoming data frame transmission
based on the Signal To Noise Ratio (SNR) of the received
RTS frame and on a set of SNR thresholds calculated with
an a priori wireless channel model. The rate to use is then
sent back to the source in the CTS packet. The RTS, CTS,
and data frames are modified to contain information on the
size and rate of the data transmission to allow all the nodes
within the transmission range to correctly update their Net-
work Allocation Vector (NAV). This protocol suffers from
numerous flaws that are summarized below:

• The threshold mechanism used in each receiver to pick
the best possible rate requires a calculation of the SNR
thresholds based on an a priori channel model.

• The algorithm assumes that the SNR of a given packet
is available at the receiver, which is not generally true:
some (but not all) 802.11 devices provide an estima-
tion of the SNR by measuring the energy level prior to
the start of the reception of a packet and during the
reception of the packet.

• The RTS/CTS protocol is required even though no
hidden nodes are present.

• The interpretation of the RTS and CTS frames and
the format of the data frames is not compatible with
the 802.11 standard. Thus, RBAR cannot be deployed
in existing 802.11 networks.

2.3 MiSer
MiSer is an algorithm based on the 802.11a and 802.11h2

standards whose goal is to optimize the local power con-
sumption (and not the application throughput which is our
stated goal) [11]. To do so, it adapts both the transmis-
sion rate and the transmission power. The set of optimal
rate/transmission power pairs is calculated offline with a
specific wireless channel model. At runtime, the wireless
nodes execute simple table lookups to pick the optimum
rate/transmission power combination.

The main problems with this algorithm (other than man-
dating the use of the RTS/CTS protocol) are twofold:

• It requires the choice of an a priori wireless channel
model for the offline table calculation.

• It requires a priori knowledge of the number of con-
tending stations on the wireless network.

3. LOW AND HIGH COMMUNICATION
LATENCY SYSTEMS

The IEEE 802.11 specification requires the implementa-
tion of two layers:

• The 802.11 PHY layer: this integrates the modulation,
demodulation, encoding, decoding, ADC, DAC, and
filtering functions. These functions are always entirely
implemented in hardware;

• The 802.11 MAC layer: this is always implemented by
a combination of dedicated hardware and dedicated
software. The exact split between these two domains
is entirely device specific.

The rate control algorithms we are interested in are part
of the MAC layer; their function is to choose the rate to be
used for each packet that is transfered to the PHY layer.
The exact architecture of the MAC layer, i.e., how much of
the MAC layer is implemented in hardware, varies a lot from
one device to another. Therefore, it is very hard to design
a device independent rate control mechanism. However, it
is clear that the communication latency between the PHY
layer and the block that implements the rate control algo-
rithm within the MAC layer is one of the most important
parameters to take into account when designing the algo-
rithm. If the communication latency is low, it is possible to
devise a rate control algorithm that implements per-packet
adaptation. If it is higher than the threshold described in
the following section, more complex methods must be em-
ployed.

3.1 Communication latency requirements
Low latency systems allow us to implement per-packet

adaptation. This means that for each packet sent, we must
get feedback information on the transmission status of this
packet before sending the next packet. The 802.11 MAC
protocol indicates transmission success by sending back an
ACK (Acknowledgment) to the transmitter and transmis-
sion failure is detected by the lack of an ACK (there is no
Negative ACK).

2802.11h is an extension of the current 802.11 MAC and
the high-speed 802.11a PHY, to implement an intelligent
transmission power control.

The protocol states that the minimum interval of time
between the end of a successful transmission and the start
of the following transmission (Tsuccess) is equal to DIFS
and that the minimum interval of time between the end of a
failed transmission and the start of the following transmis-
sion (Tfailure) is equal to ACKTimeout + DIFS. As such,
Tsuccess < Tfailure which means that, as shown in Table 1,
the minimum amount of time (across all the 802.11 PHY
standards) we have to decide what rate to use for the next
transmission after a successful or failed transmission is 28
µs.

Therefore, multi-standard systems where the two-way com-
munication latency between the PHY layer (where the trans-
mission status is known) and the rate-control algorithm (whe-
re the information on the transmission status is acted upon)
is higher than 28 µs cannot implement per-packet rate adap-
tation.

Table 1: Communication latency constraints in the

IEEE 802.11 standards

Standard Tsuccess

802.11 DSSS 50 µs
802.11a 34 µs
802.11b 50 µs
802.11g 28 µs

3.2 Low latency systems
Although information about 802.11 chipset architecture is

scarce and hard to come by (it is often considered sensitive
Intellectual Property), a lot can be learned from the mar-
keting brochures available on the web. For example, it is
clear that the WaveLAN 802.11b Chipset[1] whose MAC
controller is built around an “Embedded Processor” and
that all the chipsets designed by Texas Instruments around
an ARM core (ACX100, TNETW1100B, TNETW1130, and
TNETW1230) can be assumed to be low latency systems
since their dedicated controlling CPUs can answer real-time
requirements and run dedicated software.

3.3 High latency systems
On the other hand, a few other chipsets whose integration

is much higher (their chip count is much smaller) do not
embed CPUs on their MAC controllers and require the host
CPU to implement of lot of the MAC layer. The AR5212
chip [2] which is part of many of the Atheros 802.11 chipsets
falls in this category. While the host CPU might be able
to handle the strict latency requirements needed to per-
form per-packet decisions, the Operating System running
on it usually cannot; typically, it is a general-purpose non-
real-time OS which means that the interrupt latency is not
bounded.

4. THE ADAPTIVE ARF ALGORITHM

4.1 Motivations
ARF was designed for a low-latency system based on the

second generation of WaveLAN devices. While it is reason-
ably good at handling the short-term variations of the wire-
less medium characteristics in an infrastructure network, it

fails to handle efficiently the stable conditions that are the
norm. Typically, office workers setup their laptop, sit in a
chair or at their desk and work there for a few hours. They
rarely walk around while typing on their computer keyboard!

In this environment, the best rate to choose to optimize
the application throughput is the highest rate whose PER is
low enough such that the number of retransmissions is low.
Typically, higher rates can achieve higher application-level
throughput but their higher PERs generate more retrans-
missions, which then decreases the application-level through-
put. ARF can recognize this best rate and use it extensively
but it also tries constantly (every 10 successfully transmit-
ted consecutive packet) to use a higher rate to be able to
react to channel condition changes. This process can be
costly since the regular transmission failures generated by
ARF decrease the application throughput.

The inability of ARF to truly stabilize for long periods is
a direct consequence of the belief that the long-term vari-
ations of the wireless medium can be handled by the same
mechanism used to handle its short-term variations. While
this is true, there is no reason for it to be very efficient.

4.2 AARF
To avoid the scenario described above, an obvious solution

is to increase the threshold used to decide when to increase
the current rate from 10 to 40 or 80. While this approach
can indeed improve performance in certain scenarios, it does
not work in practice since it completely disables the ability
of ARF to react to short-term channel condition changes.

This problem led us to the idea that forms the basis of
AARF: the threshold is continuously changed at runtime to
better reflect the channel conditions. This adaptation mech-
anism increases the amount of history available to the algo-
rithm, which helps it to make better decisions. In AARF,
we have chosen to adapt this threshold by using a Binary
Exponential Backoff (BEB, as first introduced in [8]).

When the transmission of the probing packet fails, we
switch back immediately to the previous lower rate (as in
ARF) but we also multiply by two the number of consecutive
successful transmissions (with a maximum bound set to 50)
required to switch to a higher rate. This threshold is reset to
its initial value of 10 when the rate is decreased because of
two consecutive failed transmissions. Detailed pseudo code
that describes formally the behavior of ARF and AARF is
available in [5].

The effect of this adaptation mechanism is to increase the
period between successive failed attempts to use a higher
rate. Fewer failed transmissions and retransmissions im-
proves the overall throughput. For example, Figure 1 shows
a period of time where the most efficient transmission mode
is mode 3. ARF tries to use mode 4 every 10 successful
transmission at mode 3 while AARF uses the history of the
channel and does not try to increase the rate every 10 suc-
cessfully transmitted packet.

4.3 Performance evaluation

4.3.1 Simulation environment
Because we specifically designed AARF to work well in an

infrastructure network3, we focused on comparing its perfor-

3AARF is based on ARF which requires at least 10 packets
to switch to a higher rate when the transmission conditions
improve. In a dense ad hoc network, the wireless medium

mance in this environment with ARF and RBAR. To do so,
we performed simulations based on the simulation environ-
ment described in [7] that uses the ns-2 network simulator
[9], with extensions from the CMU Monarch project and the
RBAR implementation from [3].

The version of ns-2 on which the RBAR implementation
is based does not directly support infrastructure networks.
It only supports ad hoc networks and offers the choice of nu-
merous ad hoc routing algorithms. As such, it was impossi-
ble to evaluate this algorithm in a multi-node infrastructure
network. We thus decided to use the methodology described
in [3]: infrastructure networks were simulated with a 2-node
ad hoc network. One of the motivations for doing this was
also to be able to reproduce the simulation conditions of the
results published in [3] exactly and thus to be able to achieve
a fair comparison with RBAR.

Our network contains two stations. Station A remains
static while station B moves toward station A. The move-
ment of station B is not continuous: it stays static for 60
seconds before moving 5 meters towards station A. When-
ever station B stops, a single CBR (Continuous Bit Rate)
data transmission towards station A is started. Each CBR
packet is 2304 bytes long. Each CBR flow attempts the
transmission of 30000 packets 0.8ms apart which generates
a 24s continuous data flow. Because the simulations that
do not use the RTS/CTS mechanism can achieve a higher
throughput peak than what these default CBR flows pro-
vide, for these simulations, we used a CBR flow of 50000
packets, each 0.46ms apart.

As shown in Figure 6, the transmission modes 24 Mega
Bits Per Second (Mbps) and 48Mbps always perform worse
than all other modes during our simulations. We thus chose
not to use them in all further experiments and simulations.
We also removed the 9Mbps mode because its coverage range
is always worse than that of the 12Mbps transmission mode
as suggested by [7] and [10].

4.3.2 Algorithm parameters
To analyze the influence of the AARF algorithm parame-

ters, we ran 4 sets of simulations. For each set of simulations,
we kept constant 3 parameters and changed the 4th param-
eter within the bounds defined in Table 2. We recorded the
total number of packets transmitted during each simulation
and used as a reference the minimum number of packets
transmitted within a set. This reference was then used to
plot in Figures 2, 3, 4, and 5 the relative variation of the
total number of packets transmitted during each simulation.

As detailed in [12], we used a packet-based timer for ARF
and AARF rather than the time-based timer originally de-
scribed in [4]. The authors of [3] and [12] had already estab-
lished that its value had little influence on the behavior of
ARF (be it time-based or packet-based) and Figure 2 shows
that it also has no noticeable influence on the behavior of
AARF. The variations of the number of packets transmit-
ted during one simulation represent less than 0.2% of the
minimum number of packets transmitted. Similarly, the im-
pact of the modification of MinSuccessThreshold and Suc-
cessFactor in Figure 3 and Figure 4 is small since it triggers

characteristics can vary many times during the transmission
of 1 or 2 packets mainly because of the high collision proba-
bility. In this context, it is impossible for ARF or AARF to
adapt to the channel characteristics correctly which is why
we do not present any ad hoc simulation results.

1

2

3

4

1

2

3

4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
T

ra
ns

m
is

si
on

 M
od

e

Time (Sec)

ARF
AARF

Figure 1: Mode selection comparison between ARF and AARF.

Table 2: AARF parameters

Parameter Default Variation Range

TimerTimeout (number of packets) 15 11-100
MinSuccessThreshold (number of packets) 10 1-49
MaxSuccessThreshold (number of packets) 50 11-100
SuccessFactor (no unit) 2 1.01-5

a variation of the total number of packets smaller than 0.4%
and 0.45% of the minimum number of packets transmitted.

MaxSuccessThreshold is the only parameter that has a
relatively important influence on the performance of the al-
gorithm (Figure 5 shows a 2% goodput improvement when
MaxSuccessThreshold reaches 60). The performance of the
algorithm reaches a plateau when MaxSuccessThreshold rea-
ches 90. We arbitrarily chose 50 as a default value since we
felt it gave a good-enough improvement without impairing
the ability of the algorithm to react to channel condition
improvements within a reasonable amount of time. The ex-
act value to use in a real device would need to be fine-tuned
with the help of extensive field testing.

4.3.3 Simulation results
The results for the single rate transmissions are presented

in Figure 6. In these simulations, RTS frames, CTS frames,
ACK frames, and PLCP headers are sent with BPSK mod-
ulation with a FEC (Forward Error Correction) rate equal
to 1/2 and a 6 Mbps data rate (basic mode). Note also
that all throughput shown in this paper exclude the MAC
and PHY headers. Figure 7 shows the mean goodput (the
goodput represents the application throughput) achieved by
ARF, AARF, and RBAR in the same conditions.

These results show that ARF fails to perform as well as the
fixed rates for mode 2, 3, and 4. The main reason for this
was explained in Section 4.1: ARF periodically generates
transmission failures. RBAR always picks the best available
rate which means that the number of transmission failures is
much lower. Its mean goodput is thus much higher. Figure
7 shows that AARF performs on average the rate selection
as well as RBAR and better than ARF. One of its main
advantage over RBAR is that it does not require the use
of the RTS/CTS protocol. In this case, its performance, as
expected, is much higher than that achieved with RBAR as
shown in Figure 7.

4.4 Conclusion
The simulation results presented in the previous section

clearly show the performance improvement offered by AARF
over ARF: it can reach on average the near-optimum perfor-
mance of the RBAR algorithm without requiring any incom-
patible changes to the 802.11 protocol. Furthermore, all it
requires from the hardware is a low communication latency
between the block which implements the rate control algo-
rithm and the transmission block which handles the ACK
timeouts. This new algorithm can thus be easily and incre-
mentally deployed in existing infrastructure networks with
a simple firmware or driver upgrade on each node.

5. THE ADAPTIVE MULTI RATE RETRY
ALGORITHM

While AARF had been designed to work in a low-latency
system, the AR5212-based 802.11 devices to which we had
access fell in the high-latency category. This led us to adapt
the use of a Binary Exponential Backoff to the hardware we
had at hand.

5.1 The AR 5212 chipset
A complete Linux driver for the AR 5212 chipset is avail-

able from the Multiband Atheros Driver for WiFi (MAD-
WIFI) project, hosted on SourceForge [6]. This project
contains a binary-only Hardware Abstraction Layer (HAL)
which hides most of the device-specific registers, a 802.11
MAC implementation imported from the BSD kernel and a
Linux AR 5212 driver, heavily inspired by a BSD AR 5212
kernel driver. The HAL exports a very classic interface to
the AR 5212 chipset. It allows the user to create up to 9
unbounded FIFOs (First In First Out queue) of transmis-
sion descriptors to schedule packets for transmission. Each
descriptor contains a status field that holds the transmis-
sion status of the descriptor, a pointer, and the size of the
data to be transferred. Each transmission descriptor also
contains an ordered set of 4 pairs of rate and transmission
count fields (r0/c0, r1/c1, r2/c2, r3/c3).

To schedule the transmission of a data buffer, the soft-
ware driver inserts in one of the FIFOs a properly initialized

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 20 40 60 80 100

R
el

at
iv

e
va

ria
tio

n
of

 th
e

to
ta

l
nu

m
be

r
of

 p
ac

ke
ts

 tr
an

sm
itt

ed
(%

 o
f t

he
 m

in
im

um
 n

um
be

r
of

 p
ac

ke
ts

 tr
an

sm
itt

ed
)

TimerTimeout (number of packets)

Figure 2: Influence of the value of TimerTime-

out on the performance of AARF.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60

R
el

at
iv

e
va

ria
tio

n
of

 th
e

to
ta

l
nu

m
be

r
of

 p
ac

ke
ts

 tr
an

sm
itt

ed
(%

 o
f t

he
 m

in
im

um
 n

um
be

r
of

 p
ac

ke
ts

 tr
an

sm
itt

ed
)

MinSuccessThreshold (number of packets)

Figure 3: Influence of the value of MinSuc-

cessThreshold on the performance of AARF.

transmission descriptor. Whenever the wireless medium is
available for transmission, the hardware triggers the trans-
mission of the descriptor located at the head of the FIFO.
To do so, it transfers the descriptor and the data pointed to
by the descriptor from the system RAM to its local RAM
and then starts the transmission of the data with the rate
r0 specified in the descriptor. If this transmission fails, the
hardware keeps on trying to send the data with the rate r0,
c0 − 1 times. If the transmission keeps on failing, the hard-
ware tries the rate r1, c1 times then the rate r2, c2 times
and finally the rate r3, c3 times. When the transmission has
failed c0 + c1 + c2 + c3 times, the transmission is abandoned:
the status field of the descriptor is updated and it is trans-
ferred back from the local RAM to the system RAM. This
process is summarized in Figure 8.

When the transmission is finally completed, or finally aban-
doned, the hardware also reports in the transmission de-
scriptor the number of missed ACKs for the transmission of
this descriptor. It is interesting to note that this number
indirectly indicates the final transmission rate of the packet
as well as the transmission rate of each retry.

For example, if c0 = 1, c1 = 1, c2 = 1, and c3 = 1, and
if the number of missed ACKs is zero, it means that the
transmission completed successfully at the first rate r0. If
the number of missed ACKs is 1, it means that the first
transmission failed and the second one was completed suc-
cessfully. If the number of missed ACKs is 3, it means that

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

R
el

at
iv

e
va

ria
tio

n
of

 th
e

to
ta

l
nu

m
be

r
of

 p
ac

ke
ts

 tr
an

sm
itt

ed
(%

 o
f t

he
 m

in
im

um
 n

um
be

r
of

 p
ac

ke
ts

 tr
an

sm
itt

ed
)

SuccessFactor (unitless)

Figure 4: Influence of the value of SuccessFac-

tor on the performance of AARF.

 0

 0.5

 1

 1.5

 2

 2.5

 10 20 30 40 50 60 70 80 90 100 110

R
el

at
iv

e
va

ria
tio

n
of

 th
e

to
ta

l
nu

m
be

r
of

 p
ac

ke
ts

 tr
an

sm
itt

ed
(%

 o
f t

he
 m

in
im

um
 n

um
be

r
of

 p
ac

ke
ts

 tr
an

sm
itt

ed
)

MaxSuccessThreshold (number of packets)

Figure 5: Influence of the value of MaxSuc-

cessThreshold on the performance of AARF.

the first 3 transmissions failed and the fourth one succeeded.
Finally, if the number of missed ACKs if 4, it means that all
transmissions failed.

5.2 The Madwifi algorithm
The existing MADWIFI driver implements rate control

with a two-stage process which is quite natural given the
capabilities exported by the HAL. The short-term variations
are handled by the Multi Rate Retry mechanism described
in the previous section while the long-term variations are
handled by changing the value of the r0/c0, r1/c1, r2/c2 and
r3/c3 pairs at regular fixed intervals (from 0.5 to 1 second
intervals).

5.3 The AMRR algorithm
A natural way to introduce a Binary Exponential Backoff

in the MADWIFI algorithm is to adapt the length of the
period used to change the values of the rate/count pairs
and this is exactly what AMRR does. To simplify the logic
of the code, we also decided to use heuristics simpler than
those in the MADWIFI algorithm to choose the rate/count
pairs at the period boundaries.

To ensure that short-term variations of the wireless medium
are quickly acted upon, we chose c0 = 1, c1 = 1, c2 = 1 and
c3 = 1 (while MADWIFI uses c0 = 4, c1 = 2, c2 = 2 and
c3 = 2). The rate r3 is always chosen to be the minimum
rate available (typically, 6Mbps in 802.11a networks). The

Figure 8: System architecture of an AR 5212-based device.

rates r1 and r2 are determined by r0: we implemented the
simplest heuristic possible by setting r1 and r2 to the im-
mediately lower available rates. Finally, our rate control
algorithm determines r0 from the previous value of r0 and
the transmission results for the elapsed period. The exact
heuristics are described in [5].

5.4 Performance evaluation

5.4.1 Simulation environment
We used the simulation environment described in Section

4.3 to evaluate the performance of the AMRR algorithm
and compare it to that of the MADWIFI and RBAR algo-
rithms. The MADWIFI algorithm we simulated is a trivial
copy of the code available in the MADWIFI driver, slightly
modified for the simulation environment to use only the 5
transmission modes chosen for our 802.11a networks.

5.4.2 Implementation issues
Our implementation of the MADWIFI algorithm in the

simulator and of the AMRR algorithm both in the simulator
and in the driver is straightforward except for the way the
transmission FIFO, which is shared between the AR5212
chip and the Linux kernel driver, is handled.

More specifically, the original MADWIFI driver initialized
the transmission descriptors present in the FIFO only once,
when they were inserted into the FIFO. A rather annoying
consequence of this behavior is that it can generate wide
oscillations of the algorithm due to the different rates of the
packets located at the head and at the tail of the FIFO.

For example, when the user application generates a 15
Mb/s data flow and if the wireless channel conditions allow
the 802.11a 12Mb/s transmission mode with a reasonable
PER (r3 = 12, r2 = 6, r1 = 6 and r0 = 6), the source buffers
quickly fill (the transmission descriptor FIFO is thus full)
and the user application encounters a lot of packet drops at
the source.

If the PER is low-enough at this rate set, the rate control
algorithm will try to increase the rate set to r3 = 18, r2 = 12,
r1 = 6, and r0 = 6, this means that every new packet that
enters the FIFO uses this new rate set. However, at the
next decision period boundary, the transmission statistics
used to adapt the current rate set are those generated by
the transmission of the packets whose rate set is r3 = 12,

r2 = 6, r1 = 6, and r0 = 6 and that are still present in the
FIFO. Because the PER of this rate set is low enough, the
rate control algorithm thus will try to increase the rate set
again, yielding something like (r3 = 24, r2 = 18, r1 = 12,
and r0 = 6).

At one point, the packets whose rate set is high will reach
the front of the FIFO and will be treated by the hardware:
they are likely to fail which will make the rate control al-
gorithm drop the current rate set quickly. However, it is
likely to decrease the rate set too much for the same reasons
it increased it too much previously. We have observed this
phenomenon during preliminary experiments and we have
reproduced it in simulation as shown in the curve named
Original MADWIFI in Figure 10.

We chose to avoid this problem by modifying the MAD-
WIFI driver to parse the transmission FIFO each time a
rate change happens to apply the rate change to each trans-
mission descriptor concerned immediately. All further simu-
lations and experiments (unless explicitly stated) were con-
ducted with this modified version of the MADWIFI algo-
rithm.

It should be noted that the painful and costly process of
parsing the transmission descriptor FIFO whenever a rate
change needs to be applied could be alleviated if proper
hardware support for this had been provided. For exam-
ple, it should be possible to include in each transmission
descriptor a pointer to the rate/count pairs rather than the
rate/count pairs themselves. Alternative designs that use
an on-chip cache of rate/count patterns on a per-destination
basis would also be possible.

5.4.3 Algorithm parameters
Because the AMRR algorithm is based on the same set

of ideas developed for AARF, that is, the use of a BEB
to adapt the success threshold, similar parameters can be
tweaked. Among these, the MinSuccessThreshold and the
MaxSuccessThreshold parameters are the two most impor-
tant parameters. We did not bother to evaluate the influence
of MinSuccessThreshold since increasing it would further de-
crease the ability of the AMRR algorithm to react to channel
condition changes. Figure 9 shows how MaxSuccessThresh-
old influences the output of the AMRR algorithm.

As expected, MaxSuccessThreshold follows the same pat-
tern observed in Figure 5: the throughput increases with its

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 50 100 150 200

M
ea

n
G

oo
dp

ut
 (

K
bp

s)

Distance (meter)

BPSK, 6Mbps, FEC=1/2
BPSK, 9Mbps, FEC=3/4

QPSK, 12Mbps, FEC=1/2
QPSK, 18Mbps, FEC=3/4

QAM16, 24Mbps, FEC=1/2
QAM16, 36Mbps, FEC=3/4
QAM64, 48Mbps, FEC=2/3
QAM64, 54Mbps, FEC=3/4

Figure 6: Mean goodput for a single hop with

the IEEE 802.11a transmission modes.

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200

M
ea

n
G

oo
dp

ut
 (

K
bp

s)

Distance (meter)

RBAR with RTS/CTS
ARF with RTS/CTS

AARF with RTS/CTS
AARF without RTS/CTS

Figure 7: Mean goodput for a single hop with

three different automatic rate selection algo-

rithms.

increase. As in Section 4.3.2, we do not choose the high-
est value possible to avoid decreasing its ability to react to
channel condition changes rapidly and settle for the value of
15 which is quite close to the plateau maximum.

5.4.4 Performance results
The simulation results, which are summarized in Figure

10, clearly show that AMRR performs much better than
the original rate control algorithm used in the MADWIFI
driver and that it achieves similar performance to RBAR
on average. Here again, the BEB-based adaptive mecha-
nism is the main reason for this throughput improvement:
the probability of trying a rate set which requires numerous
retransmissions is greatly diminished.

5.5 Experimental results
Our test setup was created to approximate as closely as

possible real-world use cases. As such, we chose a typical of-
fice environment with many people walking from one office
to the other: a 802.11b/g Access Point (a Netgear WG602)
was setup with a private SSID in an office and a laptop with
a Proxim Orinoco Gold pcmcia card based on the AR5212
chipset was setup in another office approximatively 10 me-
ters away from the Access Point. We first installed an un-
modified 2.6.5 Linux kernel and a RedHat 8.0 Linux distri-
bution on the test laptop and then tested three versions of

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30 35

R
el

at
iv

e
va

ria
tio

n
of

 th
e

to
ta

l
nu

m
be

r
of

 p
ac

ke
ts

 tr
an

sm
itt

ed
(%

 o
f t

he
 m

in
im

um
 n

um
be

r
of

 p
ac

ke
ts

 tr
an

sm
itt

ed
)

MaxSuccessThreshold (number of packets)

Figure 9: Influence of the value of MaxSuc-

cessThreshold on the performance of AMRR

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 50 100 150 200

M
ea

n
G

oo
dp

ut
 (

K
bp

s)

Distance (meter)

RBAR
AMRR

MADWIFI
Original MADWIFI

Figure 10: Mean goodput for a single hop with

RBAR, MADWIFI, and AMRR mode selec-

tion.

the Madwifi driver:

• Original Madwifi : the original unmodified Madwifi
driver.

• Madwifi : the Madwifi driver modified to apply im-
mediately rate changes on its transmission FIFO as
described in Section 5.4.2.

• AMRR: the Madwifi driver modified to apply imme-
diately rate changes and implement the AMRR rate
control algorithm.

To mitigate the variations of the transmission conditions
with time, we ran three sets of experiments whose results
are shown in Figure 11.

The goal of each of the three sets of experiments was
to compare the average throughput achieved by two of the
three drivers. For each set of experiments, we loaded in the
Linux kernel alternatively each of the two selected drivers
and started a 600 second continuous 30Mbps UDP stream
from the laptop to the only machine located on the 100Mbps
ethernet link of the Access Point. We executed this ex-
periment 5 times for each of the two selected drivers and
recorded the average throughput achieved during each ex-
periment.

Despite the variability of the experiments, we can observe
the clear performance improvement achieved by AMRR over

 17

 18

 19

 20

 21

 22

 23

 24

 25

1 2 3 4 5

T
hr

ou
gh

pu
t (

M
bp

s)

Experiment

AMRR
Original MADWIFI

 19

 20

 21

 22

 23

 24

 25

 26

 27

1 2 3 4 5

T
hr

ou
gh

pu
t (

M
bp

s)

Experiment

AMRR
MADWIFI

 15

 16

 17

 18

 19

 20

 21

 22

1 2 3 4 5

T
hr

ou
gh

pu
t (

M
bp

s)

Experiment

MADWIFI
Original MADWIFI

Figure 11: Experimental results for AMRR, Original MADWIFI, and MADWIFI

both Original Madwifi and Madwifi. Figure 11 also shows
that AMRR reached on average 24Mbps while Original Mad-
wifi and Madwifi reached on average 20Mbps. The results
show that Original Madwifi and Madwifi do not have a signi-
ficative average throughput difference even though we could
observe a clear throughput oscillation for Original Madwifi
during these experiments.

6. CONCLUSION
In this paper, we described the fundamental difference be-

tween two classes of 802.11 devices and its influence on the
design of practical rate adaptation algorithms. Two novel
algorithms, AARF based on ARF[4] and AMRR based on
MADWIFI[6] respectively designed for low latency and high
latency systems are presented. Simulations show that they
both perform close to the optimum represented by the im-
practical RBAR[3] in the case of infrastructure networks.
An implementation of the AMRR algorithm in a Linux ker-
nel driver for AR5212-based[2] devices brings further evi-
dence that these algorithms improve the achievable perfor-
mance and can be readily implemented in existing devices.

7. ACKNOWLEDGMENTS
We would like to thank the Madwifi[6] project for the

Linux driver that we used to implement our AMRR algo-
rithm and Gavin Holland for providing his ns implemen-
tation of RBAR[3]. Special thanks go to Slim Chabbouh,
from the Digital Communications group at the ENST who
spent long hours explaining us digital radio architecture and
digital signal processing techniques applied to digital radios.

8. REFERENCES
[1] Agere systems. WaveLAN 802.11b chipset for

Standard Form Factors; Preliminary Product Brief.
December 2002.

[2] Atheros Commuincations. Atheros Wireless LAN
2.4/5-GHz 802.11a/b/g 108 Mbps Turbo
Radio-on-a-Chip WLAN Networking Products and
Technology Overview.

< http : //www.atheros.com/pt/index.html >, July
2004.

[3] G. Holland, N. Vaidya, and P. Bahl. A Rate-Adaptive
MAC Protocol for Multi-Hop Wireless Networks. In
Proceeding ACM MOBICOM, July 2001.

[4] A. Kamerman and L. Monteban. WaveLAN-II: A
High-performance wireless LAN for the unlicensed
band. Bell Lab Technical Journal, pages 118–133,
Summer 1997.

[5] M. Lacage, M. H. Manshaei, and T. Turletti. IEEE
802.11 Rate Adaptation: A Practical Approach.
INRIA Research Report number 5208
< http : //www.inria.fr/rrrt/rr − 5208.html >, May
2004.

[6] Madwifi. Project Information.
< http : //sourceforge.net/projects/madwifi/ >,
July 2004.

[7] M. Manshaei and T. Turletti. Simulation-Based
Performance Analysis of 802.11a Wireless LAN. In
Proceeding of International Symposium on
Telecommunications. IRAN-Isfahan, August 2003.

[8] R. M. Metcalfe and D. R. Boggs. Ethernet:
Distributed Packet Switching for Local Computer
Networks. ACM Communications, 19(5):395–404, July
1976.

[9] ns-2. The Network Simulator.
< http : //www.isi.edu/nsnam/ns/ >, July 2004.

[10] D. Qiao and S. Choi. Goodput Enhancement of IEEE
802.11a Wireless LAN via Link Adaptation. In
Proceeding IEEE ICC, June 2001.

[11] D. Qiao, S. Choi, A. Jain, and K. G. Shin. MiSer: An
Optimal Low-energy Transmission Strategy for IEEE
802.11a/h. In Proceeding ACM MOBICOM, pages
161–175, September 2003.

[12] D. Qiao, S. Choi, and K. G. Shin. Goodput Analysis
and Link Adaptation for IEEE 802.11a Wireless
LANs. IEEE Transaction on mobile computing,
1(4):278–292, October-December 2002.

