
Structural Components of the Isite Information System

Kevin Gamiel (Kevin.Gamiel@cnidr.org)
Nassib Nassar (nrn@cnidr.org)

Clearinghouse for Networked Information Discovery and Retrieval (CNIDR)

Abstract

This paper discusses various technical topics related to
the structural model of Isite, an open information system
supporting multiple external protocol-based access mecha
nisms, a database-independent search and retrieval API,
and an extensible field-based text search engine. Isite
was developed by the Clearinghouse for Networked Infor-
mation Discovery and Retrieval (CNIDR), which is fund-
ed by the National Science Foundation.

Two Models in Data Publishing

The broad range of existing distributed data access mod-
els can be classified into two main groups: those oriented
toward browsing, and those supporting searching capabili-
ties.

Examples of browsing systems are Gopher (University of
Minnesota) and World-Wide Web (CERN); publishers
with the proper tools can make their data accessible to
users through these systems. Browsing systems are based
on the concept of navigating through a virtual information
space. Such a system is well suited to data retrieval in
cases where there are clear relationships among the data.
In such systems, it is very important to have some meth-
od of organization, since browsing depends on the user's
ability to make intelligent navigational decisions. Brows-
ing systems have proved very useful for locating databas-
es on the vastly distributed global Internet, because the
“hyper-text” model utilized by Gopher and the World-
Wide Web has encouraged a rudimentary kind of organi-
zation among related documents.

An information system based on the searching model is
desirable when the data being published are difficult to
organize. In such cases an automated search on relevant
words of text may be far more economical than a brows-
ing model, or at least may assist the browsing system at
certain stages.

In practice, a combination of these access models is fre-
quently used. For example, many search-based systems
are arranged at the top level with a user interface provid-
ed by a browsing system. It is also desirable that the
various searching systems conform to Internet protocol
standards so that they may easily be integrated with other
searching and browsing systems.

Isite

Isite uses the combined model, but also provides multiple
access mechanisms via standard protocols. Additionally,
using the Search API included in Isite, multiple databases
of different formats may be served. Newly installed data
bases have the immediate benefit of being accessible
through all data retrieval communications protocols sup-
ported by Isite.

At present Isite supports four access methods based on
standard Internet protocols: Z39.50, World-Wide Web
(HTTP), Electronic Mail, and Gopher. The Z39.50 proto-
col, implemented in Isite in conformance to the ANSI/-
NISO Z39.50 version 2 standard, is the primary access
point of the system. Z39.50 supplies a rich set of “state-
ful” services for deep search and retrieval on distributed
database servers. It is the internationally accepted open
standard for search and retrieval over networks. The
other protocols are supported via protocol “gateway” soft
ware. A gateway is software that translates between two
different protocols. Thus Isite contains an HTTP to Z39.-
50 gateway, which converts search queries received by an
HTTP server to queries that can be understood by the
Z39.50 server.

The Search API (SAPI) provides a layer of abstraction
between the Z39.50 server in Isite and the database sys-
tem that contains the data to be served. The API is a
specification for a certain set of functions that must be
supported per database system. Thus the Z39.50 server
can rely on a consistent communications layer for access-
ing data stored in various databases. A supported data-
base may be a complex text search or relational system,
or it may be a simple utility such as “grep.” The essen-
tial principle is that the SAPI must normalize the behav-
ior of the database software in order to be accessible by
the Z39.50 server. With this layer operational, all access
methods available to Isite are extended to databases sup-
ported by SAPI.

Implementation

Isite consists of several distinct software packages, in-
cluding (1) libcnidr, a source code library of commonly
used functions, (2) ZDist, an ANSI/NISO Z39.50 version
2 programmer's library, UNIX server, and UNIX client



and gateway, (3) SAPI, the Search API, and (4) Isearch, a
field-based text search system including a C++ class
interface and Iindex/Isearch utilities.

ZDist

The ZDist package contains much of the core of commu-
nications access for Isite. Access to SAPI-supported data
bases is entirely directed through Z39.50. The current
version of ZDist, included in Isite, supports the Initialize,
Search, Present, and Close facilities of Z39.50.

The Z39.50 library is written in C and is based on the
freely available BER utilities developed by the OCLC On
line Computer Library Center, Inc. The server and cli-
ent/gateway use this library to encode and decode Z39.50
Protocol Data Units (PDU). The application-level net-
work communications source code is distinct from the
Z39.50 PDU encoding/decoding layer, and is physically
located in the libcnidr library.

The Z39.50 server application is easily configurable by
modifying a text file, and the configuration options in-
clude executing the server either as a forking daemon or
from inetd, specifying a maximum number of simulta-
neous connections, specifying which databases to serve,
and various Z39.50 settings down to the PDU level. The
server's overall operation is straightforward: it (1) listens
for client connections on a well-known port (usually 210),
(2) accepts a connection, initializes with the client, (3)
accepts search queries, and (4) interacts with the SAPI to
process the query and returns results to the client, after
which (5) the client may request that the server “present”
the contents of any of the results, and (6) the server con-
tacts the SAPI to retrieve those contents and return them
to the client.

The Z39.50 client is designed especially to be the founda-
tion for gateway applications. Thus it is not interactive,
nor does it provide a user-friendly interface. In order to
build a gateway from a “stateless” protocol such as HTTP
to a “stateful” protocol such as Z39.50, state requirements
must be hidden from the calling (in this case, HTTP)
side. The Z39.50 client is implemented as a single-pass
client that initializes, searches, and presents in uninter-
rupted sequence. The client also conforms to the Com-
mon Gateway Interface (CGI), a well-known standard for
gateway communication with HTTP servers. The CGI
process provides a layer between HTTP and the Z39.50
gateway. Like the Z39.50 server, the client is configur-
able, allowing the user to specify all Z39.50 PDU-level
information, for maximum flexibility.

Electronic Mail Gateway

Implementation of an Electronic Mail gateway is simpli-
fied by taking advantage of a feature of the Z39.50 client.
Since all PDU-level information may be specified in a
text configuration file, a rudimentary gateway can use the
exact text of an Electronic Mail message as the client
configuration file. The results of the search may then be
mailed in reply to the requesting user.

Isearch and the Document Type Model

Isearch is designed as a set of modular components, at
the center of which are two groups of C++ classes: the
Isearch engine, which encapsulates the functionality of
field-based indexing, searching, and presenting, and the
Document Type class hierarchy, which defines the behav-
ior of the Isearch engine for certain types of documents.
It is the latter that we wish to discuss here.

Document Type classes bind specific functionality in the
Isearch engine to the documents being processed. C++
classes defining the field structure and presentation char-
acteristics of certain types of documents are therefore
grouped by the common features of those documents.
The DOCTYPE base class defines default behavior, and it
is invoked during the processing of documents for which
no Document Type class has been specified. All Docu-
ment Types must be derived from DOCTYPE; therefore it
is important to understand the implementation of the base
class and its interactions with the Isearch engine, which,
although straightforward, require some explanation.

There are four essential methods of DOCTYPE: Add-
FieldDefs(), ParseFields(), ParseRecords(), and Present().

The first three of these are invoked during indexing, and
the fourth during searching. AddFieldDefs() provides
information to the Isearch engine about the fields it ex-
pects to discover during the parsing phase. ParseFields()
is called during indexing of each document record, at
which time it parses the document and inserts field struc-
ture information into the RECORD object. Parse-
Records() defines the record structure for files that con-
tain multiple document records; this may be beneficial in
cases where record structure is dependent upon other
aspects of document structure that must be determined at
run-time. Finally, the Present() method defines exactly
how documents are displayed in response to requests for
various element sets, which allows presentation to be
abstracted from the retrieval of field contents.

The Isearch engine calls each of these methods at appro-
priate times during the indexing and searching processes.
In DOCTYPE they are defined for minimal functionality,



but they can be overridden within descendent classes.
For example, DOCTYPE::AddFieldDefs() and DOC-
TYPE::ParseFields() contain no source code, and conse-
quently the default behavior of the indexing routines is to
treat documents as lacking field structure. No knowledge
of field structure is indigenous to the Isearch engine.
However, source code to handle field-based searching is
present in the engine and has only to be enabled by defin-
ing field structure within the Document Type.

The method of building field definitions and structure
tables is slightly involved because of the various levels of
nesting and data hiding.

An instance of the DFDT (Data Field Definitions Table)
class is stored within the Isearch engine classes, and DOC
TYPE methods can add new definitions to the table. The
table is a list of DFD (Data Field Definition) objects.
Each DFD consists of a field name and an attribute list
(ATTRLIST), which in turn contains a list of attribute
(ATTR) objects that can be used to preserve additional
information about each field definition. Field definition
information can be added to the engine's internal DFDT
object at any point within the Document Type methods,
except that field structure information should not be gen-
erated for a record if that field structure refers to fields
that have not yet been defined. There are two good rea-
sons to generate DFD objects within DOCTYPE::Add-
FieldDefs(); first, it is a convenient place to collect all
field definition information, and secondly, it allows for
optimization within the Isearch engine. An example in
which it is necessary to generate field definitions in
DOCTYPE::ParseFields() is when field information is not
known ahead of time, such as in the case where the field
name must be derived from contents of the document
being processed.

An example that illustrates this last point is the SGML-
TAG Document Type, which scans the document text for
SGML-like tags and treats the tag name as the field name
and the delimited text as the field contents. In order to
support maximum variety of field structure and yet avoid
the unnecessary overhead of definitions for fields not pre-
sent in any of the documents, generating field definitions
in AddFieldDefs() would require knowledge of field
informationa posteriori. The problem is solved by add-
ing each field definition as it is discovered during parsing
of the document records.

Building field structure information is similar to building
a DFDT. Field structure is encapsulated in a DFT (Data
Field Table) object, which is a member of the RECORD
class; thus there is one DFT per document record being
indexed. The DFT is a list of DF (Data Field) objects,
each of which consists of a field name and an FCT (Field

Coordinate Table). The FCT is a list of coordinate pairs
(FC) that delimit instances of the field within the docu-
ment record. Inserting multiple FC objects into the FCT
enables support in the Isearch engine for repeating fields,
which may be defined as a sequence of multiple occur-
rences of the same field within a single document record.

At search time these field definitions and structures may
be retrieved and used for presentation of document text.
The Isearch engine provides a method for locating the
contents of a certain field within a certain document
record. However, the Document Type architecture creates
one additional level of abstraction. A method in the
Isearch engine called Present() is accessible to the main
application for general purpose high-level presentation of
document text, and it yields control to the Present() meth-
od of the Document Type associated with the document
record that is being accessed. The default behavior, de-
fined in DOCTYPE::Present(), is more or less to treat the
element set as a field name, and to retrieve the contents
of that field from the Isearch engine. In addition, it inter-
prets the element sets “B” and “F” as requesting “brief”
and “full” records, respectively. The purpose of this
architecture is to allow DOCTYPE::Present() to be rede-
fined in descendent classes, in order that various forms of
presentation may be implemented. For example, element
sets may be synthesized from more than one field, re-
trieved text data may be reformatted for suitable output,
etc. DOCTYPE::Present() essentially “intercepts” normal
processing of field-based presentation, thus allowing it to
be extended in relation to the document being accessed.

It is hoped that the advantages of using the Document
Type architecture outweigh the small amount of addition-
al development required to integrate it with existing sys-
tems. Since the model is a map of document type behav-
ior rather than a physical document representation, the
scope of the representation is unspecified. A Document
Type may be so general as to handle all SGML docu-
ments, or so special as to be tailored to a particular pro-
prietary document format. The model may even be
wrapped around other field parsers, since a Document
Type may be defined simply to read field coordinates out
of an ancillary file.

The Document Type model benefits from some of the
features of object-oriented programming, including exten-
sibility, modularity, code maintainability, data hiding, and
the ability to build upon previous work via class inheri-
tance. Documents defined by a Document Type know
how to “present” themselves, which minimizes risky and
tedious internal modifications to the Isearch engine. In
addition, DOCTYPE can be expanded to provide in-
creased access to features of the engine, while descendant
classes may add document type-specific functionality.



Since the Isearch engine supports document records of
different Document Types within the same database, it is
possible to abstract multitype text data by normalizing
functionality within the Document Type class methods.
For example, a database of international patents may
consist of a variety of data formats. Rather than requir-
ing massive data conversion, the Document Type model
allows run-time format normalization by supporting cus-
tomized field parsing and a formatted presentation layer.
Thus multitype data can be stored in their native format
within the same database, and Search and Present opera-
tions can be abstracted from structural differences.

Conclusion

Isite implements a variety of modular architectural struc-
tures based, where possible, upon open standards. Used
together, they provide a powerful, extensible information
system that is capable of remaining compatible with con-
tinuously changing paradigms.


