
Unit 41, Bone Lane

Newbury

Berkshire RG14 5SH

United Kingdom

Project: DBV-OSI II

Project: ONE – OPAC Network in Europe

Z39.50 Application programmer's Interface

SYSTEM
ARCHITECTURAL INFORMATION

Document No.: D-020

Document Version: 2.0

Z39.50 API Software Version 2.2

July 1997

Prepared by: J. Hough

R. Bull

Crossnet

Crossnet

This document is derived from the DBV OSI II project SES (System External Specification)
document D-020 produced by Crossnet Systems Ltd. This document is produced under the scope

of the ONE project, LIB-ONE/2-3099

DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

1. DOCUMENT TITLE: DBV-OSI II Z39.50 API System Architectural Information

2. ISSUE 3. REVISION 4. DATE 5. REASON FOR CHANGE

Issue 1 1 20 Nov. 96 Based on DBV OSI II D-020 Document

Issue 2 1 31 Jul. 97 Incorporates comments for additional
supported Services.

Page: 2
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

Table of Contents

1. Introduction .. 5
1.1 Abbreviations and Nomenclature..5
1.2 References ...6
1.3 Supported Features of the Z39.50 Protocol ...7

2. Developing an Application ... 9
2.1 Responsibilities Provided by the API ...9
2.2 Responsibilities of the Application Developer ..9

3. System Architecture .. 11
3.1 Context Architecture.. 11
3.2 Multiple Connections ... 14

3.2.1 Origin Component Architecture - Standalone .. 16
3.2.2 Origin Component Architecture - Local System ... 16
3.2.3 TCP/IP Z39.50 Target Component Architecture ... 18
3.2.4 OSI Z39.50 Target Component Architecture .. 21
3.2.5 Targets with Multiple Communication Stacks.. 22

4 System Development Considerations .. 24
4.1 Origin And Target Application Analysis... 24
4.2 Service Provider State Machines for the Origin and Target 25

4.2.1 Utility functions ... 28
4.3 Origin And Target Application State Machines .. 29

4.3.1 Origin State Machine.. 30
4.3.2 Target Application State Machine.. 33
4.3.3 Implementation of the State Machine in Applications 36

4.4 Using The API .. 37
4.5 Origin and Target Program Operations - Implementation hints................................ 38

4.5.1 Query Language Conversion ... 38
4.5.1.1 RPN Query Formation ... 40
4.5.1.2 Query Attributes ... 40

4.5.2 Asynchronous Behaviour .. 41
4.5.3 Program/Process Errors And Recovery Procedures .. 41

4.5.3.1 Signal Trapping... 41
4.5.3.2 Communication Errors.. 43

4.6 Determining Stacks to Use... 44
4.6.1 TCP/IP Stack ... 45
4.6.2 OSI Stack... 45

4.6.2.1 Building Distributed Applications .. 46
4.6.2.2 Transport-Independence.. 46

Page: 3
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

5. Program Development.. 47
5.1 Development Tools... 47

5.1.1 ANSI-C C Source Code Compilation - Using gcc... 47
5.1.2 Debugging - Using gdb ... 48
5.1.3 Use of Makefiles ... 50

5.2 Memory Verification And Diagnostic Utilities .. 53
5.3 Source File Version Control.. 53

5.3.1 Basic SCCS Commands .. 54
5.3.2 Typical Basic SCCS Command Sequence... 55

5.4 Configuration Management .. 56

6. Additional Programs And Development Aids... 58
6.1 Test Programs.. 58
6.2 API Test Tool.. 58

6.2.1 Test Tool Modes.. 58
6.2.2 Test Tool Control And Result Analysis ... 58
6.2.3 Test Tool Operation .. 60

Appendix A - Colbert Methodology ... 61

Page: 4
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

Table of Figures

3.1 Context Diagram of a Z39.50 Session... 11

3.2 Context Diagram of a Z39.50 Virtual Network .. 12

3.3 Decomposition of Z39.50 Components Associated with a Local System 13

3.4 Possible Origin Architecture for Local System.. 16

3.5 Local-Host Origin Architecture... 17

3.6 Block Diagram of Target Architecture .. 18

3.7 TCP/IP Z39.50 Target Architecture.. 19

3.8 OSI Z39.50 Target Architecture ... 21

3.9 Architecture with Multiple Stack Support .. 23

4.1 State Transition Diagram of Origin Service Provider .. 26

4.2 State Transition Diagram of Target Service Provider.. 27

4.3 High Level State Transition of Origin Process .. 30

4.4 Detailed State Transition of Origin Process.. 32

4.5 High Level State Transition of Target Process .. 34

4.6 Detailed State Transition of Target Process.. 35

4.7 Representation of Communications Stack Components 44

Page: 5
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

1. Introduction

This document describes the modules developed by Crossnet Systems Ltd of the DBV OSI II
Z39.50-1995 API. This document describes the operation and interfacing between the API and
user application and recommends an approach for developing Origin and Target systems.

This document was originally produced for the DBV OSI II project for use by the Partners in the
DBV-OSI consortium.

This version of the document reflects Version 2 of the API, which has been extended by Crossnet
Systems Limited in their participation in the ONE project, (OPAC network in EUROPE). ONE is co-
funded under the European Commission Telematics (Libraries) programme. project number LIB-
ONE/2-3099.

1.1 Abbreviations and Nomenclature

The following abbreviations and nomenclature are used in this document.

ACSE Association Control Service Element

AIX IBM Workstation UNIX environment.

ANSI American National Standards Institute.

APDU Application Protocol Data Unit. Synonymous with PDU.

API Application Programmers Interface.

ASCII American Standard Code for Information Interchange.

Typically used as a synonym for readable text.

ASN.1 Abstract Syntax Notation 1. A design and specification language.

A-Association Application related Z39.50 state

BER Basic Encoding Rules. Standard rules used for encoding and decoding Z39.50

PDU data units.

BSD 4.x Berkeley Software Distribution 4.3. A 'flavour' of UNIX provided as the default

operating environment on certain UNIX workstations including SUN.

DBV-OSI II Project for which this document applies

FIFO First-In First-Out. A UNIX named pipe which allows inter-process communication

GCC GNU 'gcc' ANSI C compiler

GDB GNU 'gdb' source code debugger

GNU Gnu's Not Unix. The prefix name given to a range of products produced by the

Free Software Foundation.

OSI Open Systems Interconnection. A communication architecture.

Page: 6
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

IR-Target Information Retrieval Target. A Z39.50 Target program.

ISODE 'ISO' Development Environment. A collection of library routines and programs that

implements an extensive set of OSI upper-level services. The 'ISO'

part of the system name has no meaning.

O-Machine Z39.50 protocol Operation state machine

PDU Protocol Data Unit. A logical data unit used by Z39.50.

RPN Reverse Polish Notation.

SCCS Source Code Control System. A UNIX version control program.

SELECT A BSD 4.3 socket programming function.

SES Software External Specification.

SR Search and Retrieve.

snacc Sample Neufeld ASN.1 to C/C++ Compiler. An ASN.1 to C/C++ Compiler.

TCP/IP Transmission Control Protocol / Internet Protocol.

tbl Table Format. This is a file format which has been developed at Crossnet.

X.25 Recommendation describing the access interface to packet-switched data

networks.

Z39.50 A standard produced to facilitate the interconnection of computer systems.

Z-Association See Z-Associativity

Z-Associativity Protocol related Z39.50 state.

Z-Machine Z39.50 protocol Z-Associativity state machine

Where the document refers to implementation within the service-user component of a program,
this is to be considered as a recommendation, and is clearly marked as such.

1.2 References

1. ANSI Z39.50-1995 Search and Retrieval Standard.

2. Colbert E, (1989), The Object Oriented Software Development Method: A Practical Approach to
Object-Oriented Development, TRI-Ada 1989 ACM.

3. Wilkie, G, Object-Oriented Software Engineering: The Professional Developer's Guide, (1993),
Addison-Wesley Publishing Company, ISBN 0-201-62767-1

Page: 7
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

1.3 Supported Features of the Z39.50 Protocol

Version 2.2 of the software supports:

Z39.50 Services Supported (by both Origin and Target):

 Initialise

 Search

 Present

 Segment

 Result-Set Delete

 Scan

 Resource Report

 Sort

 Access Control

 Resource Control

 Trigger Resource Control

 Extended Service

 Close

Suported Extended Services:

 Item Order

 Update

 Update for Union Catalogue Profile

Supported Record Types:

 All MARC Records listed in the Z39.50 Standard

 Explain

 Unstructured Text (SUTRS) Record

 Opac Record

 Summary Record

 Extended Service Task Package Record

Page: 8
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

Other Suported EXTERNALS:

 Resource Report 1

 Resource Report 2

 Access Control Prompt-1

 Inter-Library Loan (ILL ISO-10160, 10161) (request, status)

 Character and Language Negotiation Record-1

 Character and Language Negotiation Record-2

Known Supported UNIX Platforms:

 SUN-Sparc Sun-Os, Solaris

 Hewlett Packard PA1.1, (HP-UX)

 Siemens Nixdorf (SINIX-NY)

 DEC Alpha (OSF/1)

 IBM RS6000 (AIX)

 Linux)

The following are known to be ported to by users of the software:

 DEC Ultrix

 Data General

Page: 9
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

2. Developing an Application

In an Origin or Target application using the DBV OSI II Z39.50-1995 API, the application is to be
considered as having two parts,

- the API itself, which is the service-provider part;

- the application which is the service-user part.

2.1 Responsibilities Provided by the API

The DBV OSI II Z39.50-a995 API comprises:

• Origin Service Provider - These are the API functions which provide association control and
Z39.50 encoding/decoding/data transfer routines for an Origin application. Their functionality
is defined in the document - DBV-OSI II API-Definition Document.

• Target Service Provider - These are the API functions which provide association control and
Z39.50 encoding/decoding/data transfer routines for a Target application. Their functionality
is defined in the document - DBV-OSI II API-Definition Document

• Utilitiy functions - These are the API functions which provide various functionality useful to
the service user programmer of either Origin or Target applications. Their functionality is
defined in the documents - DBV-OSI II API-Definition Document.

• Test Tool - The test tool is a suite of programs which will be used to verify the functionality of
the API (Origin service provider, Target service provider and utility functions). Reference
document DBV-OSI II Test Tool Manual for complete details.

• Target Daemon - This is a TCP/IP daemon utility which can be used as a front-end daemon
for receiving Origin associations.

• Origin and Target Test Programs - These are useful application programs which provide
example use of the API incuding source code.

2.2 Responsibilities of the Application Developer

With the DBV OSI II Z39.50-1995 API, an application developer may develop the following:

• Origin Application - An Origin application may be a standalone application or it may be part
of a larger system.

In the case of the standalone application, the application will typically be a bespoke user
interface designed to offer the user search and retrieval operations.

In the case of the Origin being part of a larger application, the API may be integrated within
the larger system or may be instigated as a result of a user requesting to access a remote host.
In this latter case, the Origin application may be spawned from a daemon that is connected
from the local host.

In either case, the application has to effectively manage user operations and map these to the
appropriate API data structures and call the appropriate API functions. The return values of

Page: 10
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

the API functions have to be interpreted by the Origin application and appropriate information
given back to the user.

In any application, the developer should be conversant with the operation descriptions
described in the ANSI Z39.50-1995 Specification document.

• Target Application - The application will be spawned by the Target daemon that is supplied
with the API software, or by some other appropriate mechanism. The Target will include
routines to control an association to the remote Origin application (provided by the service
provider Target API), routines to control an association to the local host database (provided by
the service user), routines to decode the incoming binary data stream and complete the correct
DBV Z39.50 structures (service provider Target API), routines to transform the DBV Z39.50
structures into the local host query language and send the data to the local host (both service
user). For responses from the local host database that are to be sent to the to the Origin,
routines must be provided to receive local host database data, translate from the local host
format into the API structures, encode the structure data into a binary stream and transfer
them to the Origin (provided by the Target service provider)

NOTE: Whilst the API interprets the Z39.50 state behaviour during the operation of an
application, the full responsibility of adhering to the Z39.50 state machine for both the Origin and
Target falls to the service user application.

Page: 11
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

3. System Architecture

This Section describes possible architectures of the Z39.50-1995 Applications when using the
DBV OSI II Z39.50-1995 API. A basic architecturan design is provided, from context analysis to
application architecture. All architectural design is decomposed to a level whereby implementation
independence is maintained.

Further decomposition is deemed to be application specific and is the responsibility of the
developer. Since all implementations are to be on UNIX systems, then the architectural design for
each platform should be very similar.

In the following subsections, the Colbert 91 methodology is used. Whilst there are many
methodologies suitable for describing system architectures, this methodology is chosen since it
can be used in the analysis, design and state definition of the software. In addition, it is suitable
to an Object-Oriented design to which the Origin and Target programs can be suited. Information
on the Colbert methodology can be found in Ref. 1 and Ref. 2. In addition, Appendix A includes
diagrams pertaining to the Colbert methodology syntax.

3.1 Context Architecture

The context architecture of a Z39.50 session is shown in Figure 3.1 below. It shows the system
with respect to its external entities. In this case, the external entities are the user and the Target
database system.

Origin

Target
Database

Origin
Application

Target
Application

Network
Connection

Target
Connection

Z39.50 Session

User

User Interface

Origin

Application

Figure 3.1 Context Diagram of a Z39.50 Session

In the context analysis, the User and the Target Database are external entities to the Z39.50
session and are therefore not the subject of design in this context.

Page: 12
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

The connections are defined as:

Origin Application User Interface:
The user interface designed for the user. Note that this may be a connection to an existing local
host system that is offering an external gateway to a remote Z39.50 Target.

Target Connection:

The interface between the Target application and the Target host database system.

It should be noted that the Network connection between the Origin and Target applications does
not consider which network is used, but simply to describe that the two are connected by a
network.

For the context of the DBV OSI II project and the ONE project, another contextual view is given
below in Figure 3.2. This shows the context of the virtual network architecture, where existing
local systems are offering Origin access to remote systems for local users, and offering Target
access to remote users via their Origin systems. In the case of the ONE project, not all partners
will provide access to remote hosts via their existing system, but will use standalone Origin
packages.

Origin

Application

Network
Connection

Virtual Network

Local
Interface

Origin
Application

System Target

ApplicationApplication
Target

Interface

Network
Connection

Origin

Application
Target

Application

Application

Local
Interface

Origin System
Application

Target

Interface

Standalone

Client

Network
Connection

Figure 3.2 Context Diagram of a Z39.50 Virtual Network

In Figure 3.3 below, The next stage of analysis is to decompose the DBV-OSI II Application object
itself. This is shown in Figure 3.2 below.

Page: 13
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

Origin/Target
Local
System

Administration
Component

Origin
Application

TCP/IP Target
Application

OSI Target
Application

Network
Connection

Network
Connection

Origin
Application

Target

Administration
Control

Administration
Control

Interface

Application
Interface

Remote

Figure 3.3 Decomposition of Z39.50 Components Associated with a Local System

In this diagram, it can be seen that there are four types of component associated with a local
system, namely:

Administration Component:This object is responsible for initiating and destructing the other
objects. In practical terms, it can turn-on/off the local daemons for
the Target application, or could turn on/off a daemon associated
between the local system and the Origin components. This component
is an optional facility and is not mandatory in a system.

Origin Component: This object is responsible for managing Z39.,50 Origin association and
service requests to a selected Z39.50 Target.

TCP/IP Target Component: This object is responsible for processing incoming association and
Z39.50 service requests from a remote Z39.50 Origin over the TCP/IP
communication stack.

OSI Target Component: This object is responsible for processing incoming association and
Z39.50 service requests from a remote Z39.50 Origin over the OSI
communication stack.

It is the responsibility for an application developer to develop the service-user part of the
Origin/Target applications and any respective connection to the Administration Component. The
service-provider part of these programs is in the API.

In the context of Figure 3.2 above, it is assumed that suitable connectivity to the local system will
be provided. For example over a local area network, or even on the same machine that the local

Page: 14
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

system resides on. In addition, a local system that provides connectivity to remote targets must
cater for the switching to the Z39.50 Origin component when a user selects a remote Target.

If this connection is over a LAN, a TCP/IP connection is assumed whereby the local system will act
as a TCP/IP client, and the Origin Component will contain a front-end TCP/IP daemon.

This mechanism will enable multiple connections from the local system to the Origin Component
to be utilised. The design of the Origin Component will determine how multiple connections are
handled. Some advisory architecture is given below.

The TCP/IP- and OSI- Target Components will wait for incoming connections from remote DBV-
OSI II Origin components through use of suitable receiving server processes.

For each connection received by the TCP/IP- and the OSI- Target Components from a remote
DBV-OSI II Origin Component, a unique Target process should be instantiated by the appropriate
daemon. Each instance of a Target component will need to connect to the Target host database. A
suitable proprietary mechanism will be used for this, such as a RPC interface, telnet-like interface
or proprietary API.

3.2 Multiple Connections

For the Z39.50 Target, it is recommended that the conventional master-slave architecture is
adopted to handle multiple concurrent connections. The philosophy behind this approach adopts
the following procedure:

a) a Target daemon program waits for incoming association requests from origins;

b) for each Origin process that the association is accepted, an Application process is spawned
and is passed the association file descriptors into its main() function. The spawned process will
inherit the daemon environment (including the file descriptors) and will assume communication to
the Origin directly. This then relinquishes the file descriptors from the daemon which is free to
accept further connections from origins (up to the physical or system-defined limit of the
machine);

c) the Target negotiates with the Origin specific ports/addresses to use between the Target
process and the associated Origin.

This is known as a master-slave approach, in which the slave is the Application program which is
instantiated for each Origin connection - there is no need to retain any association Id or duplicate
information structures.

It is recommended that for the DBV-OSI II Application Component programs, that this
architecture is adopted. The advantages of this architecture are:

Page: 15
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

1) the Origin and Target Component programs are simpler in architecture,

2) There is a safety feature whereby if a Target program inadvertently terminates only that process
is affected - all other processes (and hence users) are not affected.

The disadvantage of this architecture is:

1) More memory and resources are required during system operation.

Page: 16
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

3.2.1 Origin Component Architecture - Standalone

The Z39.50 Origin Component of a standalone Origin package assumes that only one user will
exist at any time. In this case, the Origin application provides a user interface for the user to
perform Target selection, association and search and retrieval. All details of these features are
entirely for the application designer and not the subject of this document.

3.2.2 Origin Component Architecture - Local System

The Origin Component that is part of a local system should utilise a multi-process architecture to
support multiple users. In this sense, the API will need to incorporate both OSI and TCP/IP
communications, and the API functions will be used to determine which is required for connection
to a particular Target.

The Origin Component itself could contain a TCP/IP daemon to receive local host Origin sessions
and run in the master-slave architecture described above. This architecture is shown in Figure
3.4 below.

Note that the API shown in the Origin Processes within the dotted lines. The remainder is the
responsibility of the application developer.

DAEMON

Z39.50
ORIGIN PROCESS

Z39.50

Z39.50

Z39.50

SERVERS

SYSTEM
TO

LOCAL

CLIENT

CLIENT

CLIENT

2

1

3

4

Host client initially calls master server.

Daemon negotiates client/server communications to

Z39.50 origin process communications to calling Host client.

Z39.50 origin process calls remote Z39.50 Target(s).

1

1

1
2

3

3

4

4

4

ORIGIN PROCESS

ORIGIN PROCESS

DBV-OSI II API

DBV-OSI II API

DBV-OSI II API

2

Host client and forks the Z39.50 Origin Process

2

3

USERS

Figure 3.4 Possible Origin Architecture for Local System

Page: 17
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

The architecture above can be considered as a Colbert-91 Object-Interaction Diagram (OID with
each user and its associated Origin process represented as an object. This is illustrated below in
Figure 3.5.

Origin
Component

Network

Administration
Component

DAEMON

Confirmation

Notification

Event

Origin
Application

Host
Comunications

Communications to
Target

Administration
NotificationOrigin

Initialisation

Fork-Creation
User
Data

Negotiation

Figure 3.5 Local-Host Origin Architecture

The architecture shows two main objects, namely a TCP/IP daemon to process user session
connections from the local system, and the Origin Application object. The architecture shows
these as being two distinct objects which will communicate with a standard UNIX mechanism
such as pipes. In terms of implementation, the TCP/IP daemon will spawn the Origin Application
as a separate program. Each user session is managed by separate process instances, and hence
the "collection" symbol for the Origin Application is used.

The Administration Component is shown as a means of stopping or starting the daemon. The
design of this daemon is very similar to the Target front end TCP/IP daemon. Using this method
allows the administrator to initialise or shut down the service without effecting any other TCP/IP
services on the system.

The Origin Application may notify the Administration component of various Event messages. Since
any number of concurrent Origin State Machines will exist at any time, each Event message will
be tagged by the UNIX process Id of that particular Origin Application.

Page: 18
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

3.2.3 TCP/IP Z39.50 Target Component Architecture

The design of the Z39.50 Target Component can be quite complicated, depending upon how much
of the Z39.50 protocol is to be supported. The design should also take into account development
issues such as development debugging and operational reliability. A block diagram of a possible
Target architecture is illustrated in Figure 3.6.

The development of the communication between the Target Application and the host is fully the
responsibility of the application developer.

Note that the API services are shown in the Target Processes within the dotted lines. The
remainder is the responsibility of the Target developer.

TARGET

DAEMON

Z39.50
TARGET

PROCESS

Z39.50
TARGET

PROCESS

Z39.50
TARGET

PROCESS

HOST

DATABASE

Z39.50
SERVER

Z39.50
ORIGINS

2

2

2

2

1

1

1

1

3

3

3

3

4

4

4

4

Z39.50 origin process calls Z39.50 server.

Target daemon negotiates client/slave server communications

Target process communicated direct to Z39.50 Origin.

Z39.50 target process calls host.

API

API

API

and forks (spawns) Z39.50 target process.

TARGET

Figure 3.6 Block Diagram of Target Architecture

The trade-off of this architecture is that more memory in the UNIX computer is used when there
are multiple concurrent associations, and hence multiple process instances.

Page: 19
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

By utilising the above architecture, the O-O decomposition of the TCP/IP Target Component is
shown in Figure 3.7 below. Referring to this diagram, a brief explanation of its behaviour is given
after.

Target
Component

Network

Administration
Component

TCP/IP Target

Daemon

Confirmation

Notification

Event

Target
Application

Origin
Comunications

Communications to
Host

Administration
NotificationTarget

Initialisation

Fork-Creation
User
Data

Negotiation

Figure 3.7 TCP/IP Z39.50 Target Architecture

The TCP/IP Target Component comprises two main objects, namely a TCP/IP daemon to receive
remote host Origin connections and the Target Application object. The architecture shows these as
being two distinct objects which would communicate with a standard UNIX mechanism such as
pipes. In terms of implementation, the TCP/IP daemon spawns the Target Application as a
separate program. Each user session is managed by separate process instances within the Target
Component, and hence the "collection" symbol for the Target Application is used.

The Administration Component is shown as a means of stopping or starting the daemon. The
design of this daemon is very similar to the Target front end TCP/IP daemon. Using this method
allows the administrator to initialise or shut down the service without effecting any other TCP/IP
services on the system.

Page: 20
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

With respect to the Administration Component, the Target daemon may be started (or stopped) as
required by the Administration Component operator. The same mechanism will be used as
starting or stopping the Origin front end server.

The Target Application may also notify the Administration component of various Event messages.
Since any number of concurrent Target Applications may exist at any time, each Event message
should be tagged by the UNIX process Id of that particular Target Application.

The supplied program targetd is an example TCP/IP daemon and is provided as an easy means of
testing different TCP/IP Target applications without the need for changing the inetd related Unix
system files. This program can be easily configured to listen on any socket and execute any
program with parameters which will be correct for TargetInitialize() API function.

targetd can be started by moving to the release/targetd/ directory and issuing the command:

targetd [-p portnumber] [-e path/filename]

where [-e path/filename] is the Target process to execute.

Page: 21
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

3.2.4 OSI Z39.50 Target Component Architecture

The architecture of the OSI Target Component is shown in Figure 3.8 below. It is analogous in
architecture to the TCP/IP Target Component. Referring to this diagram, a brief explanation of its
behaviour is given below.

OSI Target
Component

Network

Administration
Component

OSI Target
Daemon

Confirmation

Notification

Event

Target
Application

Origin
Comunications

Communications to
Host

Administration
NotificationTarget

Initialisation

Fork-Creation
User
Data

Negotiation

Figure 3.8 OSI Z39.50 Target Architecture

The OSI Target Component comprises two main objects, namely an OSI daemon to receive remote
host Origin connections and the Target Application object. The architecture shows these as being
two distinct objects which would communicate with a standard UNIX mechanism such as pipes.
In terms of implementation, the OSI daemon spawns the Target Application as a separate
program. Each user session is managed by separate process instances within the Target
Component, and hence the "collection" symbol for the Target Application is used.

With respect to the Administration Component, the Target daemon may be started (or stopped) as
required by the Administration Component operator. It is suggested that the daemon provided in
the ISODE package is used, (tsapd).

Page: 22
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

tsapd is provided with the ISODE package. When the Administration Component is started it will
check to see if the OSI daemon is already running and report its status. If the administrator
wishes to disable OSI connections to the Z39.50 service the process will be stopped and a daemon
configuration script file substituted with one which does not include the Z39.50 service. The
process would then be re-started. This has the disadvantage that OSI communications will be
temporarily made unavailable, but only for a few seconds. For enabling the OSI daemon for
Z39.50 services the configuration script would be replaced with one containing the service and the
daemon program re-started. If the daemon is not started, a facility to start it will be provided.

Note that tsapd is provided with the public domain release of ISODE. However, for the ISODE
Consortium Release 2, an additional daemon has been supplied called iaed which is the
recommended daemon to use. The use of iaed will have no impact upon the Origin or Target
processed to be developed by the project Partners. However, since iaed has a more automated
approach to its administration operation, there will be a slight difference in the operation of the
Administration Component.

The Target Application may notify the Administration component of various Event messages. Since
any number of concurrent Target Application will exist at any time, each Event message will be
tagged by the UNIX process Id of that particular Target Application .

3.2.5 Targets with Multiple Communication Stacks

The architecture described above can be seen to readily support different communication stacks
as illustrated in Figure 3.9. A separate daemon will exist for (say) OSI to that of TCP/IP and both
will utilise a similar mechanism to spawn the same Target Application program. This will be
achieved by the daemon (Either TCP daemon or OSI Daemon) calling the Target Application
program passing a parameter to it implying which daemon invoked the program. In either case,
the data between the daemons and the Target applications will be encoded APDUs - the API
functions within the Target application are responsible for the encoding and decoding of the data
as part of the service-provider component.

The Target architecture presented is also highly desirable if the site wishes to initially support one
communications stack protocol and then support another protocol at a later date, since the Target
application program is identical for each.

Page: 23
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

OSI

SERVER

DAEMON

TARGET

APPLICATION
PDU
DATA

HOST

SESSIONS

X.25

TCP/IP

SERVER

TARGET

APPLICATION
PDU
DATA

HOST

SESSIONS

INTERNET

FRONT END PROCESSOR

Note: Target Application program is same for either stack.

TARGET

APPLICATION

TARGET

APPLICATION

PDU

DATA

PDU
DATA

DAEMON

Figure 3.9 Architecture with Multiple Stack Support

Page: 24
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

4 System Development Considerations

This section details specific System development considerations of the processes and programs in
the DBV-OSI II Applications.

4.1 Origin And Target Application Analysis

The development of the Origin and Target applications should adopt a further decomposition of
the architecture defined above. In this sense, the requirements of these programs will need to be
fully analysed. From the point of this document, certain inputs to this analysis are formally
defined. Other inputs to the analysis are dependent upon any specific operation that the
implementor wishes to include. Both inputs are listed below:

Formally defined Inputs:

a) State Machine behaviour of Z39.50;

b) definition of DBV-OSI II API;

c) high level architecture; and

d) Administration Component event notification.

Non-defined Inputs:

a) exact mechanism for Host to communicate with Origin Component;

b) mechanism to incorporate interface to local system;

c) low level architecture for Origin to handle multiple associations;

d) mechanism to associate local Host users with remote host accounts and passwords; and

e) any inter-system charging mechanism.

Page: 25
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

4.2 Service Provider State Machines for the Origin and Target

The functionality of the service provider API modules follows a well defined path. While the API
cannot contain the complete Z39.50 state machine, the API will perform some state machine and
error checking, notably:

1) that only valid APDU data fields will be accepted at any state instance;

2) there will be no invalid repetition of API functions being called; and

 3) no API function is called before conditions necessary for the function to operate exist

For the latter point, this will include simple state checking such as ensuring an association exists
before an APDU encode and send function is called.

In terms of the service-user components, the following are recommended:

a) The Protocol Z-Association and operation functions should not be called until an association
connection has successfully been accomplished to the Target;

b) The Protocol O-Association operations should not be called until a valid Z-Associativity has
successfully been accomplished by calling the Initialisation function;

c) All structures and parameters for all Association functions should be correctly generated
before calling any Z- and O- Association request functions; .

d) If an error is returned by any of the service-provider functions, then appropriate action
should be taken.

In the cases a) to c) errors will be returned by the service provider if the rules are not adhered to.

State machine verification that the Origin and Target service provider can perform is illustrated in
Figures 4.1 and 4.2 below.

Note that the entry point to the state machine in Figure 4.1 is labelled 'At any Time'. This means
that at any time, the service user may create a new association by calling the API function
AssociateRequest().

Note that for Version 2 of the API software, that the API supports Access Control and Resource
Control which are challenges initiated by the Target to the Origin. In particular, the Resource
Control challenge may or may-not require a Resource Control response, which is determined by
the responseRequired field in the Resource Control request.

Note also that for Version 2 of the API software, that the API supports Trigger Resource Control
Request, to which no response is necessary.

Page: 26
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

It should be noted that Version 2.1 of the API Software supports Access Control, Resource Control
and Trigger Resource Control which are not depicted on the diagrams below. Please refer to
Sections 3.2.5, 3.2.6 and 4.2.3 for how these services interact in the state machine model.

AssociateRequest() Called;

AssociateRequest()/ConfirmAssociateRequest()
Returned +;

ConfirmAssociateRequest()
Called

Waiting for
Target Response

Connected

InitializeRequest() Called

AbortRequest() Called;

AssociateRequest()/ConfirmAssociateRequest(
Returned -

Returned +

ReleaseRequest() Called

From any
Connected State

Waiting for
Target Response

ReleaseRequest()
Returned +

Waiting for
Target Response ReceiveDataOrigin() Called;

No Response

InitializeRsp Structure
Indicates False

InitializeRsp Structure
Indicates True

Open
Any DBV APDU Request sent

Except InitializeRequest()
(Using ReceiveDataOrigin())

ReleaseRequest() Called

Waiting for
Function/Target Response ReleaseRequest Returned -

At any time

New Association Created

Association Released Association Released

Response Validation
(by Service Provider)

APDU Response Received;
ReceiveData Origin
Returned + (Valid APDU)
Returned - (Invalid APDU

account for segmentation
in the Present service

ReleaseRequest() Returned -

Figure 4.1 State Transition Diagram of Origin Service Provider

Page: 27
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

Waiting for Target

ReceiveAssociateRequest()

AbortRequest() called;
Returned +

From any
State

OpenTarget User issues Close

ReleaseResponse(+) Called;

TargetInitialize() called

Service-i Response

ReceiveAssociateRequest() called

Returned +;

ReceiveAssociateRequest()
Returned -

Association Released Association ReleasedAssociation Released

Connected

AssociateResponse(+) called

AssociateResponse(-) called

InitializeRequest() Received;

InitializeResponse(+) called

ReceiveAssociateRequest()
Returned +;

ReleaseRequest Received;
ReleaseResponse(+) called

Waiting for Close

Invalid Response

Waiting for Target User
to call InitialiseResponse

InitializeResponse(-) called

ReleaseRequest Received;

 from Origin

Close Received

Service-i Received from Origin

Waiting for Target User

Present Received from OriginClose Received from Origin

Waiting for Target User
Present Response or
Segment Request

Waiting for Target User
Close

Service-i Response called

Send to Origin Send to Origin
Response calledResponse called Send to Origin

Figure 4.2 State Transition Diagram of Target Service Provider

Figures 4.1 and 4.2 show the state transition diagrams for the Origin and Target service provider.
These are the rules which the service user should follow to successfully use the Origin and Target
API components. If the service user deviates from these steps then the internal API state machine
will give an appropriate error.

Notes on the state machine behaviour:

Note that the state machines only show the valid service provider transitions between states. In
the states labelled 'Waiting for Origin/Target Response' for example, it is quite valid for there to be
a large amount of service user activity.

Page: 28
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

A call to ReleaseRequest() will fail if there are any application specific responses still to be
received. A call to ReleaseResponse() will fail if no ReleaseRequest() has been received from the
Origin, or there are outstanding responses to be sent.

Please note that concerning APDUs the API will check for the following :

• Repetition of the InitializeRequest() or InitializeResponse() functions

• Sending an APDU before a valid association

• Calling ReleaseRequest() while there are outstanding responses

• Incorrectly completed or incomplete DBV APDU data fields.

a) Protocol Z-Association and operation functions will only be valid if an association connection
has successfully been accomplished, (and not inadvertently lost);

b) Protocol O-Association operations will only be valid if a Z-Associativity has successfully been
accomplished, (and not inadvertently lost); the Protocol Initialisation must be the first Z-
Association operation to take place;

c) When a protocol O-Association operation is issued at the Origin, only the corresponding
Operation response for that Z-Association will be valid. Exceptions to this are when Access or
ResourceControl are being used; and when Segmentation is used in the Present Operation.

d) If the service-user calls the service-provider to await for an input event, any loss of service or
service error will be immediately indicated to the service-user.

e) When a protocol O-Association request is received at the Target, the Target service provider
will verify that it has not been issued before the Initialisation. i.e. InitializeRequest APDU
must be received at the Target.

When a valid O-Association request received and passed to the service user, the service
provider will ensure that only the appropriate service response can be sent back to the Origin.

4.2.1 Utility functions

As well as the Origin and Target libraries a set of functions known as the Utility Functions will
be provided. These functions will be useful to both the Origin and Target programmer. The list
below explains at what states the functions may be called (refer to Figures 4.1 and 4.2):

• SIGetEventLocation() - Can be used in place of the ReceiveDataOrigin() and
ReceiveDataTarget() functions to check for incoming APDUs (although
ReceiveDataOrigin/Target() must be used to complete the DBV structures). Can also be used
to check service user file descriptors at the same time, or service user file descriptors only as
the service user sees necessary.

• SISetACSEFile() - Used (by the Origin application only) at any time it will effect all subsequent
calls to AssociateRequest().

Page: 29
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

• SIWhichStack() - This function can be used at any state in the Origin or Target on a currently
valid association.

• SISetTraceParameter() - This function can also be used at any state in the Origin or Target
on a currently valid association.

All utility functions contain error routines to check for incorrect usage, so an invalid call to any of
the above will always be detected and reported.

4.3 Origin And Target Application State Machines

Although the DBV-OSI II API will provide facilities to allow for Z39.50 APDU specification and
transfer, it is the responsibility of the application developer to implement the full Z39.50 state
change machines within the Origin and Target Components.

The Z39.50 standard clearly defines the state machine behaviour for both Origin and Target. The
Z39.50 Origin state machine defines for a given set of states the input events that cause a
particular set of Origin outgoing actions to occur. Inputs may be from the Origin application, the
Target or be internally generated. The Z39.50 V3 Origin state machine is detailed in section 4.2 of
the Z39.50 Specification.

In addition, the Z39.50 standard clearly defines the state machine behaviour that a Target process
must conform to. The Z39.50 Target state machine defines for a given set of states the input
events that cause a particular set of Target outgoing actions to occur. Inputs may be from the
Target application, the Origin or be internally generated. The Z39.50 V3 Target state machine is
also detailed in section 4.2 of the V3 Specification.

Code to implement V3 Origin and Target state machines is non-trivial. Most V2 Origin state
machines are simple two dimensional arrays. Because of the complexity of the V3 definition with
multiple possible state changes from other states, such a simple data structure is not suitable.

The Target Application as a whole must conform to the Z39.50 state machine. This state machine
will be built into the service user

The API state machines cater for the specific condition of Resource Control request in which no
response is necessary. In addition, it caters for the TriggerResourceControl request, which maybe
used to terminate an operation although TriggerResourceControl request may be completely
ignored by the Target.

In terms of implementation, the service-provider component will perform verification to a subset of
the state machine pertaining to the network operations. This will follow the rules defined below:

Page: 30
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

4.3.1 Origin State Machine

This section discusses particular aspects of the Origin State Machine. In coding the state machine
program, each particular event, input and state are given specific names in the Z39.50
Specification. These can be seen in Section 5.2.3 of the Z39.50 specification. It should be noted
however, that all the events and actions are abbreviated and ideally the application program
should adopt a similar naming convention. What is not apparent from the Specification, is the
relationship of each event and action with respect to either Target, Origin, input or output.

The behaviour of the Origin State machine should conform to the description in the ANSI Z39.50
specification. This is an overall state machine comprising service-provider and service-user
elements. In terms of state transition, and in terms of the state machine being built into an actual
application, the following two diagrams depict an overall program state transition and a first level
decomposition.

In the following diagrams, the notation is that a box indicates a state, arrows indicate a change to
a different state. The arrow labels specify: the condition for the state-change to take place above
the line; and, the actions taken in changing state below the line.

Fork Process Completed

Start Origin Process

Origin ProcessOrigin Process Terminated

Host Connection Receiver

Host Connection Received

Instigate Fork |Process

Forking Origin Process

Fork Process Complete

Figure 4.3 High Level State Transition of Origin Process

The high level state transition diagram of Figure 4.3 above refers to the Origin architecture as part
of a local system. When the Origin Host connection daemon receiver receives a host/user
connection, it will cause a state transition to spawn the Origin program. Note that the spawning
transition will return state immediately to the host connection receiving state, and that when the
Origin process is complete it has no return state since the program will terminate.

Page: 31
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

Figure 4.3 below shows the state transition behaviour of the Origin Application process itself. This
diagram should be read in conjunction with the state behaviour in the Z39.50 Specification.

Note that the state transition information caters for both service-provider and service-user
components.

Page: 32
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

Origin Process

Association Instance Requested

Connected

AssociateRequest()

Issue InitRequest PDU

InitResponse() + Rcvd.

Waiting for Target response

InitResponse() - Rcvd.

Open
Waiting for Input

ReceiveDataOrigin()

Waiting for Response

Service Response Rcvd.

Issue Response to User

User Service Request
Issue Service PDU to Target User Present Request

Issue Present PDU to Target

Segment Request Rcvd.

Present Response Rcvd.

User Close Request

Close PDU Confirmation

CLose PDU Rcvd.

Issue Close PDU Rsp

Association Closed

Initialise Z39.50

Set Open State

ReceiveDataOrigin()
Waiting for Response
ReceiveDataOrigin()

Issue Response to User

Issue Response to User

Issue Close PDU to Target

Waiting for Response
ReceiveDataOrigin()

Issue Confirmation to User

Association Rejected

AssociateRequest() - /

Waiting for Response

ConfirmAssociateRequest()-

Association Accepted

AssociateRequest() - /
ConfirmAssociateRequest()+

Association Instance

At any state

Waiting for

Disconnect Association
ReleaseRequest()

ReleaseRequest() + /
ConfirmReleaseRequest() +

At any association

Origin Abort

Disconnect

Association
aborted by

Target
Disconnect

Disconnect Response

Request

state

Figure 4.4 Detailed State Transition of Origin Process

Page: 33
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

4.3.2 Target Application State Machine

This section discusses particular aspects of the Target State Machine. In coding the state machine
program, each particular event, input and state are given specific names in the Z39.50
Specification. These can be seen in Section 5.2.3 of the Z39.50 specification. It should be noted
however, that all the events and actions are abbreviated and ideally the application program
should adopt a similar naming convention. What is not apparent from the Specification, is the
relationship of each event and action with respect to either Target, Origin, input or output.

In order to assist the developer in these matters, some suggested names are included below,
together with the relationship and the direction of the data.

Note that both TCP/IP and OSI Target programs must conform to the same state machine
behaviour, and therefore their construction and design may be very similar.

The behaviour of the Target State machine should conform to the description in the ANSI Z39.50
specification. This is an overall state machine comprising service-provider and service-user
elements. In terms of state transition, and in terms of the state machine being built into an actual
application, the following two diagrams depict an overall program state transition and a first level
decomposition.

In the following diagrams, the notation used is the same as for the Origin Transition diagrams
above.

Page: 34
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

Client Connection Received

Instigate Fork process

Forking Target Process

Fork Process Completed

Fork Process Completed

Start Target Process

Target Process

Target Process Disconnected

Target Server

Figure 4.5 High Level State Transition of Target Process

In the high level state transition diagram of Figure 4.5 above, when the Target daemon receives an
Origin connection, it will cause a state transition to spawn the Target Application program. Note
that the spawning process will return state immediately to the Target daemon, and that when the
Target Application process is complete it has no return state since the program will terminate.

Figure 4.6 below shows the state transition behaviour of the Target Application process itself. This
diagram should be read in conjunction with the state behaviour in the Z39.50 Specification.

Note that the state transition information caters for both service-provider and service-user
components.

Page: 35
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

Origin Connection Received
Spawn Target Process

Target Process Created

Target Process Initialised

TargetInitialize()

Other Initialisation

Closed State
Waiting for Input

ReceiveAssociateRequest()

InitRequest Received

Connect to Host

InitResponse() +

Connecting to Host

Connected to Host

Failed to Connect

InitResponse() -

AssociateResponse() +

 Disconnect

AssociateResponse() -

Open

Waiting for Input
ReceiveDataTarget()

Processing Service
Operation to Host

Host Response Rcvd.

Issue Service Response PDU

Service Request PDUs
Translate to Host Operation

Processing Present
Operation to Host

Present Request PDU

Translate to Host Operation

Host Response Rcvd.

Issue Segment Request PDUHost Response Rcvd.

Issue Present Response PDU

Close PDU Rcvd.

Disconnecting

From Host

Translate to Host Operation

Host Disconnected
Issue Close PDU

Host Closes Down

Issue Close PDU

Waiting for Close
Response PDU

At any connected state

Disconnect Request Received

Received

Issue ReleaseResponse() +

Open - Any service
Req received

Waiting for Close
Response

Send Close ADPU

Close APDU Received

Valid Association

Association Validation

If appropriate - Close host Connection

Close Target

Close Target

AbortRequest Association aborted
by OriginEnd Association

End Association
Close Target

Close Target

Figure 4.6 Detailed State Transition of Target Process

Page: 36
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

4.3.3 Implementation of the State Machine in Applications

Some guide-lines to the implementation of the Application level within the Origin and Target
service-user components are given below:

The program may follow the following operations, namely:

a) waiting for an event (either from Application or network);

b) identification of the received event in terms of state machine input; and

c) validation of the event through the state machine.

When the incoming event signifies a Z39.50 Operation, the Operation may be given a reference
identifier and the appropriate O-machine is started. All subsequent input events, whether from
the Application or the remote Origin or Target will be identified and will be given to either the Z-
machine or the referenced O-machine. In this context, the Z-machine and O-machine are running
in parallel.

In practice, the implementation in the C language can be satisfied by several methods such as
multiple and nested switch statements. However, one mandatory aspect of the program design is
its ability to accept asynchronous inputs from both the application or the network. This
particularly applies to the Z39.50 Close service, which can be initiated from either the application
or the network.

Page: 37
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

4.4 Using The API

To the application programmer, the DBV-OSI II API consists of the following components:

1) A shared library containing DBV-OSI II API functions common to the Origin and Target.
This library will be called : libdbv.

2) Two shared libraries, one for Origin specific functions, another for Target specific
functions. These libraries will be called: libdbvorigin and libdbvtarget respectively.

3) A static library provided by snacc containing encoding and decoding functions called
libasn1csbuf.a. The Origin and Target program developer need not be concerned about this
library since the functions within it are called only by the API. The user only needs to ensure
that this library is included in the program linkage.

4) Isode Communication stack libraries for developers implementing on OSI stack.

5) The following header files:

sidefs.h - DBV OSI II standard definitions

sitypes.h - DBV OSI II APDU structure type definitions

sitypes2.h - DBV OSI II additional structure definitions

itemordr.h - DBV OSI II item order extended service and ILL structure definition

iord_ext.h - DBV OSI II SUBITO additional information structure definition

dbvproto.h - prototypes of the API functions and definitions of errors.

Notes:

a) In order to include the API library functions in Origin and Target processes, these header files
should be included in the Origin and Target program source files, and the shared library
libdbv should be included in the linker command line with just the reference:

 -ldbv and either -ldbvorigin or -ldbvtarget and also -lasn1csbuf
(list ISODE libraries also)

b) Note: The file extensions for shared libraries differ depending on the implementation of Unix
being used. On SunOs 4 the extension is .so.M.m where M.m is the major version and minor
version of the library respectively. Solaris 2 does not include the minor version while HP-UX
has no version information in the filename, only a .sl extension.

Page: 38
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

c) The DBV OSI shared libraries outlined above will contain both OSI and TCP/IP association
functionality. This allows origins to connect to both TCP/IP and OSI targets concurrently and
for the same Target application to be used for both communication types. The type of
communication stack to be used by the Target is passed in as a parameter to the application
itself. The input parameters are then parsed by the TargetInitialize() function.

An example of including the header files is shown in the following C code:

If a Target process consists of one C file, target.c, which has a state machine containing calls to
DBV-OSI II functions, it must have the following structure

/*Top of C Code File*/
#include "sidefs.h"
#include "sitypes.h"
#include "sitypes2.h"
#include "itemordr.h"
#include "siord_ext.h"
#include "dbvproto.h"

/* code to implement a target application which
* includes calls to DBV-OSI II functions>

 */
{
.....
}

In order to link with the API library, the file could be compiled with the GNU gcc compiler like:

% gcc target.c -ldbv -ldbvtarget -lasn1csbuf

Or:

% gcc origin.c -ldbv -ldbvorigin -lasn1csbuf

4.5 Origin and Target Program Operations - Implementation hints

The following subsections discuss practical approaches to some important aspects of the Origin
and Target operations and are implementation hints only.

4.5.1 Query Language Conversion

One of the most complex operations of the Origin program is the conversion of command line
queries to the structure representations used within Z39.50. In addition, the developer will have

Page: 39
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

to determine the exact mapping and behaviour of the query command language to the appropriate
Z39.50 APDU and to the necessary elements within the APDU structure.

In the DBV-OSI II programs, this will be a two way mapping. The Origin component must map the
local query language to Z39.50 requests, and also map the Z39.50 responses to the responses
analogous to the query language. The more accurate this can be done, the greater the
transparency of a remote host will appear to a user.

The Target component also has a translation aspect. It must map incoming Z39.50 APDU requests
to its local host query language, and translate the local host responses to Z39.50 response APDUs.
Some potentially difficult aspects are:

a) Some commands of the query language may not have an appropriate Z39.50 APDU to
convert to - a compromise solution may need to be considered.

b) It should be assumed that the remote host will have a different query language - in this
case some commands cannot be suitably passed to the remote host, and the Origin program may
need to emulate these.

c) Some query languages have short-cut representations of the query language syntax - a
special query expansion pre-processing operation may be needed before appropriate conversion to
Z39.50 is possible.

d) Certain query language operations will require a degree of user parameter information to
be retained and used by the Origin program.

An example of a) above would be for a command to display set information. There is no Z39.50
APDU to request information on the users current search history.

An example of b) above is if the remote host supports a database service that is not supported by
the local host.

An example of c) above could be a range operator, such as a date range. IN this case, the query
translation has to expand the date range to be date < year1 AND date > year2.

An example of d) above would be the utilisation of a "limitall" command, that, (say) restricted all
future queries to a particular attribute. The Origin program would need to modify subsequent user
queries appropriately.

The format of the query in the Z39.50 Search APDU is by far the most complex to deal with. The
query and attributes are represented in a complex structure containing query terms and
attributes. This structure, a form of reverse polish notation (RPN) is discussed below.

Page: 40
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

4.5.1.1 RPN Query Formation

The Z39.50 Type-1 and Type-101 queries use the Reverse Polish Notation of a query, RPN. It will
be necessary for Origin developers to map the user defined query to RPN.

The Origin test program supplied with the API software contains a simple RPN generator software.

For example, the following command uses Boolean and positional operators:

SELECT ARTIFICIAL(W)INTELLIGENCE AND COMPUTER(W)APPLICATIONS

This command maps onto the following Z39.50 RPN structure. The direct mapping of elements to
RPN structure fields are not shown.

QUERY101 - Z39.50 query type

1.2.840.10003.3.1 - OID

1,0 2,3 3,0 4,2 5,100 6,0 ARTIFICIAL - term and bib-1 attributes for word "artificial"

1,0 2,3 3,0 4,2 5,100 6,0 INTELLIGENCE - term and bib-1 attributes for word "intelligence"

PROX EMPTY 1 TRUE 2 0 2 - proximity relationship between "artificial" and "intelligence"

1,0 2,3 3,0 4,2 5,100 6,0 COMPUTER - term and bib-1 attributes for word "computer"

1,0 2,3 3,0 4,2 5,100 6,0 APPLICATIONS - term and bib-1 attributes for word "applications"

PROX EMPTY 1 TRUE 2 0 2 - proximity relationship between "computer" and "applications"

AND - AND relationship between words.

4.5.1.2 Query Attributes

A number of query attributes sets are referenced in Z39.50 (e.g. Bib-1). However there is no
specified standard attribute set or combination of attributes to be used for search requests. If a
Target doesn't support an attribute list passed in a search request the search must be rejected. To
minimise this problem, some freely available Z39.50 Origin packages (e.g. Willow) have a huge
range of selectable predefined attribute combinations. This allows an Origin to work successfully
with different Z39.50 Targets. In addition, some Origins often allow attribute combinations to be
determined by a user for a search. This is because the sets used by some Targets differ due to the
interpretation of the Z39.50 specifications by the implementors.

Page: 41
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

4.5.2 Asynchronous Behaviour

The Origin and Target programs allow requests to arrive in any order at any time from both the
local host and the TCP/IP or OSI daemon connected.

Within TCP/IP, this asynchronous behaviour can be achieved by using synchronous I/O
multiplexing - using the programming level association identifiers of both the local host and
TCP/OSI Target process associations within the select() system call. This call can be made to wait
until data appears on any of the associations specified, either indefinitely, for a specified period or
for a zero length period (in which case the select() acts as a poll).

The Z39.50 State Machine explicitly defines asynchronous behaviour by being able to cater for
inputs from either the network or the host application.

4.5.3 Program/Process Errors And Recovery Procedures

The DBV-OSI II programs developed should have robust error checking and incorporate error
recovery procedures as discussed below.

4.5.3.1 Signal Trapping

The occurrence of an unrecoverable error in the proposed master-slave architecture of the Targets
be extremely rare.

It is recommended that unrecoverable errors in the Application processes should be trapped, and
should produce a relevant diagnostic message followed by an orderly exit of the Application
process. A "reaper" function could be added to automatically terminate such orderly terminated
processes. This will ensure that no defunct processes, called zombies, are left.

Unrecoverable errors can be trapped and reaper functions can be specified using the UNIX
"signal()" function call. Essentially, this function allows a 'signal' and an associated function to be
specified. If the specified signal should occur, the specified function is executed.

Signals are specified using the following syntax:

signal(<signal to trap>, <function to execute when the signal occurs>)

An example of a program fragment which could be used to catch segmentation faults and bus
errors is given below. In this case, the function program_terminate() will be called when such an
error occurs.

Page: 42
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

#include <signal.h>

void program_terminate_segment();
void program_terminate_bus();

main()
{

/* When a segmentation fault occurs jump to function program_terminate_segment
*/

(void *) signal(SIGSEGV, program_terminate_segment);

/* When a bus error occurs jump to function program_terminate_bus
*/

(void *) signal(SIGBUS, program_terminate_bus);

<rest of main>
}

void program_terminate_segment()
{

printf("Program died because of segmentation fault\n");
exit(1);

}

void program_terminate_bus()
{

printf("Program died because of bus error\n");
exit(1);

}

Catching and acting upon reaper signals is more complex than catching unrecoverable program
faults since the signal function must return. A reaper signal should be specified in Target daemon
code. When this is set up; if an Application process created by a daemon should terminate (ideally
through the signal trap, exit(1) sequence specified above), the reaper function will be
automatically called. This will terminate the exited Application process in an orderly fashion if
needed; and will then return to the location from which it was called. If a system call is
interrupted due to a reaper signal, on return from the reaper function, the interrupted system call
returns -1 and sets the global error variable errno to EINTR.

Consequently, if using the master-slave architecture, every master system call must check for a -1
return and a setting of errno.

The structure of a Target daemon which uses a reaper function could be the following:

#include <signal.h>
#include <sys/errno.h>
extern int errno;
void reaper();
main()
{

(void *) signal(SIGCHLD, reaper);
<code which accepts connections from an origin and spawns the application>

Page: 43
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

}

void reaper()
{

int wpid, status;

while ((wpid = wait(&ststus)) != -1)
printf("Reaped and killed process %d\n", wpid);

}

Note: it should be checked to see if the this mechanism is supported on your UNIX system. It is
known to work on Sun Solaris 1 (BSD), Sun Solaris 2 (System V) and IBM RS6000 AIX. Some
published reaper processes such as:

#include <sys/wait.h>
union wait status;
while (wait3(&status, WNOHANG, (struct rusage *) 0) >0)

continue;

are BSD specific and are not portable to system V, since System V does not support wait3().

4.5.3.2 Communication Errors

If a DBV-OSI II API communication function returns an error indication, appropriate action must
be taken. The following could be done:

a) issue an error message to the Administrator; and,

b) perform an orderly exit.

Checking communication errors is particularly important for Target association functions if a
master-slave architecture is used. It will most likely be the case that the association acceptance
and Application creation functions will be in an infinite loop. If connection errors are ignored, it
could be possible for the program to enter a situation whereby instances of the Application
program are being created continuously; thereby filling the UNIX system process table.

Page: 44
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

4.6 Determining Stacks to Use

Both TCP/IP and OSI stacks will be supported by the API. Both requires some system
requirements in order to be supported. By convention, the UNIX platform will readily support
TCP/IP communications. OSI communications requires the use of additional software products,
namely the protocol stack software, and the X.25 interface software.

A diagrammatic representation of the stacks is given in Figure 4.7 below.

APPLICATION

API

TCP

IP

PRESENTATION

SESSION

TRANSPORT

X.25

SERVICES

FOR PLATFORM

ASN.1 Z39.50

PRESENTATION

SESSION

RFC1006

TCP

IP

SNACC

ISODE COMPONENTS

Figure 4.7 Representation of Communications Stack Components

Page: 45
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

4.6.1 TCP/IP Stack

All vendor platforms to be ported to support BSD 4.x Socket TCP/IP communications software.
This will be the basis upon which TCP/IP communications software will be developed. System
functions must be correctly used in order for the State machine programs to correctly operate in
the asynchronous behaviour.

4.6.2 OSI Stack

The OSI stack will utilise the ISODE package. The ISO Development Environment is a collection of
library routines and programs that implements an extensive set of OSI upper-layer services. The
ISODE implementation of the upper-layers of OSI is interesting in four respects:

a) it provides extensive automatic tools for the development of OSI applications;

b) it supports OSI applications on top of both OSI and TCP/IP-based networks;

c) it provides a novel approach to the problems of OSI coexistence with and transition from
the Internet suite of protocols; and,

d) it is openly available (non-proprietary), although the Consortium version will be used in
this application.

ISODE contains four parts:

a) a set of application service elements;

b) a collection of ASN.1 tools;

c) presentation and session services; and,

d) interfaces to transport and network layer realisations.

Page: 46
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

4.6.2.1 Building Distributed Applications

Although ISODE can be programmed at several levels, it provides a set of semi-automatic tools,
termed The Applications Cookbook which can be used to construct OSI applications rapidly and
easily.

Whilst the ISODE package contains an ASN.1 compiler to produce C functions that link to the OSI
stack libraries, the DBV-OSI II Application will utilise the snacc ASN.1 compiler instead of the
ISODE ASN.1 compiler. This is because the snacc compiler produces far more efficient encoding
and decoding routines.

4.6.2.2 Transport-Independence

When the ISODE was originally developed in January of 1986, there were very few networks and
systems which supported the OSI transport service. In contrast, the Internet suite of protocols,
and in particular, its reliable transport protocol, the TCP, were widely deployed even at that time
(and are even more so today).

To solve this problem, a transport service convergence protocol (TSCP) between the TCP and the
OSI transport service was developed, known as the RFC1006 method.

This particular TSCP is a simple protocol that runs over the TCP and makes the service it offers
appear to be identical to the OSI transport service. This is an important abstraction in that it
allowed the development of native OSI applications, that behaved as if they were running in a
pure OSI environment. Later, when some pure OSI environments became available, the same
applications can run ran without even being re-compiled: they need only be reloaded with the new
transport library.

In support of this, there is an important abstraction in the ISODE called the transport switch.
When the ISODE is configured, one or more transport-stacks are defined. A transport-stack is
simply a combination of protocols which offer the OSI transport service.

Page: 47
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

5. Program Development

This section of the document recommends approaches for developing applications using the DBV-
OSI II API.

5.1 Development Tools

High quality, and highly portable freeware tools provided by the GNU project in America. are
recommended for program development. It is recommended that the following GNU tools which
are freely available should be obtained and installed on your UNIX system. Full installation
instructions are provided with each tool.

1) gzip-1.2.4 (or higher) - Efficient file compression/ decompression utility

2) gcc-2.5.7 (or higher) - ANSI C compiler

3) gdb-4.11 (or higher) - Source code debugger

4) make-3.70 (or higher) - Make utility

Note that not mentioned above is glibc, a GNU replacement for standard C libraries and header
files. Although gcc exists for many machines, glibc, which is still at version 1 only exists for a few
at the moment. The recommended approach is to use gcc with the proprietary libraries and files
provided by the machine manufacturer. This is the default operation of gcc.

5.1.1 ANSI-C C Source Code Compilation - Using gcc

gcc is a popular fully ANSI-C compliant compiler. Unlike some proprietary ANSI C compilers (such
as Sun's acc) this compiler supports the entire ANSI standard. The compiler provides a wide range
of configuration options and supports multiple user concurrent compilation. In its most basic
form, gcc is used as follows:

% gcc < filename>

e.g.

% gcc myfile.c

Provided it has been installed, full details of gcc can be found by entering

% man gcc

Page: 48
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

5.1.2 Debugging - Using gdb

gdb is a popular source code debugger which supports a wide range of source languages including
ANSI-C.

It is similar to the dbx debugger found on many UNIX environments but is superior and has more
useful facilities. In addition to standard debugging facilities such as breakpoint setting, line
stepping, variable printing and identification of source code lines which cause segmentation faults
or bus errors, it has several sophisticated features attachment to including running processes .

There are three usual scenarios for using gdb, described below.

1) To locate the line in a program that causes a core dump.

Example Sequence:

Initially, recompile the source file(s) with the "-g" compiler option. This will add symbolic
information to the compiled file. Then, re-run the program and repeat the sequence of events
which causes the program crash. Finally, invoke gdb and display the source file line which causes
the core dump.

% gcc -g myfile.c
% a.out
% gdb a.out core
gdb> where

2) To execute a program within the gdb environment.

This option will allow full control over the program execution. gdb will catch segmentation faults
and bus errors, allow breakpoints to be set, variables to be examined etc.

Example Sequence - compile the source code files with the "-g" option to create the gdb symbolic
information. Invoke gdb and then run the program within gdb. Full information about gdb is
available in the on-line manual. A X-Interface to gdb is also available in the utility xxgdb.

% gcc -g myfile.c
% a.out
% gdb a.out
% run

Page: 49
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

3) To attach gdb to a running process.

This provides control to gdb to the running program. This includes catching segmentation faults
and bus errors, breakpoint setting, variables to be examined etc.

Example Sequence:

% gdb program 01234

where 01234 is the process id to attach to.

The latter example, is particularly useful in an X-Window based development environment when
debugging master-slave architectures described in previous sections. It is recommended that each
Application is executed in its own x-term and that a gdb debugger process (which will run in its
own x-term) is automatically attached. When the system is operational, the code that invokes the
gdb debugger and the xterm environments can be removed.

The following C code fragment shows how a gdb debugger can be specified at compile time to
automatically attach at run-time to a running process. The process assumes that the code
fragment is compiled into an executable called

targetslave

char gdb_str[100];

dummy()
{ }

main()
{

printf("Executing: xterm -e gdb targetslave %d\n", getpid());
printf("When the window appears, do: b dummy\n");
printf(" c\n");
printf("Sleeping 20 seconds.....\n");
sprintf(gdb_str, "%s%d%s", "xterm -e gdb targetslave ", getpid(), " &");
system(gdb_str);
sleep(20);
dummy();

< rest of target application process>
}

The behaviour of this code is as follows:

Page: 50
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

It is assumed that the executing program is displaying to an x-term window. The printf
statements will notify that the gdb process is about to be invoked, and also instructs what to do
when the gdb window appears. The sprintf statement generates a command line to invoke another
x-term window, and to initiate the gdb command. The process id for gdb to attach to is this
process, as retrieved by the getpid() function.

The system() function invokes the command, and then this process will sleep, allowing for the gdb
window and process to appear. When this window does appear, the instructions in the printf
statements must now be executed. (remember, you have 20 seconds to do this !!). The "b"
command instructs gdb to put a breakpoint at the function dummy(). The "c" command instructs
gdb to continue with execution of the program. Now, the program being debugged will pass after
the sleep() function and call the function dummy(). Here it will stop since there is a breakpoint.
The user now has control over the program through gdb to debug the program.

5.1.3 Use of Makefiles

All source code compilation should use a 'makefile' utility. The purpose of this utility is to
determine automatically which source files or other components of a program need to be
recompiled and automatically issue the commands to recompile them. Using this utility is
essential when developing a large program consisting of multiple source files as it always produces
the most time-efficient compilation; if one file from a source set of (say)fifty files is modified only
this one file is recompiled and relinked.

It is recommended that the GNU makefile utility (version 3.70 or higher) be used rather than a
manufacturer's makefile utility.

There are two common approaches for makefile creation and usage, namely:

1) Raw makefile creation and usage:

In this approach, the following are required:

a) Create a file called Makefile (or makefile) in an editor specifying all source files and build rules.

b) Invoke the makefile utility by entering the command:

% make

2) 'Automatic' makefile creation and usage:

In this approach, the following are required:

Page: 51
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

a) Create a file called Imakefile specifying source files (An Imakefile must have a standard format)

b) Automatically create a makefile called makefile which specifies source files and build rules from
the specification in Imakefile by entering the command:

% xmkmf

(xmkmf is a utility provided as part of X11 system software)

c) Invoke the makefile utility by entering the command:

make

Imakefiles are standard format files which were created to simplify the creation of makefiles.
Although popular, they are not always the automatic choice, especially when only a small number
of source files are to be compiled, as they are less flexible than raw makefiles and tend to produce
large makefiles as output.

An extremely simple raw makefile is reproduced below which builds an executable program called
shapes from five sources, circle.c, square.c, rectangle.c, oval.c and arc.c.

Page: 52
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

#---
Example makefile
#
Usage:
#
make
#---
#
Program name
#
PROGRAM= shapes
#---
Directory for object files

OBJDIR= object_files

#---
Specify Compiler

CC = gcc

#---
C source files

Program (shapes) gcc ANSI C source files
CSRCS= circle.c \

square.c \
rectangle.c \
oval.c \
arc.c

#---
Define object files

MEMB= $(CSRCS:.c=.o)
OBJS= $(MEMB:%=$(OBJDIR)/%)

#---
Principal dependencies

all: $(PROGRAM)

$(PROGRAM): $(OBJS)
$(CC) -o $(PROGRAM) $(OBJS)
chmod a+x $(PROGRAM)

#---
Implicit build rules

$(OBJDIR)/%.o: %.c
$(CC) -c -o $@ $<

Full details of the default supported make utility can be found by entering the command:

% man make

Page: 53
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

5.2 Memory Verification And Diagnostic Utilities

In the development of UNIX system software, many program errors can be due to incorrect usage
of memory related system functions, such as malloc() and free().

Some platforms, (such as Sun Solaris-1 provide additional memory verification routines which are
linked with the program. These routines, from system file /usr/lib/debug/malloc.o, include
memory checking and diagnostic replacements for memory functions such as malloc() and free()
which automatically detect memory corruption errors which can be overlooked.

In addition, a facility called checker is available on the LINUX platform.

On Sun Solaris-1, details about the /usr/lib/debug/malloc.c memory routines can be obtained
by entering the command:

man malloc_debug

5.3 Source File Version Control

It is recommended that any source files developed are maintained using a version control system.

SCCS, which is an abbreviation for 'Source Code Control System' is a version control tool available
in most UNIX environments which allows files to be securely maintained, modified and updated.
Any file including binaries can be held under SCCS.

The steps involved in setting up an SCCS system are listed below. All steps should be performed
from the source directory containing the files to control. For a set of files, setting up SCCS is only
required once as the setting remains 'permanent' - when the system is next used; hours, days,
possibly months later and after any number of logins, the SCCS system is immediately ready to
respond to SCCS commands.

1) Create a directory called SCCS (note the use of upper case) in the directory containing sources
which are to be controlled.

NOTE: LEARNING USERS SHOULD NEVER ENTER AN SCCS DIRECTORY OR MODIFY ANY
FILES CONTAINED WITHIN.

2) 'Put' each file required to be maintained by SCCS under the tool's control using the command

Page: 54
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

% sccs create <filename>

Once an SCCS directory has been set-up and files entered under control of the tool, the files may
be 'retrieved' as required for further editing, compilation and testing. Once retrieved from SCCS,
files may be put back under SCCS control at any time, normally this is only done after a useful
change (such as correcting an error).

When a file is initially put under SCCS control and each time it is 'put back' after being edited, a
'new version' of the file is created which is assigned a unique version number. Version numbers
start at 1.1 - this is assigned to the version of the file which is initially put under SCCS control -
and incremented logically. The use of version numbers allows great control as any version of any
file may be retrieved and used. Baselineing of versions is possible which is extremely useful when
producing releases of software (e.g. the current version of all source files in a directory can be
made to be version 3.1 etc.)

By default after all operations, the most recent version of a file is left in the directory from which
an SCCS command is issued.

5.3.1 Basic SCCS Commands

The basic commands required after setting up source files in an SCCS directory are given below.
All commands should be issued from the directory containing the SCCS directory.

% sccs edit <filename>
Retrieve a file from SCCS control for editing (the file will have both read and write permission).

% sccs get <filename>
Retrieve a file from SCCS control for reading only (the file will have read permission only).

% sccs delget <filename>
Return a file (possibly modified) to SCCS control. SCCS will automatically assign a new version
number to the file. When a this command is entered, the SCCS system will issue a:

Comments?

prompt, allowing entry of comments which describe changes made to the file. Any relevant
comments should be entered. After the comments are accepted, a new version of the file will be
created under SCCS control and assigned a new version number. A copy of the file version will be
left in the directory with read-only file protection attributes.

% sccs prt <filename>

Page: 55
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

Print the SCCS 'history' of a file including version numbers and comments.

% sccs unedit <filename>
If a file is out of SCCS for editing, this command will discard the file and retrieve the previous
version. NOTE: any edits to the file whilst it was out for editing will be lost.

% sccs info
Display a list of files being edited plus who is editing them and what versions are being edited.

5.3.2 Typical Basic SCCS Command Sequence

A typical SCCS command sequence is given below. The sequence will create an SCCS directory,
put a file under SCCS control, retrieve it from SCCS for editing then put it back under SCCS
control.

Assuming there is a single file hello.c in directory /home/hough/code:

% cd /home/hough/code
% mkdir SCCS
% sccs create hello.c
% sccs edit hello.c

Edit hello.c in an editor, add lines, compile and test until working.

% sccs delget hello.c

Add any comments at the Comments? prompt issued by the delget command.

The following day....

% cd /home/hough/code
% sccs edit hello.c

Add lines to hello.c, compile and test until working then...

% sccs delget hello.c
% sccs prt hello.c

Page: 56
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

Full details of SCCS can be found on any UNIX environment which supports it by entering the
command:

% man sccs

5.4 Configuration Management

A logical structure for source, object and executable files is recommended. In most software
projects, The following directory structure is suitable for this:

<root directory of product>

|
|---documentation
|---exedir
|---cshellscripts
|---src

src
|
|--- src directory 1
|--- src directory 2

The contents of the exedir directory would typically be:

1) Executables and files required at run time built and copied from src directories.

The contents of the cshellscripts directory would typically be:

1) shell scripts used during development, (such as porting scripts, source code baseline scripts
etc.).

2) SCCS directory for version control of the shell scripts

The contents of the src directory would typically be:

1) Sub directories

src directory 1 contents:

1) Source files used to make a distinct component of the project.

2) Makefile to build the project component into exedir

Page: 57
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

3) SCCS directory for version control of the source files and Makefile.

src directory 2 contents:

1) Source files used to make a distinct component of the project.

2) Makefile to build the project component into directory exedir

3) SCCS directory for version control of the source files and Makefile.

Page: 58
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

6. Additional Programs And Development Aids

6.1 Test Programs

In the course of developing the DBV-OSI II API test programs for testing the Origin and Target API
functions have been developed and are included in the software package. The programs will
illustrate typical programmer use of the API including connection and query to known V2 Z39.50
Targets.

6.2 API Test Tool

A comprehensive test tool is included with the API package which has been used to prove and
verify the API functions.

The test tool will is written in GNU ANSI C which allows portability across hardware platforms It
will use simple virtual terminal based text menus.

6.2.1 Test Tool Modes

The Test tool will provide the following two applcations:

1) Origin testing application to allow testing of Origin related API functions with both valid and
invalid parameter combinations,

2) Target testing application to allow testing of Target related API functions with both valid and
invalid parameter combinations.

3) Menu and Batch modes exist whereby menu mode requres that each action of the test tool is
manually operated and batch mode allows a control file to determine the set of actions that
the test tool will follow.

6.2.2 Test Tool Control And Result Analysis

To enable analysis of parameters passed to API functions and resultant data transfer from the use
of such parameters, text files will be used to control all testing. Parameters for function testing
will be read from relevant text files and data received by both Origin and Target functions will be

Page: 59
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

written to relevant files as text strings. There will be up to five types of diagnostic files associated
with the execution of each API function.

1) 'Input From' files - these files will contain parameters to be passed to API functions when they
are executed.

2 'Result To' files - these file will contain information about the success/failure of the function
execution.

For Origin API-APDU functions only:

3) 'Request At Target To' files - these files will be created by the Target upon reception of a APDU
from the Origin and will contain the APDU data and other related information.

4) 'Target Response From' files - these files will hold API function parameters to be used when
creating a response to send back to the Origin.

5) 'Response From Target To' files - these files will be created by the Origin upon reception of a
response from the Target.

For Target API-APDU functions only:

3) 'Request At Origin To' files - these files will be created by the Origin upon reception of an
APDU from the Target and will contain the APDU data and other related information.

4) 'Origin Response From' files - these files will hold API function parameters to be used when
creating a request to send back to the Target.

5) 'Response From Origin To' files - these files will be created by the Target upon reception of a
response from the Origin.

It will be assumed that all input files will always contain correctly formatted fields. All files will
use a flexible table based format which has been previously developed at Crossnet systems Ltd.
The TBL table file (.tbl) format has been used successfully in several commercial projects and a
large range of ANSI C support functions exist to control creation, update and maintenance of such
files. Each line entry in a file having this table based format has the following structure.

<Key field><variable length list of mixed format data items>

Page: 60
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

6.2.3 Test Tool Operation

The test Tool has its own documentation for describing the operation of the menu and batch
modes.

Page: 61
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

Appendix A - Colbert Methodology

The Colbert methodology is a very practical approach to object-oriented analysis and design. The
method concentrates on objects (or instances) initially. Classes are very much a secondary
consideration to ensure that the commonality between objects is identified and duplications are
therefore eliminated.

An object is considered "active" if it displays independent motive power, otherwise it is considered
to be "passive" . Passive objects act only under the motivation of active objects.

The method uses a consistent object model throughout the life-cycle stages, covering requirements
analysis, preliminary design and detailed design.

Four activities can be performed to create the model of the application from the problem
statement:

1) Object Interaction specification, (OIS)

2) Object Class specification, (OCS)

3) Behaviour specification, (BS)

4) Attribute specification. (AS)

These activities can be performed in any order. OIS identifies objects, their interactions and the
hierarchical relationship of objects. The Object Interaction and Object Hierarchy diagrams are
used.

OCS identifies the classes of objects and the relationships between the classes. The class
relationships primarily depict component type relationships (is_part_of).

BS identifies the dynamic behaviour of an object. Typically state transition diagrams are used to
depict the life states of an object.

AS identifies the quantitative and qualitative measures and resources for each object in the
system. An attribute specification table enables the analyst to record quality criteria such as
portability, performance and reusability criteria which must be associated with an object.

The objectives of the preliminary design phase are to refine the model developed during analysis
and add sufficient rigour to create an implementable solution. It creates a language independent
description of the software architecture of the system. The object interaction, object hierarchy,
object class and state transition diagrams are all refined from those generated during the analysis
phase.

Page: 62
DBV-OSI II Z39.50-1995 API

Document Issue 2 - System Architectural Information - Software Version 2.1

Crossnet Systems Ltd July 1997
�

During the detailed design, the implementation dependent representation of the software
architecture is created. The same models and techniques are used. decisions can now be made on
how to represent the objects identified in previous stages in a programming language.

Object interaction diagrams represent the interactions between objects. An interaction involves an
operation and optional information data flows. The symbols for active, passive and external
objects are used. External objects are considered as those outside the scope of the system to be
implemented.

Object hierarchy diagrams represent the decomposition of a system into its components. In this
sense, hierarchy is not the inheritance of object classes. Generally there is a top level diagram
providing the system to be implemented in its context with all external objects. This is
decomposed/exploded to a more detailed diagram which describes the whole system to be
implemented. Each of these objects can then be decomposed to finer and finer levels of detailed
objects.

Object class diagrams show relationships between classes and corresponding objects and
information flows defined in object interaction diagrams. Class relationships to other classes are
also shown.

The following diagram shows the syntax of the Colbert 91 methodology Object Interaction
diagrams.

Page: 63
DBV-OSI II Z39.50-1995 API

Software Version 2.1 - System Architectural Information - Document Issue 1

Crossnet Systems Ltd July 1997

Colbert (OOSDM) Notation
Object Interaction Diagram (OID)

Objects

Service Calls

Data Flows

Object Flows

Grant Access

Revoke Access

error flow

in/out flow

in and out flow

timed synchronous calls (handshakes, etc)

asynchronous service calls (interrupts, mailbox, etc)

simple external synchronous service calls

simple internal synchronous service calls (like function calls)

passive object

active object

external object

collection of objects

nested objects

	3.1 Context Diagram of a Z39.50 Session	11
	1.1 Abbreviations and Nomenclature
	1.2 References
	1.3 Supported Features of the Z39.50 Protocol

	2. Developing an Application
	2.1 Responsibilities Provided by the API
	2.2 Responsibilities of the Application Developer

	3. System Architecture
	3.1 Context Architecture
	3.2 Multiple Connections
	3.2.1 Origin Component Architecture - Standalone
	3.2.2 Origin Component Architecture - Local System
	3.2.3 TCP/IP Z39.50 Target Component Architecture
	3.2.4 OSI Z39.50 Target Component Architecture
	3.2.5 Targets with Multiple Communication Stacks

	4 System Development Considerations
	4.1 Origin And Target Application Analysis
	4.2 Service Provider State Machines for the Origin and Target
	4.2.1 Utility functions

	4.3 Origin And Target Application State Machines
	4.3.1 Origin State Machine
	4.3.2 Target Application State Machine
	4.3.3 Implementation of the State Machine in Applications

	4.4 Using The API
	4.5 Origin and Target Program Operations - Implementation hints
	4.5.1 Query Language Conversion
	4.5.1.1 RPN Query Formation
	4.5.1.2 Query Attributes

	4.5.2 Asynchronous Behaviour
	4.5.3 Program/Process Errors And Recovery Procedures
	4.5.3.1 Signal Trapping
	4.5.3.2 Communication Errors

	4.6 Determining Stacks to Use
	4.6.1 TCP/IP Stack
	4.6.2 OSI Stack
	4.6.2.1 Building Distributed Applications
	4.6.2.2 Transport-Independence

	5. Program Development
	5.1 Development Tools
	5.1.1 ANSI-C C Source Code Compilation - Using gcc
	5.1.2 Debugging - Using gdb
	5.1.3 Use of Makefiles

	5.2 Memory Verification And Diagnostic Utilities
	5.3 Source File Version Control
	5.3.1 Basic SCCS Commands
	5.3.2 Typical Basic SCCS Command Sequence

	5.4 Configuration Management

	6. Additional Programs And Development Aids
	6.1 Test Programs
	6.2 API Test Tool
	6.2.1 Test Tool Modes
	6.2.2 Test Tool Control And Result Analysis
	6.2.3 Test Tool Operation

	Appendix A - Colbert Methodology

