
AN OBJECT ORIENTED FRAMEWORK FOR ACCOUNTING SYSTEMS

BY

PAUL DUSTIN KEEFER

B.S., SUNY College at Buffalo, 1982

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

ii

iii

Table of Contents

Chapter 1. Introduction ... 1

Chapter 2. The Accounts Framework ... 5

Chapter 3. The Accounts Framework Design 15

Chapter 4. Interesting Implementation Details 45

Chapter 5. Case Study ... 59

Chapter 6. Future Directions .. 78

Literature Cited... 86

1

Chapter 1. Introduction

Many people believe that object oriented technology can greatly improve reuse

[Meye88]. Framework design is an area with one of the greatest potentials for reuse be-

cause with frameworks, it is not functions or even applications that are being reused, but

application domain definitions. System developers have been experiencing some success

with horizontal frameworks, primarily for user interfaces, but very little has been done

yet with vertical frameworks, which are developed for a particular application subject’s

domain. The domain of accounting systems is particularly well-suited for framework de-

sign. This thesis describes the Accounts framework developed using Smalltalk-80

[Gold83] at the University of Illinois at Urbana-Champaign.

1.1. Reusability

Some observers [Cox91] have pointed out one important difference between

software engineering and other engineering fields. The products produced by most engi-

neering disciplines (such as electrical engineering) are built by plugging together existing

parts. Even when new parts must be custom-built for some products, the type of part is

the same. For example, all refrigerators have one or two doors in front even though the

actual parts used for the door may be specific to a particular model.

Software, however, is rarely this uniform. Most developers create new systems

from scratch, sometimes without the benefit of seeing any other applications or designs in

the same domain. This is one of the reasons software takes so long to develop. Often, a

system has already been built to do something similar to what the developers want it to

do, but they are unaware of its existence. And there are no books that one can study

telling a designer how to build, for example, a payroll system.

To some degree, mass-produced software has solved some of these problems.

Spreadsheets, word processors, and databases provide an environment in which one can

develop an application, often without writing any traditional program code. In some sit-

uations, however, these products are not powerful enough and/or not specific enough.

2

The general nature of a spreadsheet, word processor, or database means that

someone who wants to use these products to write a payroll system for their company

may find they need to write a program to handle a situation specific to payroll, such as

processing logic that distinguishes between salaried, hourly, and temporary employees.

Also, since this general purpose software knows nothing about payroll systems,

two companies writing their own separate payroll systems will end up with major por-

tions of their corresponding systems that are functionally equivalent to each other, since

most payroll systems have a great deal in common with each other. In fact, most ac-

counting systems (of which payroll systems are a subset) have a great deal in common

with each other.

1.2. Frameworks

A framework is an abstract design that describes the interaction between interact-

ing objects in a particular application domain [John88, Deut89, John91]. It incorporates

knowledge that is common to applications in the domain. The low level details are left to

the framework user, since these are the things which vary among systems in the applica-

tion domain.

Frameworks can be thought of as reusable designs. In one sense, they are the op-

posite of traditional reuse. When most people think of reusable code, they think of sub-

routines that someone else wrote that they can call from a program they are writing - such

as a sort routine or a C library function. With frameworks, the reuse occurs at the top

level of design. The overall system design is reused and the application developer writes

the low level details and plugs them into the framework. Note that the application devel-

oper need not be a programmer. In fact, the ideal framework does not need to have a

traditional programmer involved in application development.

 Good framework design requires good scope definition. If the scope is too broad,

the framework will require a great deal of program code to create a specific application or

it will require an enormous amount of code to build the framework to a level of complex-

ity where it can handle all the cases without resorting to writing program code. If the

scope is too narrow, the framework will not be applicable to enough systems to warrant

3

interest. However, prototype frameworks can have a narrow scope, which can then be

broadened when developing the actual framework.

My own interest in frameworks began while working for my previous employer,

Software Enterprises, Inc. in Clearwater, Florida. SEI developed traditional

MIS/relational database/IBM mainframe systems. One of the secrets of our success was

the high priority we placed on writing reusable code. While working there, I developed a

framework for program design that was used in almost all of our online programs and

was transferable across all the systems we developed. Through that experience, I became

interested in making generalizations about software systems and implementing those

generalizations programmatically.

1.3. Accounting Systems

Some people claim that object oriented programming is good for modeling the

“real world.” A better statement would be that object oriented programming is good for

modeling the worlds in the human mind. Throughout history, people have developed

systems for representing the physical world (science and mathematics) and the social

world (commerce, politics, history, and law). In each type of system, only information

that is important to that system is represented. The rest is intentionally ignored. For ex-

ample, an apple would have different properties of interest depending on whether the ob-

server is an artist, a physicist, a chef, or a produce supplier. A computer system would

contain different information and different behavior depending on whose view of the

world it is representing.

Accounting systems represent a business person’s (or business entity’s) view of

the world. In the narrowest sense of the term, they are used to represent the flow of

money in an organization. Two things they all have in common are the existence of ac-

counts and of transactions that post to those accounts. Some examples are general ledger,

payroll, and sales. Using a broader definition, accounting systems can keep track of

many different kinds of non-financial data - inventory supplies, student grades, census

data, and some meteorological data. Although the users of these broader-sense account-

ing systems may not think of these systems in terms of accounts and transactions, these

systems all provide a way to keep track of changes through time to categories of objects,

and as such can be represented using accounts and transactions.

4

There are some other features that accounting systems are likely to have. First, an

accounting system will have some means for accessing transactions according to the date

of the transaction. For example, the user of an inventory system should be able to find

out the quantity of a particular item purchased so far this month. In order to do that, there

must be some way to access transactions by date.

 Another feature that occurs in some accounting system is the ability to create

groups of accounts. For example, there might be different accounts representing foreign

sales and domestic sales. In order to find out the total sales amount, it is often convenient

to have an account that simply consists of the foreign sales and domestic sales accounts.

Typically, accounts that group other accounts together do not have low level details de-

fined for them. Instead, they combine information from their component accounts. For

example, transactions are not applied to group accounts. A detailed account must be

specified. Then, when summary information is needed for the group account, the indi-

vidual account values are calculated and usually added together.

Another feature that is common in accounting systems is the storage of the data in

some sort of a database. This is necessary whenever concurrent access to the same data is

required (i.e., almost always).

1.4. A Framework for Accounting Systems

This thesis describes the design and implementation of a framework for account-

ing systems that includes the common features of accounting systems mentioned in the

previous section. The Accounts framework began as a class project in Ralph Johnson’s

seminar on Object Oriented Programming at the University of Illinois. Eleven people

developed two different implementations of the Accounts framework. Since then, Ralph

Johnson, Rebecca Evans, and I have extended and rewritten most of the framework. We

demonstrated the framework at OOPSLA ‘93, and hope to publish a paper on the frame-

work soon.

5

Chapter 2. The Accounts Framework

2.1. Accounts and Transactions

The two kinds of objects that are common to all accounting systems are accounts

and transactions. So it follows that these are the two primary classes in the framework.

An account keeps track of transactions posted to it, and it is able to calculate attribute

values as of a certain date. “Transaction” is a term commonly used in accounting systems

and is a record of a numerically significant event concerning data in a category of rele-

vance to the system. For example, an invoice, which is a kind of transaction, contains

header information, such as the name of the vendor and the date, and it also contains a list

of merchandise containing the name, quantity, and price of inventory items which have

been purchased.

These transactions should not be confused with database transactions, which de-

fine atomic units of work. A common method for entering accounting transactions is to

start up a database transaction, enter a large number of accounting transactions, and

commit the database transaction. However, there are some applications, such as an air-

line reservation system, where a single accounting transaction (ticket reservation) is also

a database transaction. And there may be some situations where one accounting transac-

tion could consist of multiple database transactions. So a database transaction could

consist of database accesses involving many account transactions, one account transac-

tion, or a portion of one account transaction (although the first is much more common).

2.2. Roles

One way in which the Accounts framework is similar to database systems is that

database systems generally have multiple levels of access. The DBA is responsible for

designing and creating the database schema. The application programmer writes pro-

grams that access the database. The end user views and modifies the data in the database.

Each role can be filled by more than one person, and one person can fill more than one

role.

6

In the same way, the Accounts framework provides different levels of access.

The first thing to do when setting up an accounting system is to determine what kinds of

accounts and transactions you are going to have. For example, an inventory system

would have some accounts that represent inventory items and other accounts representing

vendors. An investment brokerage would have accounts for the customers (i.e., portfo-

lios) and accounts for the investments (e.g., stocks, bonds, mutual funds, etc.). For each

of these kinds of accounts you then need to determine the kinds of transactions that get

posted to the accounts and the information you want to store for each of these kinds of

accounts. The person who performs these functions is called the Accounts programmer.

The Accounts programmer does not normally write any traditional program code, but in-

stead “programs” the accounting system using the Accounts framework.

The Accounts programmer performs several other tasks, including designing the

transaction entry screens, defining the account and transaction attributes, and defining the

field mappings between transactions and accounts (these tasks are described later in the

paper).

Another role in the Accounts framework is the person who creates the accounts

specifically needed for that use of the accounting system. For example, all inventory

systems will have a kind of account called Inventory Account, but the specific inventory

items that the system keeps track of will depend on the specific business (or kind of busi-

ness). A music store will keep track of keyboards. An office supply store will keep track

of copiers. The implementation section will show that these two roles are not as distinct

as they seem.

The third role in the Accounts framework is the data entry role - the person who

enters the transactions and corrects errors.

2.3. Accounts

 There are actually several kinds of accounts used in the framework. Simple ac-

counts are those that represent the lowest level accounts. Each transaction will be stored

in one of these simple accounts. There are two kinds of group accounts. Group accounts

with relatively homogeneous components are called composite accounts. “Relatively”

homogeneous means that the components do not all have to be the exact same kind of ac-

count, but they should have a common set of attribute names (though they may have

7

additional attribute names that are not common). Composite accounts are helpful when a

group account’s attribute values are calculated by simply adding up its components’ at-

tribute values. Group accounts with heterogeneous components are called aggregate ac-

counts. With these three kinds of accounts, an accounting system can be built using a

single account structure. Conceptually, this structure is an acyclic directed graph.

However, in the current implementation, the structure is a forest, and in most implemen-

tations, it will just be a single tree.

Although there are many possible ways to set up an account structure, one aggre-

gate account will typically be at the highest level in each account tree and will be the en-

try point into the accounting system. Composite accounts will typically be used to repre-

sent journals. In the old days of pencil and paper, a journal was a book that kept track of

related accounts. The inventory journal kept track of inventory items, the accounts

payable journal stored the accounts of people or businesses to whom the company owed

money, etc. Now, a journal is the computerized version of that book. The leaves of the

tree will be simple accounts.

Aggregate accounts can also exist at lower levels in the account structure when

components need different information or when the transaction is sent to more than one

component. An example of this occurs in the Accounts Payable journal of a business.

The accountant wants to determine, for example, how much the business owes to its

creditors. One way to design the account structure is to make the due date the important

date in that account. However, it’s also important to be able to ask, “How much does the

company owe for the things it purchased this month?” In this case, it is the purchase

date, not the due date, that is important. So there would be two different kinds of

Accounts Payable Accounts - those that sort their transactions by purchase date, and those

that sort by due date. Figure 1 shows an example of an account tree for a store. The let-

ters in the upper left corner of each account indicate whether it’s an aggregate, composite,

or simple account.

Note that the Accounts framework could have been designed so that the Accounts

Payable example would just use a single kind of account whose transactions have all the

fields in it (including both purchase date and due date). This would simplify the account

structure. However, this advantage is more than offset by the additional complication of

8

storing multiple collections of data (or a single collection with multiple indices) in a sin-

gle account.

Figure 1

2.4. Transactions

When a transaction is posted, it starts at the root of an account tree (usually an ag-

gregate account), which then passes it down through the graph until it reaches one or

more leaves. Along the way, each account a transaction gets posted to will determine

which of its component accounts to send it to, and will post the transaction to those com-

ponents. If the account is a composite account, it will just send the transaction to one of

9

its components. If it is an aggregate account, it will convert the transaction into one or

more new transactions and will then post the new transactions to one or more of its com-

ponents.

There are several reasons why transactions would be created for multiple compo-

nents. The most common situation is when a transaction contains multiple sets or kinds

of information. For example, if an invoice example has several inventory items, a sepa-

rate transaction would be created for each inventory item and sent to the account repre-

senting that inventory item, and another transaction would be created for the vendor and

would be sent to the account representing the vendor.

Another situation in which an account would create multiple transactions is in the

Accounts Payable example in section 2.3. One transaction would be created for an ac-

count that uses the purchase date, and another would be created for an account that uses

the due date.

There are two kinds of transactions in the framework. External transactions are

those that are created and posted to an aggregate account by an entity outside of the ag-

gregate accounts container hierarchy, such as a user or an automatic system process, or a

sibling account. Internal transactions are transactions that an aggregate account creates

from another transaction and sends to one of its components. The primary differences

between the two are:

1) Part of defining the fields in an external transaction is specifying the type for

 each field. The type is needed for validating data that users enter later. Internal

 transactions are created by the system, so they should not contain type errors.

 Additional validation rules could be added to the framework.

 2) An external transaction can have lists of entries (as in the invoice example).

 Therefore, the account to which the user posts an external transaction must

 break up the transaction into its individual components. Note that this is not a

 fundamental feature of the framework, so the framework could be changed so

 that internal transactions could also have lists of entries.

10

Figure 2

In the current implementation, an external transaction can have only one list. The

fields in the list are called multi-value fields. Figure 2 shows an example of a purchase

transaction in which the top part of the transaction shows the single-value fields, and the

table shows the list. Each row in the table is a item in the list.

Creating new kinds of external transactions means defining the fields each kind of

transaction will have, the fields within the lists multi-value fields, and the types of both

kinds of fields. Figure 3 shows a tool that can define new types of external transactions.

11

Figure 3

2.5. Posting Transactions

When the user posts an external transaction to an aggregate account (almost al-

ways the top level account) or when an account sends an internal transaction to one of its

components, the account must determine how to handle it. This will depend on what kind

of account it is.

 Simple and composite accounts never alter a transaction. Aggregate accounts use

a mapping from the external transaction fields to the internal transaction fields to create

internal transactions and post them to component accounts. For each internal transaction

field, the mapping indicates the source of its value. Currently, the source can either be an

external transaction field or nil.

Figure 4 shows an example of this interface. On the left hand side is a single rect-

angle representing the Purchase transaction type from Figure 3. The rectangle is divided

into smaller rectangles representing the fields on the external transaction. The fields with

a box containing an ‘n’ are multi-value fields. On the right hand side are two rectangles

representing the two accounts to which a Purchase transaction is posted - Accounts

Payable and Inventory. Each of these is also divided into fields. The lines show the

12

mapping from the external transaction fields to the internal transaction fields. When the

account creates the internal transaction, it copies the values from the external transaction

fields to the internal transaction fields based on the mapping.

Figure 4

An external transaction field can map to more than one internal transaction.

However, an internal transaction field should have either one source or no source. The

reason an internal transaction field might not have a source is that the field might only be

used with another external transaction type. For example, itemsSold only has meaning

for Sale transactions, not for Purchase transactions. For any internal transaction types

containing fields whose source is a multi-value field, the account will create multiple in-

ternal transactions, one for each list entry on the external transaction. For example, if a

Purchase transaction contains purchases of apples, oranges, and kiwis, the Store account

will send three internal transactions to the Inventory component account - one for each

kind of inventory item on the transaction.

The list of internal transaction fields depends on the class of account to which it

will be posted. For a simple account, the transaction field name list is the list of field

names from its internal attributes. For a composite account, the transaction field name

13

list is the union of the field names of its components. For an aggregate account, the

transaction field name list is the list of fields defined for the external transaction type that

gets created. Note that when an aggregate account occurs somewhere other than the top

of the account hierarchy, it still requires an external transaction definition to determine

the field names, even though it will probably never receive an external transaction.

 When a composite account receives a transaction, it expects the name of the

component to be present on the transaction in a field called ‘account’. When a simple ac-

count receives a transaction, it adds the transaction to its collection of transactions. At

least that’s the conceptual view. The actual process is much more complex and is de-

scribed in the implementation section.

2.6. Attributes

Once an accounting system is created and the users of the system are posting

transactions, they need to have some way to find out information about the accounts

based on transactions that they’ve posted. This kind of information is always relative to a

particular range of time. For example, at the end of the month a produce store manager

might want to know how many cantaloupes the store purchased this month. Then, the

manager might want to compare this to the amount for the same month last year. Or a

travel agency might want to find out how much money they have earned from a particular

customer. Account attributes provide the means for performing these queries.

There are several kinds of attributes that the accounts programmer can define. In

some cases, the kinds of attributes defined for an account depend on whether the account

is an Aggregate, Composite, or Simple account. A Simple account can have an internal

attribute, which retrieves data from a field on the transactions that have been posted to it.

Since transactions are only stored in Simple accounts, internal attributes can only be de-

fined for Simple accounts. Constant attributes, which any account can have, have a value

that remains constant through time.

The other kinds of attributes are specified by combining other attributes, either of

the account itself, or of one of its components, using arithmetic expressions. Of course,

referring to an attribute of a component can’t be done in a Simple account, which doesn’t

have any components. Figure 5 shows an example of an attribute.

14

Figure 5

15

Chapter 3. The Accounts Framework Design

Figure 6 on the next page shows an entity-relationship diagram for the main

classes in the Accounts framework.

3.1. Account Types vs. Accounts

As Chapter 2 points out, defining account types is different from creating ac-

counts. An account type is something like an Inventory Account in an inventory system,

and an account is something like “keyboards” for a music store. In fact, there are actually

many levels to an account. The music store will not only need to keep track of keyboards

overall, it will need to keep track of keyboards by manufacturer, and within manufacturer,

by model. Each of these levels can be represented by accounts such as “keyboards”,

“Roland”, and “D-50”. Each level serves two functions - as a description of the kind of

accounts below it and as a collection of the accounts below it. The “keyboards” account

is a particular kind of inventory item that both describes and contains all keyboard ac-

counts, “Roland” describes and contains all keyboards made by Roland, and D-50 is a

particular kind of keyboard made by Roland.

This observation about accounts leads to two interesting conclusions about the

implementation. Initially, it may sound as though defining the kinds of accounts would

occur in a different class than defining the accounts themselves. However, as noted in the

previous paragraph, defining new kinds of accounts and collections often occur in the

same situations. So it makes sense to use the same class (Account) to define the kinds

of accounts as well as the collections of accounts.

The second thing to note is that although the kinds of accounts often parallel the

account collections themselves, this is not always the case (with aggregate accounts, it is

rarely the case). Therefore, the kinds of accounts and the account collections should be

separate. The Accounts framework defines accounts using “template” accounts -

accounts which ordinarily do not have transactions posted to them, but which act as an

account type definition. When a new account is created, it is cloned from a template ac-

count. So in the above example, there would be a composite account named

“InventoryJournal”, which is a group account containing all inventory-related accounts,

16

Figure 6

17

and a simple account named InventoryAccount, which is a template account containing

the information about inventory-related accounts. When the “keyboards” account is cre-

ated, its type is InventoryAccount, and it is a component of InventoryJournal. Initially,

the system has three template accounts, “Simple”, “Composite”, and “Aggregate”. There

are three type-based account trees (which are distinct from the account composition

graph), where these three accounts are the roots of their respective trees.

So all accounts have a parent (the template account), a Smalltalk class

(SimpleAccount, CompositeAccount, or AggregateAccount), and zero or more

containers (in most accounting systems, only template accounts and the top-level non-

template account will have zero containers). Figure 7 shows the same account structure

as in Figure 1 with the template accounts added. The template accounts have an asterisk

in the upper right hand corner. The template accounts, the store account, and all of the

composite accounts have one of the three initial template accounts as its parent.

There are five advantages to using template accounts. One is that, although the

roles of Accounts programmer and the creator of accounts for that particular installation

can be filled by separate people, they don’t have to be. Since creating new kinds of ac-

counts just involves creating new accounts and designating them as templates, it is easy

to transfer knowledge between the two roles.

The second advantage of using template accounts is that templates allow the com-

position to be separate from type definition. One might argue that since the components

of many group accounts all have the same type, the container could also define the ac-

count interface. However, that only applies to composite accounts and not aggregate ac-

counts. And even for composite accounts the components should not be required to have

the same type.

Consider an investment portfolio, which contains both stocks and bonds. The in-

terface to stocks and bonds would be similar enough that a portfolio could be a composite

account. The value of a portfolio would be determined by adding up the values of all its

components, regardless of a kind. But there are obvious ways in which the interface

would be different. For example, a bond would have an interest rate, but a stock would

not.

18

The third advantage of using template accounts is that they allow the framework

to have its own type system for accounts. Typically, the template will contain all or most

of the behavior for accounts of that type. The user defines accounting system-specific

account behavior with account attributes. All accounts inherit their attribute definitions

from their template account, but they can also override them and have additional at-

tributes. This would not be possible using Smalltalk methods, because Smalltalk (like

most object oriented languages) does not have object-specific methods.

Figure 7

19

The fourth advantage of using template accounts is that they avoid generating

code. When the topic of defining new types of things arises in the development of a

Smalltalk system, the first thing that comes to mind is to generate new classes to repre-

sent the new types. In fact, the original implementation of the Accounts framework did

this. Generating new classes is easy in Smalltalk, and is a somewhat glamorous ap-

proach. However, it can lead to several problems.

Generating new classes can cause conflicts with other classes with the same name.

One of the interesting areas of framework development is combining several frameworks

into a single system. Accounts incorporates two GUI frameworks. In the same way, it is

conceivable that another framework could incorporate Accounts. Since new account

types are defined by the Accounts programmer, the types can be anything - even the name

of an existing Smalltalk class. Of course, the system could check for that, but it would

reduce the flexibility in account type naming and would not solve the problem of con-

flicts with new classes that are created or filed in after the account types are created.

Also, generating new classes makes it impossible to implement the framework in

most other object oriented environments without restarting the application after creating

the new account types. This is because in most software systems, the development envi-

ronment is separate from the execution environment. This distinction would encourage

separation of the Accounts programmer role from the account creator role.

The third problem with generating new classes is that, although it’s not required,

it becomes easy to create methods to implement type behavior. Ultimately, the goal of

any framework should make it possible to build applications without writing any program

code. While it is understandably sometimes an unattainable goal, the development of a

framework should proceed with that goal in mind. When new types are represented as

objects and not as classes, it encourages the developer to look for solutions that do not re-

quire writing methods to implement behavior (unless, of course, the language has in-

stance-based methods). The Accounts framework does not require any program code, nor

does it generate any new code. It functions as a stand-alone system. (Additional program

code is of course necessary to extend the functionality of the framework.)

The fifth, and possibly most interesting, advantage of using template accounts is

that they provide an object oriented user interface. Many object oriented systems only

20

look object oriented to the programmer. The user does not think in terms of objects, in-

terface, inheritance, and reuse. In the Accounts framework, the advantages available to

the object oriented programmer are also made available to the user. So the user can cre-

ate templates that define the behavior for all accounts derived from that template, and can

override the behavior in any account that is an exception.

3.2. Account Classes

There are three classes corresponding to the three kinds of accounts:

SimpleAccount, CompositeAccount, and AggregateAccount. Also, there is an

abstract class Account, a subclass of Object, that contains data and behavior common

to all accounts. The class hierarchy is:

Account
AggregateAccount
CompositeAccount
SimpleAccount

The Account class hierarchy is an example of the Composite pattern [Gamm94].

AggregateAccount and CompositeAccount are the Composite classes and

Account is the component.

Although aggregate accounts and composite accounts are both group accounts,

there is actually very little in common between the two (beside the features that are com-

mon to all accounts) other than their component management capability, and even most

of the component management methods aren’t the same. So it is not worthwhile creating

a common abstract composite class. Before looking at these classes in more detail, it

would be helpful to see some of the classes that support accounts.

3.3. Managing the “Accounts” Type Hierarchy

Each of the three kinds of accounts: 1) can be contained in another account; 2)

can have attributes; 3) can be a template; 4) can be cloned from a template; 5) has a

name. Each account is part of two orthogonal hierarchies, the composition hierarchy and

the type hierarchy. The composition hierarchy usually has an aggregate account at the

top and simple accounts as leaves, with composite accounts (and sometimes aggregate

21

accounts) in the middle. There are three type hierarchies corresponding to the three sub-

classes of Account , and all the elements of a type hierarchy have the same class.

Note that the account type and composition structures are defined in Account and

its subclasses, so additional classes for the structures (such as AccountHierarchy or

AccountTypeStructure) aren’t necessary. This is typical of the Composite pattern.

The primary methods for managing the type structure and creating an account are:

Method Description

#type Returns the name of the account’s parent.

#rootType Returns the name of the account’s top-

level parent (i.e., ‘Simple’, ‘Composite’, or

‘Aggregate’).

#new Makes a new account that is a child of the

receiver and that has the receiver as the

parent. The instance variables are copied

or reinitialized appropriately.

#name and #name: aName Accessor methods for the name of the ac-

count.

#renameTo: aName Renames the account to aName and in-

forms its containers of the change. If the

receiver is a template, it renames the ac-

count type as well.

The primary functions of the Account class methods are to deal with instance

creation and to manage the type definitions (as opposed to the type hierarchy, which is

managed in the instance methods). There are auxiliary class methods for storing the ap-

plication, providing a new launcher menu, and for error handling, which chapter 4 dis-

cusses.

The primary method for instance creation is #makeNewAccount, which prompts

the user for the type and then the name of the new account, then clones the template to

create the new account.

22

The primary methods for managing the types are:

Method Description

#addType: anAccount Add anAccount to the list of types (i.e.,

template accounts).

#types Returns the list of type names.

#typeNamed: aName Returns the template account that is named

aName.

The primary methods for maintaining the composition structure are at the aggre-

gate and composite account level (see sections 3.5.2 and 3.5.3), although since all ac-

counts can have containers, the addContainer: and removeContainer: methods are in

Account.

3.4. Attributes

In addition to type and composition structures, all accounts can have attributes.

The primary methods for managing the account’s attributes are:

Method Description

#attributeNamed: aName Returns an attribute named aName

(actually, an AttributeReference (see sec-

tion 3.4.2.4).

#getAttribute: aName Returns the definition of the attribute

whose name is aName. The difference

between this method and

#attributeNamed: is that the previous

method returns a representative of the at-

tribute, while this method returns the ac-

tual attribute definition. See section

3.4.2.4 for further discussion of this dis-

tinction.

23

#addAttribute: aFunctionOfTime

Named: aName

Adds aFunctionOfTime to the account,

giving it aName. This may require updat-

ing the TransactionMapping (see section

3.5.3.1.2).

#removeAttribute: aName Deletes the attribute named aName from

the account. If the deleted attribute refers

to an internal attribute, the deletion may

cause changes that have to be propagated

through the system, particularly the

TransactionMapping.

#allAttributeNames Returns a list of attribute names that are

valid for the account, including those in-

herited from its parent.

#defaultAttrValueFor: anAttributeName When the Accounts programmer creates a

new attribute, the definition contains a de-

fault string that the programmer can then

edit. (Note that the default is different for

each subclass.)

3.4.1. Account Attribute

An account attribute is an object used to query some value defined on an account

for a specified time range. There is not a separate AccountAttribute class. Instead, an

account contains a dictionary of attributes where the key is the attribute name and the

value is a function of time. Each association in the dictionary is an account attribute.

Currently, account attributes cannot be defined for composite accounts. A composite ac-

count attribute value is calculated by combining the attribute values of its components.

3.4.1.1. Defining Account Attributes

The account definition view looks the same for each kind of account, and shows

the attributes defined for the account. Figure 5 shows an example. The top half of the

window contains the name of the account, along with a list of attribute names. The user

can add, delete, and rename attributes. The bottom half of the window contains the defi-

nition that appears when the user selects an attribute. The user modifies the definition by

24

editing it and selecting the “accept” pop-up menu option. Creating an account attribute

just means giving it a name and an expression.

The expression should evaluate to a function of time. The particular subclass of

FunctionOfTime that it will return depends on the expression.

3.4.2. Function of Time Classes

There are several classes used for defining attributes on an account:

ConstantFOT, BinaryFunctionOfFOT, InternalAttribute, AttributeReference,

and ComponentAttributeReference. All of these are subclasses of the abstract class

FunctionOfTime, which is a subclass of Object.

FunctionOfTime is an abstract class that defines how to calculate for an account

a value that changes through time. Since each subclass of FunctionOfTime contains

different information, a function of time contains interface and behavior only. This is

helpful for those who wish to extend the framework by adding new kinds of functions of

time, and for those who wish to write additional code to access functions of time. To

write new functions of time, the following FunctionOfTime methods need to be rede-

fined in the subclasses. All of them are defined as self subclassResponsibility in

FunctionOfTime.

Method Description

#atTime: aTime forAccount: anAccount Returns the function of time’s value at

aTime for anAccount.

#fields Returns the set of internal attributes con-

tained in this function of time.

#printOn: aStream Prints the function of time on aStream.

This method is used for displaying the

function of time in the account attribute

definition window in Figure 5.

Some FunctionOfTime methods are used to create new functions of time.

These are described in the subclasses.

25

3.4.2.1. Account Attribute Definition Language

The Accounts programmer defines an account attribute by giving it a name and an

expression that gets converted into a function of time (see Figure 5). The language used to

write these expressions uses Smalltalk-80 syntax. This is because we were able to modify

the Smalltalk-80 compiler to parse these expressions.

The WorkspaceCompiler class is a subclass of Compiler with a workspace

dictionary that provides a list of valid symbols and what they represent. In the case of an

aggregate account, the workspace dictionary is the account’s dictionary of components.

When the name of one of the aggregate account’s components is used in an expression,

the workspace compiler looks the name up in its dictionary and it returns the correspond-

ing aggregate component. For a simple account, the workspace dictionary is nil.

When the account sends itself the #convertStringToAttribute: message (where

the string is an expression that defines a function of time), it tells the workspace compiler

to evaluate the expression with self as the receiver . This means the workspace compiler

will create a temporary message whose body is the expression, and it will evaluate the

expression by sending that message to the account. This attribute definition language,

which creates functions of time to store the interpreted strings, is an example of the

Interpreter pattern [Gamm94].

3.4.2.2. Constant Functions of Time

The ConstantFOT class defines a value that is the same at all times. The

Accounts programmer defines a constant FOT simply by typing an arithmetic value in the

account attribute definition window. The ArithmeticValue class has a new method

called #asFunctionOfTime that creates a new constant FOT. Other kinds of constants

in addition to ArithmeticValue can be defined as constant FOTs by adding the

#asFunctionOfTime method to their classes.

A constant FOT calculates its value by returning the constant. It has no internal

attributes to return, and its printing method just prints the constant.

26

3.4.2.3. Binary Functions of Functions of Time

The BinaryFunctionOfFOT class defines a function of time in terms of two

operands that are also functions of time. A binary function of FOT’s value changes

through time as its operands’ values change.

The Accounts programmer defines a binary function of FOT by entering an ex-

pression of the form operand1 operator operand2 where the two operands are func-

tions of time and the operators currently supported are +, -, *, and /. These four operators

are defined as methods in FunctionOfTime. They create a new binary function of FOT

using self as the first operand and the input argument as the second operand. Supporting

other binary operators would involve adding the operator to FunctionOfTime and mak-

ing sure ArithmeticValue understands it.

Since the Smalltalk compiler parses the expression, the precedence rules for

combining multiple Binary functions of FOT are the same as for Smalltalk arithmetic

expressions - left to right, with parentheses to override that order. So in the expression

FOT1 + FOT2 * FOT3, the addition would occur first, but in FOT1 + (FOT2 * FOT3),

the multiplication would occur first.

A Binary function of FOT calculates its value by combining the two operators us-

ing the operand and prints itself using a left parenthesis, followed by a the first operand,

followed by the operator, followed by the second operand, followed by a right parenthe-

sis. The parentheses preserve the order of evaluation. Its internal attributes are the union

of the internal attributes of the two operands.

3.4.2.4. Attribute Reference

 Almost all programming languages support procedural abstraction, which is the

ability to define new operations in terms of existing ones, and then to use the new opera-

tion like the older ones. Procedural abstraction makes programs smaller by eliminating

duplication. It makes programs more flexible by letting us change the definition of an

operation without having to change all the places it is used. And it makes programs eas-

ier to understand by breaking them into pieces that can be understood separately.

27

In the same way, functions of time can be defined in terms of other functions of

time. The attribute definition self credits - self debits produces a function of time that

refers to the credits and debits functions of time. A reference to a function of time can-

not be the function of time itself, because the reference must print the name used to get

the attribute (e.g., self credits) and not the definition of the function of time. A user can

refer to another function of time in an attribute definition by typing self attributeName.

This will cause the attribute definition to contain a reference to the function of time corre-

sponding to attributeName. However, when the outer function of time prints itself, it

cannot reproduce the string self attributeName, because it doesn’t know the name of the

attribute where the inner function of time is stored. And the inner function of time can’t

print the string either, because it doesn’t know the name it’s stored under. And it should-

n’t know this, because it is the attribute’s responsibility (and since there are no special at-

tribute definition objects, it therefore becomes the responsibility of the account that owns

it). An attribute reference gives a function of time an additional interface (beyond that

provided by all functions of time) so that another function of time that includes it can

print itself without printing the definition of the inner function of time. In this sense, it is

an example of the Decorator pattern [Gamm94] (also known as the Wrapper pattern),

which is used to add additional properties without subclassing.

There is another reason for having an attribute reference. When the user changes

a function of time, instead of updating the current function of time object, it deletes it and

recreates a new one. This is because the new function of time might be in a different

class than the old one. If an outer function of time referred directly to an inner function

of time, then every time the attribute definition changed for the inner function of time, the

outer function of time would have to be changed as well. Although a dependent mecha-

nism could handle this, it’s more time-efficient to have a substitute object that represents

the attribute rather than the function of time. This way, even if the inner function of time

changes, the outer function of time will not have to. The attribute reference acts as this

substitute object, and in doing so, it exhibits properties of the Proxy pattern [Gamm94].

The Accounts programmer defines an attribute reference using an expression of

the form self attributeName. Since the expression is being sent to the account (see sec-

tion 3.4.2.1), the #doesNotUnderstand: message is redefined in Account to create a

new attribute reference. This means that the Accounts programmer should not define an

28

attribute that is the same name as a method defined for the account, or an error message

will appear like the one shown in Figure 8.

Figure 8

An attribute reference calculates its value by asking its account for the value of

the attribute to which it refers, and prints itself using the word self followed by the name

of the attribute to which it refers. Its internal attributes are those of the attribute to which

it refers.

3.4.2.5. Component Attribute Reference

A component attribute reference is similar to an attribute reference except that a

component attribute reference refers to the attribute of a component of the account that

contains the component attribute reference. It is used in an aggregate account to define

attributes based on the aggregate account’s components.

The Accounts programmer defines a component attribute reference using an ex-

pression of the form accountName attributeName where accountName is the name

of a component of the aggregate account, and attributeName is the name of one of the

attributes of the component. This is where the aggregate component objects are used.

The attributeName is a message sent to the aggregate component, which means that

#doesNotUnderstand: is redefined in AggregateComponent to create a new com-

ponent attribute reference. As with an attribute reference, the user should not define an

attribute for an account that is the same name as a method defined for the aggregate com-

ponent.

A component attribute reference calculates its value by asking its account’s com-

ponent for the value of its attribute, and prints itself using the component’s name and the

attribute’s name. Its internal attributes are those of the account’s component’s attribute.

29

3.4.2.6. Internal Attributes

A simple account stores transactions and can access them when an internal at-

tribute asks it to do so. The InternalAttribute class defines how to calculate values

from transactions using the transaction field name, a time range, and an operator for

combining transaction values. Note that multiple internal attributes can refer to the same

transaction field.

There are two ways to define an internal attribute. The more common method

uses an expression of the form self timeRangeFor: #fieldName with: #op where

timeRange is either total, MTD, or YTD, fieldName is the name of the transaction field

that is used to determine this attribute value, and op is either +, *, min:, or max:. This

means that an internal attribute is calculated by summing, multiplying, finding the mini-

mum value, or finding the maximum value across all of the transactions for the specified

time range.

The time range specifies the beginning of the time range for the internal attribute.

The end of the time range is specified by the query, as shown in Figure 17. The time

ranges currently supported are total (compute the value over all transactions up to the re-

quested date), mtd (compute from the beginning of the month to the requested date), and

ytd (compute from the beginning of the year to the requested date). Although any time

range could be calculated, the framework only supports O(log n) access for these prede-

fined ranges (see section 4.1). Other ranges would take O(n) time.

useOldUnlessNewNotNil: is a special operator used for attributes that can

change over time, but whose values are not cumulative, such as an interest rate or an ad-

dress. The result of calculating an attribute as of a particular date using

useOldUnlessNewNotNil: will be the last non-nil value that was posted to the account

as of that date.

The easiest way to use the operation useOldUnlessNewNotNil: is to enter an

expression of the form self currentValue: #fieldName where fieldName is the name of

the field in the transaction which is used to determine this attribute value. This syntax is

30

provided so the user does not have to type in self totalFor: #fieldName with:

#useOldUnlessNewNotNil:.

#+, #*, #min:, and #max:. are existing Smalltalk methods defined in

ArithmeticValue or its ancestors. But there is no existing Smalltalk method that looks

at two values and returns the first value if the second is nil, otherwise it returns the second

value. So #useOldUnlessNewNotNil: is a new function defined in Object. One of the

nice features of Smalltalk is that it allows you to change the pre-defined classes.

However, this should not be done recklessly. The name “useOldUnlessNewNotNil:” is

descriptive and is complex enough that one is not likely to mistakenly use it for some-

thing else.

Once again, since the expression is sent as a message to the account, the account

must be capable of handling the expression. #totalFor:with:, #MTDFor:with:,

#YTDFor:with:, and #currentValue: are all methods defined in SimpleAccount (since

only simple accounts can have internal attributes) that create an internal attribute.

An internal attribute calculates its value by asking the account to look at its trans-

actions and to calculate the value as of the input time using the internal attribute. Its

method for printing itself depends on the operator. If the operator is

useOldUnlessNewNotNil:, it prints the phrase self currentValue: followed by the

transaction field name on the input stream. Otherwise, it prints self, followed by the time

range code, followed by For:, followed by the transaction field name, followed by with:,

followed by the operator. Its internal attribute is itself.

Additional InternalAttribute methods are:

Method Description

#identity Returns an identity value for the internal

attribute’s operator. This is used to initial-

ize calculated values. The identity for #+

is 0, for #* is 1, for #min: is infinity, for

#max: is negative infinity, and for

#useOldUnlessNewNotNil: is nil.

31

#inverseOperator For time ranges other than total, the inter-

nal attribute’s value is calculated by de-

termining the value as of the start date, the

value as of the end date, and applying the

inverse operator. This only works for #+

with an inverse operator of #-, and for #*

with an inverse operator of #/. For the

other operators, it simply returns the value

as of the end date.

#range: aDate For time ranges other than total, returns

the start date based on the internal at-

tribute’s time range and aDate. E.g., if

the time range is mtd and the input date is

May 19, 1994, the method returns May 1,

1994. If the time range was ytd, the

method would return January 1, 1994.

3.4.2.7. Function of Time Examples

Table 1 shows some examples of account attributes and how they are defined.

itemsPurchased, purchasedMTD, and itemDescription are all examples of internal

attributes. itemsOnHand is a binary function of FOT that subtracts one attribute refer-

ence from another. totalAmountOwed, which would be defined in an aggregate ac-

count, is a component attribute reference, where APJ is the name of a component of the

aggregate account. interestPercent is a binary function of FOT that multiplies an at-

tribute reference by a constant FOT.

Attribute Name Function of Time Expression
itemsPurchased self totalFor: #purchased with: #+

purchaseMTD self mtdFor: #purchased with: #+

itemDescription self currentValue: #description

itemsOnHand self itemsPurchased - self itemsSold

totalAmountOwed APJ amountOwed

interestPercent self interestRate * 100

Table 1

32

3.5. Account Subclasses

3.5.1. Simple Accounts

Simple accounts are accounts that have no components and therefore store trans-

actions. They can directly query the values of the transactions. There are some attributes

(specifically, internal attributes) that can only be defined for simple accounts. The meth-

ods for creating internal attributes are discussed in section 3.4.2.6.

The primary methods for accessing simple account attributes are:

Method Description

#addAttribute: anAttributeName

compute: anOperator calculate: aCode

Returns a new InternalAttribute object that

has the input name, input operator, and in-

put calculation code (see section 3.4.2.6).

If the internal attribute is a new one for its

container (i.e., if it would cause a change

to the mapping diagram (Figure 4)), a

warning message like the one in Figure 9

appears.

#internalAttributeList Returns a list of all the InternalAttributes

contained in the account’s attributes

(including inherited attributes).

Figure 9

The primary method for accessing transactions is #transactionList, which returns

a list of the transactions posted to the account in transaction date order. Methods for

posting transactions are discussed in section 4.5.

33

3.5.2. Composite Accounts

A composite account is an account that contains relatively homogeneous ac-

counts. This implies several things. For the most part, the transactions that get posted to

them will have the same interface (i.e., attribute names). This means that first, the list of

queryable attributes of a composite account is the union of the attributes defined in its

components. And second, querying an attribute for a composite account returns the sum

of the values of that attribute over its components.

The primary methods for accessing composite account components are:

Method Description

#addAccount: anAccount named:

aName

Adds anAccount as a component of the

receiver, using aName as a key. If the

new component has any attributes that re-

fer to transaction fields that the account

doesn’t already know about, it gives the

user a warning message like the one in

Figure 9. It also tells the new component

to add the account to its list of containers.

#accountNamed: aName Returns the component named aName. If

it doesn’t find the component, it produces

an error.

#accountNames Returns a list of the names of the re-

ceiver’s components.

#removeAccount: aName Tells the component named aName to

remove the receiver from its container list,

and then removes the component from the

receiver.

#renameAccount: oldName to:

newName

Renames the component from oldName to

newName.

34

3.5.3. Aggregate Accounts

AggregateAccount is the most complex account class. Aggregate accounts

can contain many different types of accounts and transactions, and they can break a trans-

action into multiple transactions. Therefore, they need a more complex mechanism for

determining where to send a transaction.

Figure 10

Accounts uses a visual programming language to describe how transactions can

be broken into smaller transactions and posted to component accounts. The language it-

self is rather simple. Figure 10 shows an example of the components of a top-level ag-

gregate account for a store.

The white rectangles represent component accounts and the black rectangles are

external transaction types. The lines indicate which accounts each kind of transaction

posts to. An Invoice transaction’s expected effect is to increase both inventory and the

accounts payable amount. So when the user creates a Invoice transaction, the Store ac-

count will convert the transaction into two different kinds of internal transactions, and

send each kind of internal transaction to its appropriate account, either Inventory or

35

AccountsPayable. Each of the component accounts in this example is a composite ac-

count whose components are accounts of a similar type.

Each component of an aggregate account has an associated internal transaction

type whose name is the concatenation of the component name and “ Transaction”. So the

component named “Sale” would have an associated transaction type called

“SaleTransaction”. This feature does not introduce potential naming conflicts, because

each aggregate account has its own name space for transaction types. Components of an

aggregate account are already prevented from having the same name. An internal trans-

action type defines a set of field names that the aggregate account must create when it

makes an internal transaction of that type.

The message #fieldNames, defined for all accounts, returns a list of the names of

all the fields that should be on a transaction sent to the account. Note that the rules for

building this list vary according to the class of the account.

The set of field names depends on the class of the component. The set of transac-

tion field names of an aggregate account is the set of field names from the external trans-

action type for the transaction that will be created. In the current implementation, all ag-

gregate accounts that are not top-level accounts will only have a single transaction type.

This is because the system is operating under the assumption that each component of an

aggregate will have a corresponding transaction type for the internal transaction that gets

sent to it.

The set of transaction field names of a composite account is the union of all the

transaction field names of the composite’s components. This is because a composite ac-

count simply sends a transaction to its component without changing it, so the transaction

the aggregate account creates must be readable by any of the composite account’s com-

ponents.

The set of transaction field names of a simple account is the union of all the trans-

action field names that the simple account’s attributes use. This is because the simple ac-

count attributes must be able to read the transactions that the aggregate account creates.

When a change occurs in the component’s definition that would cause the list of fields to

change, the list is updated at that point using the #fieldAdded: message.

36

So the aggregate account manages the external transaction types, the component

accounts, the internal transaction types associated with them, and the relationships be-

tween all of these. It also stores the drawing in Figure 10 (an interface class called

AggregateAccountEditor actually manages the drawing). And like all the other ac-

counts, it manages attributes.

The interface for accessing aggregate account components is the same as for com-

posite accounts, although a couple of the methods work a little differently.

#addAccount: anAccount named: aName creates an aggregate component (see sec-

tion 3.5.3.1.1) and generates the internal transaction type for anAccount.

The primary methods for accessing external transaction types (many of these

methods just find the transaction mapping (see section 3.5.3.1.2) for the input external

transaction type and send the information to the mapping) are:

Method Description

#addExternalTranType: aName Creates and stores a new instance of

ExternalTransactionType (see section 3.6)

named aName, and creates and stores a

new instance of TransactionMapping (see

section 3.5.3.1.2), which relates an exter-

nal transaction type’s fields to the fields

they map to in the internal transaction

type.

#externalTypeFor: aName Returns the external transaction type

named aName.

#associateInternal:

anInternalTypeName withExternal:

anIExternalTypeName and

#disassociateInternal:

anInternalTypeName fromExternal:

anIExternalTypeName

Tells the transaction mapping for the input

external transaction type named

anIExternalTypeName to add or remove

as a destination the input internal transac-

tion type named anInternalTypeName .

37

#addField: aField toExternalType:

aType and

#removeField: aField

fromExternalType: aType

Tells the transaction mapping for aType

to add or remove aField .

#transactionFieldAdded: aName and

#transactionFieldRemoved: aName

If the receiver is a component of another

account, adding or removing an external

transaction type field should cause the

transaction mappings in its containers to be

updated. These methods tell the containers

about this change.

The primary method for accessing the components drawing is:

Method Description

#drawing Returns the drawing stored in the aggre-

gate account. If no drawing is stored, it re-

turns a copy of the account’s parent’s

drawing. If there is no parent, it returns a

new instance of AccountsDrawing.

3.5.3.1. Auxiliary Account Classes

3.5.3.1.1. Aggregate Components

An aggregate account attribute definition might refer to an attribute of one of its

components. AggregateComponent provides an interface between the aggregate ac-

count and its component that the attribute definition can refer to. In other words, it acts

as a wrapper for the component, and has a reference to the aggregate account and to its

component. The primary purpose of aggregate components is to be used with component

attribute references (see section 3.4.2.5).

38

3.5.3.1.2. Transaction Mapping

TransactionMapping describes how to convert an external transaction a set of

internal transactions that can be posted to the aggregate account’s components. Figure 4

shows the interface for the field mapping. It describes how to calculate each field of each

internal transaction type. In the current implementation, each field of an internal transac-

tion type is either nil or comes from a field in the external transaction type. Note that a

given field on the external transaction type may have zero, one, or many destinations.

The transaction mapping stores the drawing and manages the data that the drawing repre-

sents. The interface class TransactionDrawingEditor manages the drawing.

Figure 11 shows what the mapping in Figure 4 (for the Invoice transaction type)

looks like in the Smalltalk inspector. There is a dictionary that has two entries for the

two destinations (internal transaction types). The APJTransaction entry has a dictionary

with an entry for each destination/source field pair. The “pricePaid” field’s source is nil

because an Invoice doesn’t involve paying money. InvTransaction has a similar dictio-

nary. The “itemsSold” field has a nil source because an Invoice shows items purchased,

not items sold. The “itemsPurchased” field has a source field of “quantity” on the items

list. That means that “itemsPurchased” comes from a multi-value field, and there will

therefore be one InvTransaction created for each entry in the items list on the Invoice.

Figure 11

3.5.4. Accounts Interface

Every account has a contents view, which depends on the class of the account.

The aggregate account contents view is the visual programming interface shown in Figure

10 and shows the component accounts, the external transaction types that post to the ac-

39

count, and the relationships between the two. The composite account contents view,

shown in Figure 12, is simply a list of the components. Both of these views allow the

user to add, delete, rename, and view components.

Figure 12

The simple account contents view is a list of the transactions stored in the ac-

count’s transaction tree, and does not allow the user to enter or modify transactions.

Figure 13 shows an example.

Figure 13

3.6. Transaction Classes

Since an external transaction can have singly-occurring and multiply-occurring

fields, the ExternalTransaction class’s primary responsibility is maintaining these two

40

types of fields. In order to keep method names short, singly-occurring and multiply-

occurring fields are called “attributes” and “lists” respectively.

ExternalTransaction has operations #at: and #at:put: for reading and writing

attributes. It also has operations #addList: for creating a list, #list: aName values:

aDictionary for adding an entry (row) in the list, #listEntry: attr: aName and #list:

itemNumber:attr: for finding the value of a particular attribute in a particular row, and

#listSize: for determining the number of rows in the list. It also has #typeName, which

returns the name of the external transaction’s type.

The ExternalTransactionType class defines the schema used to create an ex-

ternal transaction and to define the transaction entry window for that transaction type. It

defines which attributes, lists, and list fields an external transaction of that type will have,

and what the types of the attributes and list fields are. Since an external transaction type

is defined for a specific aggregate account, the external transaction type knows its ac-

count.

Creating an external transaction type requires defining the fields an external transac-

tion will have. Figure 3 shows an example of the interface for this definition. There are

separate windows for single-value fields and multi-value fields. You can add, delete, re-

name, and set the type of fields using this interface. The valid types are date, number, and

string.

After defining an external transaction type, you can design the transaction entry

window for that transaction type. The VisualWorks interface code generates a default de-

sign based on the transaction definition with the top portion containing the single-value

fields and the bottom portion containing the multi-value fields. Figure 14 shows the default

transaction entry window generated after pressing the Edit Interface button in Figure 3.

41

Figure 14

The interface editor allows a great deal of latitude in moving fields around, chang-

ing labels, etc. Figure 15 shows an example of a modified transaction layout.

Figure 15

42

Figure 16

After designing the layout, you can start entering transactions using a window such

as the one in Figure 16. Pressing the accept button causes the transaction to be posted to

the aggregate account and, if there are no errors, it will be added to the appropriate simple

accounts’ transaction trees.

Figure 17

43

Finally, after entering transactions, you can query the accounts for information

about those transactions using the query interface window in Figure 17. The Attribute pane

shows a list of attributes defined for an account. Selecting a component account and an at-

tribute will cause the value of that attribute for the specified date to appear at the bottom.

The date defaults to the current date, but can be changed to any valid date.

An external transaction type has an #attributeType: aName method for return-

ing the type of an attribute, #addAttribute:withType: for adding an attribute, and

#removeAttribute: aName for removing it. #attributeNames returns a list of a type’s

attribute names. When an external transaction type adds or removes an attribute, it must

notify the aggregate account so it can modify its transaction mapping and tell its contain-

ers about the change.

For lists, an external transaction type has #addList: and #removeList: for adding

and removing lists (although in the current implementation, an external transaction only

has one list), #list:, which returns the schema for a list, #list:attr:type: and

#removeList:attr: for adding and removing fields from lists, #list:attrType: to retrieve

the type of a field in a list, and #listNames and #listAttributeNames: to retrieve the

names of the lists and of the fields in a particular list. When an external transaction type

adds or removes an attribute to or from a list, it must notify the aggregate account so it

can modify its transaction mapping and tell its containers about the change.

In addition to notifying the aggregate account about changes to the transaction

type, the external transaction type must also notify the user interface class

(TransactionInterface), since the interface must also be changed. (However, this noti-

fication does not occur until the interface asks to be notified, because there might be

many changes and the interface will just regenerate itself - it doesn’t try to do an incre-

mental change like the aggregate account does).

An InternalTransaction is simpler than an ExternalTransaction because it

doesn’t have any lists. It only has a dictionary of attributes and a type. For an

InternalTransaction, the type is just the name of a type. Since the type definition is

only used by an AggregateAccount and not by the transaction itself, it only needs to

know the name of its type.

44

Chapter 4. Interesting Implementation Details

This chapter contains additional information about some of the more interesting

parts of the Accounts framework. It also contains information about some of the periph-

eral features of Accounts that aren’t integral parts of the framework.

4.1. Storing the Data Using Smalltalk

Although transactions could be stored in a wide variety of data structures, the cur-

rent implementation uses a red-black tree [Corm90], which is one kind of balanced binary

tree. The advantage of using this structure is that it allows an implementation in which

each operation takes O(log N) time where N is the number of transactions posted to the

account. The classes used to implement this are TransactionTree and

TransactionNode, both of which are subclasses of Object.

4.1.1. Transaction Trees

A transaction tree contains information about the entire tree. It maintains refer-

ences to its root node, the account (always a simple account) where the transaction tree is

stored, and information pertaining to locating a specific internal attribute’s partial results.

4.1.2. Transaction Nodes

A transaction node is a single node of the balanced tree. Much of the information

it contains is general information used for implementing a red-black tree. A transaction

node keeps track of its color (red or black), its parent, its left and right children, the key

used for sorting (in this implementation, the date), the value the node represents (for this

framework, the transaction), and a reference to the tree it is in. It also knows how to get

the values of its transaction’s fields.

In order to implement the tree so that calculating internal attribute values takes

O(log N) time, a node cannot contain only the values from its transaction. If it did, then

calculating an attribute for a given time would require looking at each node in the tree in

the requested time range (O(N) time). Storing the total of the internal attribute values up

45

to a given transaction wouldn’t work either, because then inserting a new transaction

would require updating all transactions with later dates (O(N) time).

Instead, each transaction node maintains partial results, which maps each internal

attribute of the transaction node account to the total (for the internal attribute’s field) of

all transactions of the transaction node’s descendants.

At first glance it might seem unusual to calculate a total for all nodes descended

from the transaction node, because some of the nodes are later than the transaction node.

And since the values of the transaction node’s transaction aren’t included in the transac-

tion, the partial result values don’t have any significant meaning in the Accounts frame-

work.

However, this allows us to calculate an internal attribute’s value at a node in

O(log N) time by “combining” (using the operator of the internal attribute): a) the partial

result value of the transaction node’s left child; b) the value of the internal attribute’s

field on the transaction node’s left child’s transaction; c) the value of the internal at-

tribute’s field on the transaction node’s transaction; and d) the result of combining a), b),

and c) for all of the transaction node’s ancestors having an earlier date.

When a new transaction node is inserted in the tree, its partial results can be up-

dated by combining the left child’s partial results, the left child’s transaction fields, the

right child’s partial results, and the right child’s transaction fields. Then each of the

transaction node’s ancestors is updated the same way. So inserting a new transaction

node also takes O(log N) time.

4.1.3. Managing Partial Results

Since the collection of partial results depends on which fields are on the internal

attributes of the node’s tree’s account, each node could potentially have a different list of

partial results. To avoid making different kinds of nodes, and to make it easy to add new

internal attributes to an account, Accounts stores the partial results in an array in each

node. An internal attribute just needs to know the offset in the array that it stores its par-

tial result. An account can compute the offset automatically when a new internal attribute

is specified, so the user doesn’t have to specify it.

46

The attribute definition process creates a default internal attribute when a user

adds an attribute. The user is then free to change the attribute definition to something

else. For this reason, it is important to avoid installing new attributes in the tree too early,

since this could cause unnecessary changes. Therefore, new attributes are installed using

lazy evaluation. The offset of a new internal attribute remains nil until a transaction is

posted to the account or one of its children. At that point, any uninstalled attributes are

installed in the tree, and their partial results are initialized.

Accounts must determine the offset of an internal attribute. This is complex be-

cause attributes may be added or deleted at various levels of the account type hierarchy.

For example, suppose account A is the parent of account B and that account A contains 3

internal attribute definitions and account B contains 2 internal attributes. Account B

would then have a total of 5 internal attributes, counting the ones it inherits from account

A (assuming the names are distinct). If another internal attribute is added to account A, it

would be account A’s fourth attribute and it would therefore be given an offset of 4.

However, account B already has an account with an offset of 4.

There is an interesting parallel between the way attributes act in Accounts and the

way instance variables act in Smalltalk. Smalltalk instance variables are indexed by a

number. The higher in the inheritance hierarchy an instance variable comes from, the

lower its number will be. When an instance variable is added to a class, Smalltalk creates

a new class with the same name and mutates all of the old class’s instances to be in-

stances of the new class, copying the instance variables to their new locations (i.e., off-

sets). This process is then repeated for all of the subclasses of the changed class, because

the new instance variable will push the lower level instance variables out to a higher off-

set.

In a similar manner, when an internal attribute is added, the account calculates

new offsets for its attributes and the transaction tree tells its nodes to update the positions

of its partial results. Then, the account tells its children to do the same thing to them-

selves so that inherited attributes can have the same offset at each level of the type hierar-

chy.

47

4.1.4. Implementation of Partial Results

In order to understand partial results better, it might be helpful to look at how they are

implemented. An internal attribute has several instance variables:

offset

- the offset of the partial result in a node's array of partial results

calcCode

- the time scope of the attribute

operator

- the message to send to combine partial results

It has the method:

identity

 ^self class legalOperators at: operator

that returns a value, which, when combined with another value using the attribute’s op-

erator, as in the following method, will return the other value:

combine: value1 with: value2

^value1 perform: operator with: value2

Operator ‘+’ has identity value 0, ‘*’ has identity value 1, ‘min:’ and ‘max:’ have positive

and negative infinity respectively, and ‘useOldUnlessNewNotNil:’ has nil. Infinity ob-

jects are provided by the Smalltalk APOK extension file MetaNum.st.

A transaction node has several instance variables:

leftChild,. rightChild, parent

- the nodes directly adjacent to the current node in the tree

nodeValueRef

- the transaction stored at that node

partialresults

- the dictionary containing each attribute’s offset with the

 attribute’s partial result value for the node

key

48

 - the date of the transaction used to sort the nodes in the tree

It has “helping methods”:

transactionValue: anAttribute

"value from transaction for anAttribute"

| val |

val := self nodeValue getAttributeOrNil: anAttribute name.

val isNil

ifTrue: [^anAttribute identity]

ifFalse: [^val]

subtreeTotalValue: anAttribute

"return total of values from all transactions in the node's subtree"

^anAttribute combine: (partialresults at: anAttribute offset)

with: (self transactionValue: anAttribute)attributeValue: anAttribute

previousChildrenTotalValue: anAttribute

"return total of values from all nodes in the subtree no later than this one"

| leftTotal |

leftTotal := leftChild notNil

ifTrue: [leftChild subtreeTotalValue: anAttribute]

ifFalse: [anAttribute identity].

^anAttribute combine: leftTotal with: (self transactionValue: anAttribute)

nextEarlierParent

"return the first ancestor that is earlier than the current node"

parent isNil ifTrue: [^nil].

^parent rightChild = self

ifTrue: [parent]

 ifFalse: [parent nextEarlierParent]

49

combinePartialResults: prList1 with: prList2

 "returns a dictionary containing the results of combining the two partial results"

 | temp operators |

 temp := Dictionary new.

 operators := tree operators.

 partialresults keys asOrderedCollection do:

 [:count | temp at: count

 put: ((prList1 at: count)

 perform: (operators at:

 count)

 with: (prList2 at: count))].

 ^ temp.

The main working methods are updatePartialResults, which updates the partial results of the

node, and calculate:, which returns the value of an attribute for the node.

updatePartialResults

 leftChild notNil

 ifTrue: [partialresults :=

 self combinePartialResults: leftChild partialResults

 with: partialresults].

rightChild notNil

 ifTrue: [partialresults :=

 self combinePartialResults: partialresults

 with: rightChild partialResults]

calculate: anAttribute

 ^self nextEarlierParent isNil

ifTrue: [self attributeValue: anAttribute]

ifFalse: [anAttribute combine:

 (self nextEarlierParent calculate: anAttribute)

 with: (self attributeValue: anAttribute)]

Month-to-date and year-to-date attributes have to be computed differently. These attributes

require two values, the value for the requested date and the value for the day before the first

50

day of the month or year. The “difference” between these two values is calculated using the

inverse operator. This is the corresponding operator to use to get the value change between

the times of the two values. The inverse operator for ‘+’ is ‘-’, and for ‘*’ it is ‘/’. Note that

for non-cumulative operators, such as ‘max:’, ‘min:’, and ‘useOldUnlessNewNotNil:’, there

is no inverse operator, so month-to-date and year-to-date attributes that have these operators

cannot be computed using partial results.

4.2. Storing the Data Using a Database

The transaction tree is saved as part of the image. However, if multiple people

need to have access to the same data, there must be some repository for it to be stored in.

And if they need to have concurrent access to the same data or the ability to access the

data independently from the application, then a database will be necessary.

The two main data models on which database management systems (DBMSs) are

based are the relational and object oriented models. Two advantages of relational

DBMSs are that the data model is simple and a lot of people are using them. One major

advantage of using object oriented DBMSs with an object oriented software system is

that the data model is more closely aligned with the data model of the program so the

greater complexity of the data in an object oriented program can be represented in the

database. Another advantage is efficiency when combining data from related entities. In

relational DBMSs, the joining of data occurs at run time. In object oriented DBMSs,

there are navigation paths built into the database, so one object can contain a reference

(some sort of a pointer) to related objects.

In Accounts, transactions are very simple. Each kind of transaction can be ex-

pressed as one or two (when a list is used) relations and the data stored in a transaction

can be a string, a date, or a number. There is no need to model inheritance relationships.

Relational DBMSs support these data types and many of them are now supporting refer-

ences from one tuple to another (which could be useful in transactions having a list), so

there is no reason a relational DBMS couldn’t be used with Accounts.

There are two ways to access a relational DBMS, statically and dynamically.

Dynamic access means that the SQL queries (or whatever method is used to access the

database) are determined at run time. Static access means that the queries are predefined.

51

The tradeoff is flexibility versus performance. Static access allows far superior perfor-

mance. Some relational DBMS manufacturers have Smalltalk drivers that provide the

connection between the Smalltalk environment and the DBMS. They all use dynamic

SQL in which the query is generated in Smalltalk and is sent to the DBMS, and the

DBMS parses the query, executes it, and returns the result to Smalltalk.

4.2.1. Interface Between Smalltalk and the Database

Accounts uses a static access solution. With static access, the database calls are in

C programs which are executed from Smalltalk as user primitives. There are two primi-

tives - one to insert a tuple into a database and another to retrieve a tuple from the

database.

A database interface for Accounts was written using a rather unusual DBMS

called Unify 5.0. Instead of using SQL queries, it provides C functions for accessing the

database. The Smalltalk code would have been the same for static SQL access. The only

difference is that the C programs would have had SQL calls instead of C function calls.

In order to retrieve data that was previously inserted into the database, there must

be a way to match a particular transaction node to a tuple (or tuples) in the database.

Finding a tuple presumes knowing what relation it’s in. Transaction type names must be

unique within an aggregate account. For database access, we extend that requirement to

state that transaction type names must be unique within the application. With this re-

quirement, the relation name can be the same as the transaction type name. For lists,

which are stored in separate relations, the relation name is the transaction type name con-

catenated with the list name.

Next, there must be a way to find the tuple(s) for the appropriate transaction.

There is no guarantee that a unique key will exist among the transaction attributes.

Therefore, each transaction should have a unique ID. Many DBMSs have a built-in

mechanism for generating unique tuple IDs within a relation. Using this mechanism, the

tuple ID can be used as a transaction ID. For list tuples, which are stored in a separate re-

lation, the transaction ID must be copied to the list tuple. Note, however, that some rela-

tional DBMSs and all extended relational DBMSs (hybrids of relational and object ori-

ented DBMSs) provide nested relations, where a tuple in one relation can cluster or refer-

52

ence tuples in another relation. In this situation, it’s possible to avoid storing the transac-

tion ID in a list tuple.

4.2.2. The TransactionReference Class

The permanent home of transaction data is the database. The transaction tree

should only retrieve actual transactions as they are needed. This is the same principle

used in most object oriented DBMSs. They use an object descriptor [Kim88] (also called

a handle [Catt91]) which points to the main memory copy of an object if the object is

there, and points to the database otherwise.

Accounts includes a TransactionReference class which acts has a handle for

the transaction. It is an example of the Proxy pattern [Gamm94]. A transaction reference

contains a transaction ID, a reference to the transaction, and the transaction type of the

transaction. Accounts implements the handle mechanism by setting the transaction to nil

if the transaction is not in the transaction tree. With database access, the pointer to the

transaction in a transaction node now points to a transaction reference instead of an inter-

nal transaction.

When an Accounts application wants to look at a transaction (e.g., when evaluat-

ing a query) the transaction node sends the #getValue message to the transaction refer-

ence which checks whether transaction is nil. If it isn’t, it returns the transaction.

Otherwise, it creates a new internal transaction instance (garbage collection should have

deleted the old one) and retrieves the transaction from the database by calling a user

primitive. Each call will retrieve one tuple, so if the transaction includes a list, then mul-

tiple database calls will be needed. The user primitive will return the tuple as an array of

values, so it’s important to return them in the same order as the names are stored in the

transaction type. The transaction reference then copies the values into the transaction.

When the user creates a transaction, the transaction node will create a transaction

reference, which will store the transaction into the database by calling the user primitive

to insert a tuple. The primitive will return the transaction ID for the new transaction.

53

4.2.3. The User Primitives that Access the Database

When retrieving a tuple from the database, the transaction reference passes the

primitive the name of the relation (transaction type) and the tuple ID. The actual database

access depends on the needs of the application and what the DBMS provides. However,

there are some things that will be the same.

Smalltalk provides a C interface for creating certain kinds of Smalltalk objects

from certain types of C data items, including integers, floating point numbers, strings, and

arrays. The primitive will return the tuple to Smalltalk as an array of Smalltalk objects.

The size of the array will depend on how many attributes the tuple has. The primitive can

determine this by querying the database schema or, if the primitive contains hard-coded

queries, the size of the array can be hard-coded. Smalltalk does not provide an interface

for dates. Therefore, the date must be converted to an integer and then converted back to

a date by the transaction reference (alternatively, the database could just store the date as

an integer, but this would depend on the users’ needs). Accounts uses the formula (year

* 10000) + (month * 100) + day, but any valid formula can be used as long as the

Smalltalk and C versions match.

The primitive to insert a new transaction is in many respects the reverse of the

primitive to read from the database. The array of values is passed in, along with the rela-

tion name and the transaction ID (which should always be 0 unless the framework is ex-

tended to allow modification of transactions). The schema data shouldn’t be necessary,

because it’s possible to ask a value passed from Smalltalk for its type using Smalltalk-

provided C functions such as UPisInteger(), UPisString(), etc. The fields passed in

from Smalltalk should be converted to their C equivalents (any date fields which have

been passed in as integers should be converted back to dates) The primitive then inserts

the tuple, and returns the transaction ID of the new row using the UPreturnHandle() C

function.

4.3. Saving and Loading an Application

Once an accounting system is created, it can be saved in a Smalltalk image file.

However, Smalltalk images are very large, so they can be difficult to transfer between

machines or users. They also might contain information specific to a user, such as addi-

54

tional classes and objects from other frameworks. Therefore, the Accounts framework

has a mechanism for saving the objects that were created for a particular application. The

file that Accounts creates is much smaller than an image, and only contains information

specific to Accounts. Therefore, people with two very different images can transfer a file

containing an Accounts application, provided they both have the same version of the

Accounts framework.

Smalltalk provides a service called BOSS (Binary Object Streaming Service),

which creates a stream of objects that is typically stored in a file. One difference between

BOSS and a DBMS is that BOSS does not provide query facilities, so any data that a user

wants to query without entering the application should be put in a database instead.

The BOSS interface to Accounts was initially written for a prototype version of

Accounts that created new subclasses and generated new code. Now that Accounts no

longer does these things, the BOSS interface is much simpler.

The Accounts framework accesses BOSS through class methods in Account.

When an object is written to a BOSS stream, all of the objects connected to it are written

to the stream with a few exceptions. Classes are not written, so class variables must be

written separately. In the Accounts framework, only Account has class variables. So

the class method writes the type dictionary to the BOSS stream. Since all accounts either

have a template or are a template (or both), and since each template stores the accounts

cloned from it, all of the accounts in the application are connected to the type dictionary.

And all of the objects in the framework (except some of the interface objects) are con-

nected to accounts. So saving the type dictionary is the only thing necessary to save an

application.

Also, reading block closures that BOSS previously wrote can cause problems. At

one time Accounts used sorted collections, which contain block closures. Since then, the

code has been modified to remove them, so this problem does not exist in the current

BOSS/Accounts interface.

The file containing an application can be transferred, copied, and distributed so

that several can run the application by loading it from the file. Account contains an-

55

other class method to load the application from a BOSS file. It simply reads in the type

dictionary, which will automatically read in all of the other application objects.

4.4. Launcher Changes

The entry point into Accounts is through the VisualWorks [Parc92] Launcher,

which now has an Accounts option. The option was added by modifying the

#smalltalkLauncherView and #initializeLauncherMenu class methods of the

UIVisualLauncher class to call an Account class method called #accountsMenu.

Figure 18 shows the new Launcher and the Accounts menu options which are used to

save and load the accounting system using BOSS and to create and find accounts.

Typically, a user would start up VisualWorks, load the accounting system (if it’s not al-

ready stored in the image), and find an account to start with (often the top-level aggregate

account).

Figure 18

4.5. Posting Transactions

When a user posts an external transaction to an aggregate account, the aggregate

account often creates multiple internal transactions. One or more of these internal trans-

actions may contain an error (such as an undefined account). In the event that an error

occurs, none of the internal transactions should be stored and the user should have the

opportunity to correct the error and repost the transaction.

This functionality is provided by a two-phase commit process based on

Smalltalk’s error handling capabilities. When the user presses the Accept button on the

56

transaction entry window (see Figure 16), the VisualWorks interface method responsible

for calling the aggregate account’s #postFromTransaction: method creates an

accountNotFoundSignal which handles the situation when an account is not found. If

an account is asked for a component that it does not have, it raises an exception using this

signal. The exception handler will present an error to the user such as that shown in

Figure 19 and will then reshow the transaction entry window to the user for correction.

Figure 19

When an internal transaction reaches a simple account with no errors, the simple

account cannot just store it directly, because another internal transaction from the same

external transaction might have an error, and it would be difficult to undo the posting of

the valid internal transactions.

Instead, the aggregate account to which the user posts the external transaction

maintains a transaction log that contains the internal transactions that reached the simple

account with no errors. Before starting the posting process, the aggregate account emp-

ties out the transaction log and creates a recordPostSignal that defines how to handle a

valid internal transaction. When the internal transaction reaches the simple account, the

simple account just raises the recordPostSignal, which adds the internal transaction to

the aggregate account’s transaction log.

After the external transaction makes it through the post phase with no errors, the

store phase stores the internal transactions from the transaction log into their appropriate

simple accounts. Note that this simple implementation assumes that an aggregate ac-

count will only process one external transaction at a time. Processing multiple external

transactions at once would involve creating a unique transaction ID and storing that ID in

the transaction log with the internal transactions. Rolling back or committing an external

transaction would then require knowing the transaction ID and only processing the inter-

nal transactions in the transaction log with a matching transaction ID. This would be a

relatively simple change.

57

The two-phase nature of this process is similar to the commit process used in dis-

tributed databases[Ullm88]. A distributed database transaction is atomic. It can run on

several machines, but the transaction cannot commit until all of the sub-transactions vote

to commit. The posting process in Accounts is a distributed procedure in the sense that a

transaction is split into multiple pieces, each of which are processed separately, and the

validity of a transaction depends on all of its pieces being valid.

58

Chapter 5. Case Study

Up to this point, I’ve described various features of the Accounts framework, but I

haven’t described how they all fit together. This chapter gives a complete view of a sin-

gle application, and shows how to create a complete application using Accounts.

Diane’s Bookstore (a fictional company) wants a system that will help keep track

of the store’s inventory, personnel, customers, creditors, and money. Although some

businesses have separate systems for these things, Accounts encourages people to inte-

grate their accounting systems so that a user only needs to enter a transaction once. For

example, selling a book will affect inventory, customer information, and personnel in-

formation (how many books each person sold). If there were separate systems, the user

would have to remember to enter information three times.

Figure 20

5.1. Bookstore Accounts

The top-level account for Diane’s Bookstore is called Bookstore. Figure 20

shows its contents. If there were more than one store, Diane could make Bookstore a

template account and each of the individual bookstores could be cloned from the tem-

plate. A new top-level composite account could combine information from the stores.

For this case study, however, assume there is only one store.

59

The components of Bookstore are Payroll, which stores personnel information,

Accounts Receivable, which stores customer information, Accounts Payable, which

stores creditor information, Inventory, which stores information about items the book-

store stocks (mostly books), Cash, which keeps track of the store’s cash assets, and Non-

Cash, which keeps track of the store’s non-cash assets. All of these components are

composite accounts except Cash, which is a simple account.

Each composite account contains at least one template account. This is done for

convenience rather than necessity. Although there needs to be a template for each com-

posite account, the templates don’t have to be stored in the composite. Storing them there

makes it easier to remember which templates are used in which composites. Payroll

contains a simple account called Employee which is a template for all the employees of

the store. The template contains several attributes shown in Table 2. Notice that al-

though there’s an internal transaction field called #paid (as indicated in the definition of

paidYTD), there is no attribute called paid. This is because Diane isn’t interested in

knowing the total amount she has paid her employees - just the amount for a particular

year. So even though the default expression makes it look like there might be a connec-

tion between the two names, there is really no connection.

Attribute Name Function of Time Expression
sold self totalFor: #sold with: #+

soldYTD self ytdFor: #sold with: #+

hoursWorkedMTD self mtdFor: #hoursWorked with: #+

paidYTD self ytdFor: #paid with: #+

hourlyWage self currentValue: #hourlyWage

monthlyPay self hoursWorkedMTD * self hourlyWage

name self currentValue: #name

address self currentValue: #address

Table 2

Although hourlyWage is a current value attribute, it could have been defined as a

constant value of 0. The constant attribute definition couldn’t be inherited like the other

attribute definitions, because each employee potentially has a different hourly wage. It

60

would have to be redefined for each employee. However, the template still needs the in-

terface definition of hourlyWage in order for the definition of monthlyPay to be valid.

Although the current value attribute definition doesn’t have to be redefined for each em-

ployee, a transaction will be required for each employee to set the hourly wage.

However, this isn’t a problem, since the employee name and address are already set using

a transaction.

The Inventory component account contains a simple account called Inventory

(an account can have the same name as its container) which is a template for all the in-

ventory items the store stocks. It contains attribute definitions that are common to all in-

ventory items in the store. There are three internal attributes, sold, purchased, and lost,

which tell how many of a particular inventory item have been sold, purchased, and lost.

One other attribute, onHand, tells how many of a given item there are in stock. The

onHand attribute is defined as (self purchased - self sold - self lost).

The store currently carries two kinds of inventory items - books and greeting

cards. There is a template account for each of these kinds of items. These two template

accounts are cloned from the Inventory template account, so they inherit all of

Inventory’s attributes. They also have additional attributes. Book, which is the template

account of all books the store stocks, has two “current value” attributes, author and title.

Greeting Card, which is the template account of all greeting cards the store stocks, has

one “current value” attribute, occasion.

The Non-Cash component account contains a simple account called Bank

Accounts that is a template for all the store’s bank accounts. If the store had other kinds

of non-cash monetary assets, it could use a hierarchical template structure like Inventory

has. Bank Account has two internal attributes, withdrawn and deposited, and it has

one other attribute, currentAmount, which is defined as (self deposited - self

withdrawn).

Cash, the simple component account, has attributes similar to Non-Cash. It has

two internal attributes, incoming and outgoing, which keep track of additions to and

subtractions from the cash supply at the store. The other attribute, onHand, is defined as

(self incoming - self outgoing).

61

Accounts Payable and Accounts Receivable have the most complex structure,

but they are similar to each other. Accounts Payable contains an aggregate account

called Creditor which is a template for all the companies to which the store might own

money (typically, publishing and greeting card companies). Since Creditor is an aggre-

gate account, it contains transaction types and accounts. Figure 21 shows its contents

view.

Figure 21

The name of the transaction type (Accounts Payable Transaction) is the same

as the name of the internal transaction type that was generated for the higher-level aggre-

gate account (Bookstore). The fields in the transaction type determine which fields will

be in the transactions that Bookstore sends to Accounts Payable. The two simple

component accounts, APByDate and APByDueDate, are distinguished by the date by

which transactions are sorted (transaction date vs. due date), as described in Chapter 2.

These two components are also templates, so when Creditor is cloned, its children’s

components will be children of APByDate and APByDueDate and will have the same

names as APByDate and APByDueDate. In fact, the contents view of Creditor’s chil-

dren will look just like Figure 21.

APByDate has two internal attributes, paid and purchased. purchased gives

the total amount purchased from that vendor, while paid gives the total amount paid to

the creditor. APByDueDate has an attribute called charged, which gives the amount

charged to the creditor. Creditor has an attribute called due, which calculates the

amount due to the creditor as (APByDueDate charged - APByDate paid). Since

62

interest is calculated differently by different creditors, it will simply be counted as an

increase in the charged attribute, instead of trying to calculate it as a separate attribute.

Accounts Receivable is similar to Accounts Payable. It contains an aggregate

account, Customer, which is a template for all customers to whom the store has granted

credit. Customer’s contents view, in Figure 22, looks similar to Creditor’s contents

view. ARByDate has one internal attribute, paid, and ARByDueDate has two internal

attributes, charged and chargedMTD. Note that unlike with accounts payable side, the

bookstore doesn’t try to keep track of the total amount a customer has purchased because

much of the time a customer pays in cash, so there’s no reason to ask the person’s name.

Figure 22

Table 3 shows most of the attributes defined for Customer. Although

interestRate is defined as a constant attribute, it could also be defined as a current value

attribute. In that case, it would require a transaction to set it and update it.

Attribute Name Function of Time Expression
paid ARByDate paid

charged ARByDueDate charged

chargedMTD ARByDueDate chargedMTD

due self charged - self paid

interestRate 0.06

Table 3

63

While creating the Accounts Receivable portion of the system, Diane realized that

she wanted to be able to calculate interest due for her customers. The current system

doesn’t have the ability to generate external transactions automatically, but it would at

least be nice to have the system calculate the amount. Amounts whose due dates are in

the current month should not have interest due on them, so the interest amount would be

calculated by subtracting the total charged this month from the total amount due, and

multiplying that by the interest rate. But what if the result of that subtraction is negative?

This would happen if the customer overpaid or prepaid. The interest rate should only be

nonzero if the result of the subtraction is positive.

The solution to this problem is that Diane will create a new kind of function of

time (see section 3.4.2) called PositiveTestFOT. A positive test FOT will test another

function of time. If the other function of time’s value is positive, the positive test FOT

will evaluate to the value of its operand. Otherwise, its value will be zero.

Diane goes through several steps to define this new kind of function of time:

1. Create a new Smalltalk class.

She creates a Smalltalk class called PositiveTestFOT, making it a subclass of

FunctionOfTime. Since this new class represents a simple unary operation, it

only needs one instance variable, operand.

2. Define the methods needed for a new function of time.

Section 3.4.2 points out that there are 4 methods which every function of time

needs. The value: method, which initializes the instance variables, is simply de-

fined as operand := anFOT where anFOT is the input to the method. The print-

ing method, printOn:, simply tells the operand to print itself on the input stream,

and then it prints the word positive. The method for evaluating a function of

time, atTime:forAccount:, calls the atTime:forAccount: method for its operand,

tests if it’s greater than 0, and returns either the value of its operand’s

atTime:forAccount: method or 0. Finally, the fieldList method, which returns

64

the names of the transaction fields to which a function of time refers, simply re-

turns the result of its operand’s fieldList method.

3. Define the method(s) used to create a new function of time.

A positive test FOT is indicated in the attribute definition by typing the word

positive after another function of time expression. Therefore, the

FunctionOfTime class needs a method called positive, which will create a new

Positive Test FOT. This method’s definition is ^PositiveTestFOT new value:

self.

Once the class is created, Diane can define an interest attribute for Customer us-

ing the definition (self due - self charged) positive * self interestRate.

5.2. Bookstore Transactions

Figure 23

Each of the transactions in Bookstore affects from 1 to 4 component accounts. A

Timesheet transaction records the hours an employee has worked. It only affects the

Payroll component. Its transaction mapping drawing in Figure 23 shows that a

65

Timesheet has three fields - employee, which becomes the account on Payroll’s inter-

nal transaction, hours, which translates to hoursWorked, and the ubiquitous date.

Notice how the general field name “hours” on the Timesheet becomes the more

specific name “hoursWorked” on the Payroll Transaction. This is because a

Timesheet has a very simple purpose, so the name “hours” doesn’t need to be qualified

further (although one can imagine a more complicated timesheet that a software consult-

ing firm might use, with hours broken down by project using multi-value fields). On the

other hand, a Payroll Transaction is more complex and can get information from one of

several sources. Therefore, a more specific name is needed to understand what the field

is for.

Figure 24

A Payroll Maintenance transaction updates the current value fields and gives an

example of how “current value” fields should normally be updated. (For simplification

purposes, this case study does not use maintenance transactions for its other “current

value” fields.) A Payroll Maintenance transaction only affects the Payroll component.

Its transaction mapping drawing in Figure 24 shows that the name and/or address are up-

dated with a Payroll Maintenance transaction, and that the account is identified using

the social security number on the transaction. Because of the nature of “current value”

66

fields, the previous values of name and address are still accessible by performing a query

using a date earlier than the date of the transaction.

Figure 25

A Paycheck records a check written on one of the store’s bank accounts and

given to an employee. Its mapping drawing in Figure 25 shows that a paycheck’s effect

is to withdraw money from a specific bank account and to add to the amount paid to an

employee.

Bank accounts (i.e., Non-Cash) are also affected by Non-Cash Interest trans-

actions. Since each bank has its own complicated and often-changing method of calculat-

ing interest, Diane has decided not to try to incorporate these calculations into her system,

but rather to enter them manually when she gets the account statements from the bank.

The transaction mapping drawing in Figure 26 shows that interest payments are treated as

money deposited into the account.

67

Figure 26

Figure 27

As one might suppose, Deposit transactions take money from cash and put them

in bank accounts, and Withdrawal transactions take money from bank accounts and add

them to cash. Although Accounts does not handle account transfers directly (an external

68

transaction cannot send two transactions to the same account (i.e., Non-Cash) except

when using multivalue fields), an account transfer would consist of a withdrawal fol-

lowed immediately by a deposit. The Withdrawal transaction mapping drawing in

Figure 27 shows that the amount gets withdrawn from Non-Cash and gets added to in-

coming Cash. The Deposit drawing looks the same except the arrows go to deposited

instead of withdrawn and outgoing instead of incoming.

The two most complex kinds of transactions in both structure and mapping are

Purchases and Sales. Purchases generally reflect information from an invoice. They

contain information about the invoice, how it was paid for, and what items the store re-

ceived. An invoice can be paid for in three ways - by cash, check, or credit (assumed

here as credit directly with a vendor rather than with a third party).

Figure 28

69

Figure 28 shows how a Purchase transaction affects four different accounts.

Paying by check causes the check amount to be withdrawn from a bank account. Paying

by cash causes the outgoing amount in Cash to increase. Paying by credit adds to the

amount charged to the vendor of the invoice. Since Diane wants to keep track of the total

amount purchased from each vendor, the total purchased amount (whether or not any

portion of the purchase was charged) is also updated in Accounts Payable. Finally,

Inventory is updated using the multi-value fields corresponding to the items received

with the invoice. A separate internal transaction will be created for each item on the in-

voice. The Inventory “current value” attributes title and author can also be set using a

Purchase transaction (though they should never need to be changed). A better but more

complex design would have an Inventory Maintenance transaction similar to the

Payroll Maintenance transaction discussed earlier.

Overall, a Sale transaction’s effect is almost the opposite of a Purchase transac-

tion’s with two exceptions. A Sale transaction cannot directly affect Non-Cash. This is

because Diane hasn’t installed debit card access to allow money to go directly from the

customer’s bank account to her bank account. (Ten years ago she wrote an article on

debit cards (specifically, the “smart cards” used in France) and recognized the potential

security risks, so she’s decided not to participate in that part of the Technical Revolution.)

However, she does allow good customers to carry a balance (that’s what Accounts

Receivable is for). She also allows customers to pay by check, but those checks are

counted as cash until they can be deposited in the bank. Diane wants to keep track of

how much each employee sells, so a Sale transaction, unlike a Purchase transaction, af-

fects Payroll.

Figure 29 shows how a Sale transaction affects Cash, Payroll, Accounts

Receivable, and Inventory respectively. As with Purchase, a Sale transaction creates

one transaction for each different item sold.

70

Figure 29

Check to Vendor transactions and Check from Customer transactions are simi-

lar to each other. A Check to Vendor takes cash from a bank account and increases the

amount paid to a vendor in Accounts Payable. A Check from Customer increases the

amount paid by a customer (i.e., decreases the amount owed) and adds to the money in

Cash. Figures 30 and 31 show the transaction mapping drawing for Check to Vendor

and Check from Customer respectively. Since a Check from Customer goes to cash,

it doesn’t need the bank account that Check to Vendor needs.

71

Figure 30

Figure 31

Payable Interest and Receivable Interest transactions indicate interest that is

now due to a creditor or from a customer. As stated earlier, the system calculates the re-

ceivable interest amount, but the transaction is entered manually. Figure 32 shows the

72

mapping for Payable Interest. The mapping for Receivable Interest looks almost ex-

actly the same. The only important difference is that instead of a field called vendor,

there is a field called customer.

Figure 32

Finally, a Shrinkage transaction is needed when someone discovers that an in-

ventory item has mysteriously disappeared. Shrinkage can occur for a number of rea-

sons. Sometimes items get thrown out by mistake or an employee (or the owner) takes a

book home intending to bring it back, but no one else knows it. When the item is later

discovered or is brought back, a negative number of items in the Shrinkage transaction

could reflect this (mysterious reappearances don’t happen often enough to justify a new

kind of transaction). Spoilage could also be considered shrinkage (e.g., when someone

spills coffee on a paperback book). However, one of the inescapable annoyances of

owning a retail business is the practice of shoplifting, and this is the most common source

of shrinkage. Figure 33 shows the very simple effect Shrinkage has on Inventory.

73

Figure 33

5.3. A Transaction Lifetime

Figure 34

74

This section traces the life of a Sale transaction from its creation through its stor-

age and use in queries. First, the user enters a Sale transaction as shown in Figure 34, and

posts it to Bookstore.

As shown in Figure 29, Bookstore will create 4 kinds of internal transactions

from this external transaction. The first will be sent directly to the Cash account where

it will be stored, and will just have the values from the Date: and Amount paid: fields

from the original transaction.

The second internal transaction will be sent to Payroll, which is a composite ac-

count. The value from Employee: on the original transaction will become the account

field in the internal transaction. Payroll will then look for its component named the same

as the employee, and send the transaction to the component, where it will be stored. This

transaction will also have the Date: and Total sale: fields from the original transaction.

Bookstore will create 2 internal transactions corresponding to the two different

inventory items sold. They will both be sent to Inventory, which will send them to two

different components based on the item numbers from the original transaction. The

quantity and Date: fields are on these transactions as well.

Figure 35

75

The other internal transaction is for Accounts Receivable, since there is an

amount charged. It will put both dates on the transaction, and the account will come from

the Customer: field from the original transaction. It will also have the Amount

charged: field. Accounts Receivable will send the internal transaction to its compo-

nent whose name matches the customer name. However, the customers are aggregate ac-

counts (see Figure 22), so the customer will split this transaction into two internal trans-

actions based on the transaction mapping drawing in Figure 35. The transaction that goes

to the account that is sorted by date will have only a date on it, since the customer did not

pay anything toward the amount he owed.

After all the transactions have been stored, you can then see their effects. One

way is to look at the contents views of the simple accounts where the transactions are

stored. For example, the Cash contents view in Figure 36 shows the transaction.

Figure 36

The other way to see the results of the transaction is to query the account for an

attribute value. Figure 37 shows the onHand attribute value for the current date. There

was no cash on hand before this transaction was posted, which is why the attribute value

matches the transaction value. Figure 38 shows the effect the Sale transaction had on the

employee’s sold attribute.

76

Figure 37

Figure 38

77

Chapter 6. Future Directions

There is every reason to believe that people will continue to work on the Accounts

framework to add more functionality. This chapter contains some suggestions for those

who wish to continue working on it.

6.1. Mapping Language

Currently, the mapping language for indicating the sources of internal transaction

fields is very simple. The field either comes from an external transaction field or it is nil.

Clearly, there should be a richer variety of sources. A field might have a constant value,

or might be calculated by a formula involving multiple constants and multiple transaction

fields. In fact, the mapping language should provide functionality that is similar to the

attribute definition language.

6.2. Attribute Definition Language

It was very convenient to be able to use the Smalltalk compiler to parse attribute

definitions. However, the Smalltalk syntax, while relatively easy for a programmer, is

not friendly enough for a non-programmer. Also, while using #doesNotUnderstand: is

a reasonable solution for a prototype system, it’s entirely possible that a user might define

an attribute name that is the same as a method name. It would be a good idea to develop

a special purpose attribute definition language with its own context.

6.3. Transfer Transactions

In the case study, one kind of transaction that the Accounts framework couldn’t

support are transfer transactions from one bank account to another. There are two ways

to solve this problem.

One way is to allow the user to define the aggregate account so that it will send

two transactions to the same composite. The system currently cannot do this. One prob-

lem is the way the aggregate account contents interface works. It draws its lines from the

center of a transaction rectangle to the center of an account rectangle, so it’s impossible to

have two lines going from the transaction to the account (unless one line on top of the

78

other can be considered two lines, but then it will be invisible to the user). This limitation

also prohibits general ledger transactions which have a debit and credit account and

would require splitting the transaction in two and sending them both to a general ledger

composite account.

The second reason an aggregate account can’t send two transactions to the same

component is that the system is set up to have one internal transaction type for each com-

ponent account. This problem could be solved by having each component account keep

track of its own internal transaction types and give them to the aggregate account when it

asks for them. Currently, the aggregate account keeps track of them.

The other way to solve the transfer transaction problem is for an external transac-

tion to generate another external transaction, something it can’t currently do. Since a

transfer transaction is equivalent to a deposit and withdrawal, a transfer transaction could

generate one of each kind of external transaction. This would also be useful for things

like automatically generating transactions for interest due.

6.4. Additional Field Types

In the current system, transaction fields have one of three types - date, number, or

string. There are some situations where other types would be helpful. For example,

books, which are a kind of inventory item in the case study, have an author attribute

which comes in as a string in a transaction. However, many books have multiple authors,

so rather than having a single string containing all the authors, a set of strings would give

a better representation of the data.

Representing an author as a string or set of strings is acceptable if the only infor-

mation we need is the author’s name. But if we want more information about an author,

it will be better to have the ability to store a more complex object in an attribute - for ex-

ample, a set of Person objects. Of course, each accounting system might need different

kinds of objects. A system that doesn’t have authors might not need person objects. A

system to help a teacher keep track of grades might have AssignmentType objects. There

should be some way to dynamically specify the types used in transaction fields in a spe-

cific system. Each type should correspond to a Smalltalk class (i.e., there should be a

79

class called Person or AssignmentType), and each class should respond appropriately to

the #readFrom: message.

6.5. Databases

In order for any significant number of people to use Accounts concurrently, fur-

ther database interfaces should be explored. It would seem natural to connect Accounts

to GemStone and Versant, two object oriented DBMSs that have Smalltalk interfaces.

Adding traditional SQL relational database access (as opposed to Unify 5.0)

would make Accounts more accessible to people with SQL-based relational DBMSs.

Connecting Accounts to an SQL-based relational DBMS should be relatively straightfor-

ward. It should only mean changing the C primitives that access the Unify database to

use SQL calls instead of C function calls. The one possibly difficult part is making sure

the C primitives can be run when they are bound to a DBMS plan.

Also, a couple of changes will be required in the TransactionReference class.

That code was written when transaction types were implemented as generated classes.

The code that uses that information must be changed. Also, there is an instance variable

called listdbIDs that isn’t mentioned in section 4.2.2. It was added to deal with a quirk in

Unify 5.0 which made it difficult to store the transaction ID in the lists. Instead, all the

tuple IDs of all the list items were stored in listdbIDs, a dictionary of list names with or-

dered collections of tuple IDs. For any other relational DBMS, this instance variable

would not be necessary.

6.6. Additional Examples

So far, the Accounts developers have been the only users of Accounts. It would

be very helpful to have some real users using Accounts to build real accounting systems.

The advantage to having real world users is that they can find the shortcomings in the

framework. In particular, [John94] speculates that an investment broker should be able to

use Accounts to keep track of clients’ investments, but also that Accounts will need addi-

tional functionality to support this. A real investment broker trying to build an account-

ing system will find the areas of improvement more readily.

80

6.7. Additional Tools

There are several tools that most accounting systems have. Adding them to the

Accounts framework would increase its functionality. These tools are a spreadsheet, a

check writing tool, and a report writing tool. The check writing tool could be hooked to

the transaction type definition, which would have a flag indicating whether the transac-

tions for that type should be capable of printing checks for themselves.

6.8. Accounts Graph

Currently, the Accounts interface only allows an account to be a component of

one account. And once it is added to an account, it can’t be moved or copied to another

account. This is probably too limiting for many accounting systems. The framework

code allows for the possibility that an account might be in more than one container.

Theoretically, only the interface should have to change in order to allow a directed,

acyclic graph of accounts rather than the account forest that the framework currently uses.

6.9. Class Reorganization

There may be some opportunity for factoring out common behavior in three

places. External transactions and internal transactions both have fields, and they are both

posted to accounts. It may be advantageous to create a Transaction class from which

both external transactions and internal transactions inherit.

Also, the code for handling template accounts is part of the Account class hier-

archy, so all accounts have this code whether they are templates or not. More properly,

“template” is a role that an account plays, so there should be a separate class for defining

the functionality of template accounts. All accounts would have a role and for template

accounts, the role would be an instance of Template.

The TransactionTree class contains information about transactions as well as

information about how a red-black tree works. It might be beneficial to separate these

into two separate classes - a generic class for red-black trees, and a specialized class for

the things a transaction tree needs to know. A further separation would occur when ap-

81

plying the Strategy pattern [Gamm94] or subclassing to separate the abstract operations

of a tree from the specific strategy used for a particular tree.

6.10. Account Type Checking

Currently, there is no mechanism for specifying that all components of a compos-

ite account will have the same type. And yet, this is almost always the case. The advan-

tage of including the ability to make this specification is to introduce account type

checking into the framework.

6.11. Efficient Calculation for All Supported Operators and Time
Ranges

Section 4.1.4 describes how transaction attribute values are calculated efficiently

for the supported time ranges of origin-to-date, month-to-date, and year-to-date. The ex-

ception to this is that month-to-date and year-to-date attributes cannot be calculated using

partial results for attributes that use the ‘min:’, ‘max:’, and ‘useOldUnlessNewNotNil:’

operators. This is because there is no way to get the correct result given the attribute’s

value at the beginning and end of the time range, at least if they are the same. For exam-

ple, if one wants to find the largest sale an employee had in a given month, and the

maximum value at the beginning and end of the month were both $1000.00, there would

be no way of telling what the maximum value was during only that month.

One way to fix this would be to devise a way of using partial results to store val-

ues for a specific time range. This would allow a month-to-date or year-to-date value to

be calculated with one pass of the height of the table rather than two. This appears to be a

hard problem.

6.12. Budgeting and Reconciling

Companies will often make plans for how they plan to receive and spend their

money in the future. Their plans are typically recorded as transactions posted to a sepa-

rate (“shadow”) set of books. Then, when the money is actually spent, it is reconciled to

the plan. Accounts should be able to support this generally, given a reporting mechanism

and automatic transaction generation.

82

However, there are two additional things that some companies will want to have

as part of their budgeting process. One is the ability to associate regular transactions with

specific budget transactions so that the amount spent per budget transaction can be

recorded. This capability is also needed for determining cost of goods sold (i.e., deter-

mining profit by calculating how much each item sold originally cost) where a specific

sales transaction item is associated with a specific purchase transaction item.

The other thing companies like to do is to specify a higher level of granularity

when budgeting then when recording. For example, a company might decide it is going

to buy 1000 computers., but not specify what kinds it will buy. Although ‘computer’

would probably be a simple account and could therefore have transactions posted to it, it

would also be a template account for accounts representing specific models of computers.

The recording process would store its transactions at a lower level in the account type hi-

erarchy. So the budget reconciliation process would have to expect to get its data from

several different places.

6.13. Other Time-Dependent Data

Currently, attributes’ values change over time because the attribute depends on

different transactions for different time ranges. However, the definition of an attribute

could also change through time. An example of this would be calculation of vacation

time for employees. Sometimes, vacation time is calculated according to the rules that

were in effect when the employee was hired. So it is necessary to be able to find how the

attribute for vacation time was defined on a particular date, and to be able to specify the

source of the date in the attribute definition.

6.14. Framework Intersections

The Accounts user interface was written using two frameworks for user interfaces.

HotDraw [John92] was used for the aggregate account components view (Figure 10) and

for the transaction mapping interface (Figure 4). The transaction mapping interface was

written using John Brant’s extensions to HotDraw [Bran94].

83

The rest of the Accounts user interface uses ParcPlace VisualWorks [Parc92]. In

contrast to HotDraw, which uses geometric graphics objects, VisualWorks uses more

traditional graphical user interface objects, such as buttons, tables, and pull-down menus.

(For more detail about this interface, see [Evan94].)

Both HotDraw and VisualWorks are examples of horizontal frameworks, which

can be used for applications in many different domains. The domain of this framework is

accounting systems. Therefore, although the interface classes primarily contain know-

ledge provided by their frameworks, they also contain some knowledge about accounting

systems.

For example, the TransNode class (which is a subclass of CachedFigure) in

the HotDraw-based aggregate account contents interface, knows that when the user draws

a line from a transaction rectangle to an account rectangle, the trans node object should

tell the account associated with the drawing to relate the component account for the ac-

count rectangle with the transaction definition for the transaction rectangle (see the

#addTarget: method). On the other hand, if the user draws a line in the wrong direction,

from an account rectangle to a transaction rectangle, the AccountNode class knows that

it should not do anything (see the #handles method). So the interface code knows that

transactions post to accounts and not vice versa.

Another example from the VisualWorks interface is that the CacctContent

class, which handles the contents view for a composite account, knows in its #initialize:

method that the contents of a composite account should be a list of its components. On

the other hand, the SacctContent class, which handles the contents view for a simple

account, knows in its #initialize: method that the contents of a simple account should be a

list of its transactions. So the interface code knows that some kinds of accounts have

components and that other kinds of accounts that do not have components have transac-

tions.

One interesting direction for future research would be to examine ways to specify

intersections between horizontal and vertical frameworks in ways that don’t require the

developer to write code. HotDraw and VisualWorks already provide this to some degree.

John Brant’s extensions to HotDraw [Bran94] include a tool to specify the drawing tools

used for specific applications of HotDraw. VisualWorks generates ApplicationModel

84

subclasses and initialization information for the interface based on information provided

by the application developer (the name of the new subclass and the fields in the model).

6.15. Domain Languages

At a more general level, Accounts provides numerous opportunities for frame-

work research. The Accounts framework is an example of a domain language - a lan-

guage used to describe a particular application domain. Combining Accounts with a

study of other frameworks could lead to a study of domain languages in general. Are

there any general features that apply to all domain languages? Is it possible to create a

meta-framework - a framework for building frameworks? As software continues to

evolve, it will be written at a more general level, and the problems which now have soft-

ware solutions will in the future be solved using specifications selected by a user of the

system. Framework research can help speed this process.

85

Literature Cited

[Bran94] John Brant and Ralph E. Johnson. "Creating Tools in HotDraw by

Composition." In Proceedings of Conference on Technology of Object-

Oriented Languages and Systems : 445-454 (1994)

[Catt91] R.G.G. Cattell. Object Data Management. Addison-Wesley, Reading,

Massachusetts, 1991.

[Corm90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.

Introduction to Algorithms. The MIT Press, Cambridge, Massachusetts,

1990.

[Cox91] Brad J. Cox. Object-Oriented Programming, 2nd Edition. Addison-

Wesley, Reading, Massachusetts, 1991.

[Deut89] L. Peter Deutsch. Design Reuse and Frameworks in the Smalltalk-80

Programming System. In Ted J. Biggerstaff and Alan J. Perlis, editors,

Software Reusability, Vol 2: 55-71, ACM Press, 1989.

[Evan94] Rebecca Evans. An Object Oriented Interface to an Object Oriented

Framework. M.S. Thesis, University of Illinois at Urbana-Champaign,

Department of Computer Science, 1994.

[Gamm94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Object-Oriented Software Architecture. Addison-

Wesley Publishing Company, Reading, Massachusetts, 1994.

[Gold83] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its

Implementation. Addison-Wesley Publishing Company, Reading,

Massachusetts, 1983.

[John88] Ralph E. Johnson and Brian Foote. "Designing Reusable Classes." In

Journal Of Object-Oriented Programming, Vol. 1, No. 2 : 22-35

(June/July 1988)

86

[John91] Ralph E. Johnson and Vincent F. Russo. "Reusing Object-Oriented

Designs." University of Illinois tech report UIUCDCS 91-1696.

[John92] Ralph E. Johnson. "Documenting Frameworks Using Patterns." In

Proceedings Of Conference on Object-Oriented Programming, Systems,

and Applications: 63-76 (1992)

[John94] Ralph E. Johnson, Ward Cunningham, Rebecca Evans, and Paul Keefer.

"The Accounts Framework." Unpublished.

[Kim88] Won Kim, Nat Ballou, Hong-Tai Chou, Jorge F. Garza, and Darrell

Woelk. "Integrating an Object-Oriented Programming System with a

Database System." In Proceedings Of Conference on Object-Oriented

Programming, Systems, and Applications: 142-152 (1988)

[Meye88] Bertrand Meyer. Object Oriented Software Construction. Prentice Hall

International (UK) Ltd., Hemel Hempstead, Hertfordshire, UK, 1988.

[Parc92] ParcPlace Systems, Inc. ParcPlace VisualWorks Release 1.0 User's

Guide. Sunnyvale, California, 1992.

[Ullm88] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems.

Computer Science Press, Rockville, Maryland, 1988.

