
Eudora EMS API Page 1

Eudora Extended Message Services API Version 4

September 8, 1998

QUALCOMM Inc.

Laurence Lundblade, Julia Blumin, Scott Manjourides, Joshua Stephens

For more information write to <emsapi-info@qualcomm.com>

QUALCOMM Incorporated

6455 Lusk Blvd.

San Diego, CA 92121-2779

USA

Copyright © 1997, 1998 QUALCOMM Incorporated.

All rights reserved. Printed in the United States of America.

Eudora EMS API Page 2

Table of Contents

1. INTRODUCTION 4

1.1. TRANSLATORS 4
1.2. ATTACHERS 5
1.3. SPECIAL TOOLS 5

2. PLUG-INS, TRANSLATORS, ATTACHERS, SPECIAL TOOLS 6

2.1. PLUG-IN ENTRY POINTS 6
2.2. TRANSLATOR ENTRY POINTS 7
2.3. ATTACHER ENTRY POINTS 7
2.4. SPECIAL TOOLS ENTRY POINTS 7
2.5. LINKING, LOADING AND IDS 7
2.6. STORED STATE AND ACCESS TO OTHER FILES 8
2.7. VERSION NUMBERING 8

3. TRANSLATOR OBJECT TYPES AND FORMATS 9

3.1. TRANSLATED OBJECT TYPES 9
3.2. TRANSLATED OBJECT DATA FORMATS 9
3.3. TRANSLATED OBJECT DATA FORMATS - THE LOCAL NON-MIME FORMAT 10
3.4. TRANSLATED OBJECT FORMATS - THE MIME CANONICAL FORMAT 10

4. DISPLAY IN THE USER INTERFACE 12

5. THE TRANSLATION PROCESS 13

5.1. ON-ARRIVAL 13
5.2. ON-DISPLAY 14
5.3. ON-REQUEST 14
5.4. QUEUE AND CALL ON TRANSMISSION (Q4-TRANSMISSION) 15
5.5. PLANNED FOR FUTURE VERSION OF API - QUEUE AND CALL ON COMPLETION 16

6. ATTACHER PLUG-INS 17

7. SPECIAL TOOLS PLUG-INS 18

Eudora EMS API Page 3

8. API REFERENCE 19

8.1. CONSTANTS 19
8.2. MACINTOSH DATA STRUCTURES 20
8.3. WINDOWS DATA STRUCTURES 23
8.4. BUILDING MACINTOSH COMPONENTS 24
8.5. BUILDING WINDOWS DLLS 25
8.6. EFFICIENCY CONSIDERATIONS 26
8.7. GET THE API VERSION NUMBER THAT THIS PLUG-IN IMPLEMENTS 27
8.8. INITIALIZE PLUG-IN AND GET ITS BASIC INFO 28
8.9. GET BASIC TRANSLATOR INFO 30
8.10. CHECK TO SEE WHETHER A TRANSLATION CAN BE PERFORMED 32
8.11. PERFORMING TRANSLATIONS 34
8.12. FINISH USE OF A PLUG-IN 37
8.13. FREE API DATA STRUCTURES (WINDOWS ONLY) 38
8.14. PLUG-IN SETTINGS DIALOG 39
8.15. QUEUED TRANSLATION PROPERTIES 40
8.16. ATTACHMENT MENU ITEMS 41
8.17. ATTACHMENT MENU HOOK 42
8.18. SPECIAL MENU ITEMS 44
8.19. SPECIAL MENU HOOK 45

9. CHANGES IN LATEST API DESCRIPTIONS 46

10. REFERENCES 48

APPENDIX A - A BRIEF INTRODUCTION TO MIME 49
APPENDIX B - MIME TYPE MAPPINGS 51

Eudora EMS API Page 4

1. Introduction
Note: sections one through seven of this document provide overview, background and
implementation guidelines for the EMS API. Detailed reference information for
implementation begins in section eight.

The Eudora Extended Message Services API (EMS API) is designed so that third party plug-ins can be
added to Eudora by the end user. Plug-ins may be supplied by QUALCOMM Incorporated, an independent
vendor, be available as shareware, or be authored by the end user. Plug-ins may perform transformations on
e-mail messages as they are received, as they are sent or on the command of the user. Additionally, they
can add attachments to messages as well as be simply a hook to another application. The API is general
enough to accommodate transformations ranging from compression/decompression, to file format
conversions, graphic format conversions, human language translation, digital signing and others. U.S.
developers of plug-ins which perform encryption/decryption should contact the U.S. Department of
State’s Office of Defense Trade Controls in order to determine the licensing requirements applicable
to exports of such translator plug-ins from the United States.

When Eudora starts up it will search for plug-ins on the user's system. It will look for Windows DLL’s or
Macintosh Components in a set of specific places on the user's system. Once located, the plug-ins will show
up as menu items and check boxes in the Eudora user interface and/or be invoked automatically as messages
are sent and received. When invoked, plug-ins may interact directly with the user by putting up their own
dialogue boxes and menu items for attachments and tools.

Each plug-in may contain translators, attachers and special tool menus in it.

A translator performs some transformation on a message. It is often convenient to put several translators in
one plug-in because they may share a lot of code or other resources. It is also possible for a translator to be
used simply as a hook for access to messages as they are received, viewed or sent. That is, a translator may
perform no translation at all.

1.1. Translators

Eudora EMS API Page 5

When a plug-in is loaded, it registers in which of the above contexts each of its translators, attachers, and
special tools wishes to be called in. For example a plug-in which does digital signing may have two
translators in it, one to add a signature to an outgoing message, and one to verify a signature on an incoming
message. The translator which adds the signature may register to be queued and called on transmission, and
the signature verification translator may register to be called on-display.

The EMS API makes heavy use of the MIME standard for describing and representing the data type of an e-
mail message and its sub-parts. The design of the API and the SDK is intended to make it possible to
implement plug-ins without an in-depth understanding of MIME and without having to implement large
parts of the MIME standard in the plug-ins.

Translators may operate on the whole message or only on any sub-part of the message. Eudora performs a
full traversal of the MIME structure of the message and calls translators on parts and sub-parts as they wish
to be called. This will allow plug-ins to work on individual parts of a multipart message without having to
implement any MIME parsing.

The data type of a translator’s input and output data is labeled using MIME. For example, the MIME typing
might include the text format and character set, the type of compression, or the type of graphic image (e.g.,
GIF or JPEG).

Translators can create and access their own data files or make use of such files created by other
applications. They may also access and modify data that is shared with a companion application.

In the case where the incoming message has no MIME structure, the message is transformed into a valid
MIME structure with type text/plain. This is discussed in more detail within section 5.1.

1.2. Attachers
When a message is being composed in Eudora, Attachers can be selected from a menu item. The plug-
in will return file(s) that will be attached to the message.

1.3. Special Tools
Special Tools will be available for selection on the menu at any time. This simply provides a hook for
other utilities to be hooked into Eudora. Anything can be done here, launching another application,
calling a script, etc.

Eudora EMS API Page 6

2. Plug-ins, Translators, Attachers, Special Tools
Most individual translations that are a candidate for implementation via the EMS API come in pairs or
groups. Examples are compression and decompression, Spanish to English and English to Spanish, digital
signing and authenticating, and certificate management. Other plug-ins may implement attaching several
kinds of items, or use several special tools, or some combination. An implementation of a group usually will
have a lot of code in common and is most easily installed and configured by the user as a single entity.
Thus, plug-ins are implemented as a collection of translators, attachers and special tools.

E M S A P I

 E U D O R A

P lug-ins (D L L s/C om ponents)

A C M E In c.
P lu g-in

W idgets-R -U s
P lu g-in

F igure 1: E udora and tw o plug-ins

1 2 1 2 3

E ach p lug -in can have
m ultip le transla tors,
a ttachers, o r specia l too ls.

M ultip le p lug -in s can be
loaded sim u ltaneously
w ith in E udora .

The E M S A P I provides the
link betw een p lug -in s and
E udora .

An individual translator in a plug-in performs one specific transformation on a translatable object. For
example it authenticates the object, or converts a graphic from JPEG to GIF format. A plug-in is a
collection of related translators. Plug-ins are implemented as a DLL for Windows and as a Component on
the Macintosh.

2.1. Plug-in entry points
Each plug-in has a set of entry points or functions that are called by Eudora:

ems_plugin_version Is called first to get the API version number the plug-in uses and
thereby the calling conventions for the other functions.
(Required)

ems_plugin_init Is always called second and only once as the plug-in is loaded during
Eudora startup. (Required)

ems_plugin_finish Called when Eudora exits. (Required)

ems_free (Windows only) Called by Eudora to free data structures passed from
the plug-in to Eudora. (Optional)

ems_plugin_config Used to configure user-defined settings, called when the “Settings…”
button is clicked while the plug-in is highlighted. (Optional)

Eudora EMS API Page 7

2.2. Translator entry points
ems_translator_info Supplies basic information about individual translators. Is called once

for each translator on start up and at other times when specific items
(like the icon) are needed for an individual translator. (Optional*)

ems_can_translate Called to check whether a translation can be performed on a
particular item, before the actual translation is attempted.

ems_translate_file Called to actually perform the translation.

ems_queued_properties For Q4-transmission translators, this allows user-defined properties to
be set on a per-message basis. This function is called when the user
clicks the translator icon while composing a message. (Optional)

2.3. Attacher entry points
ems_attacher_info Called once on startup. This will add items to the Message->

Attachments sub-menu (Optional*)

ems_attacher_hook When the Message->Attachments sub-menu item is called, this hook
will be called to allow a file to be attached to a message.

2.4. Special Tools entry points
ems_special_info Called once on startup. This will add items to the Special -> sub

menu. (Optional*)

ems_special_hook When the Special-> sub menu item is called.

Some of these functions are optional, but every translator must supply a minimal set of these functions. The
minimal set includes ems_plugin_version, ems_plugin_init, ems_plugin_finish. Except
ems_plugin_init, ems_plugin_finish, and ems_plugin_config all of these functions take an
argument which specifies which of the translators, attachers or special tools in the plug-in is being called.
For example, if a plug-in was loaded that performs compression/decompression and Eudora wanted to call
the data compression translator, it would call ems_translate_file with the ID of the compression
translator. If it wanted to perform decompression it would also call ems_translate_file, but it would
pass the ID of the decompression translator instead.

* At least one of ems_translator_info, ems_attacher_info or ems_special_info must be
defined. In other words, this plug-in must have some actions associated with it.

2.5. Linking, loading and IDs
For Windows, a plug-in is implemented as a DLL. The above entry points are implemented as a set of
functions in the DLL. A standard C calling convention is used, and the DLL is located by searching a
specific set of directories (see section 8). The actual implementation may be in C, C++ or other, as long as
the standard C calling convention is followed.

On the Macintosh, the EMS API makes use of the Component Manager to load and link the plug-in into
Eudora. The calling convention thus conforms with what the Component Manager specifies. It is basically
the stack-based Pascal calling convention. The details involved in implementing this can be skimmed over
by using glue code supplied in the SDK. Plug-ins can be written in any language as long as the calling

Eudora EMS API Page 8

convention is adhered to. Plug-ins may also be implemented from code fragments or shared libraries with
some small amount of glue code. Exact details of what is needed to build a component are given in section
six.

On the Macintosh it is also possible to statically link a plug-in with a test driver, the source for which is
included in the SDK. It may be easier to debug plug-ins with the test driver since some of the Macintosh
tools don’t work as well on components.

Each plug-in must have a distinct ID number. To ensure these ID numbers are unique they are allocated by
QUALCOMM. To obtain a unique ID, send a blank message to <emsapi-ids@qualcomm.com>. A list of
several IDs will be returned by an auto-responder. The auto-responder doesn’t actually track IDs by
individuals or organization, it just returns monotonically increasing integers, so it’s OK to request a second
or third set if needed.

2.6. Stored State and access to other files
Plug-ins may permanently store configuration and other information as needed. Eudora provides no
mechanism for this, but does suggest the name of a directory so plug-in configuration can track Eudora
settings for users with multiple settings files. Basically, plug-ins should store state like any other application
using a Preferences file or a .INI file. Shared configurations can be dealt with on a case-by-case basis
depending on what is appropriate for the plug-in.

Plug-ins may also freely access other data and files and may share data with other applications. An example
of this might be a set of dictionaries for language translation. Translators may also make accesses across the
network. An example of this might be to access to directory service to get certificates.

2.7. Version numbering
There are version numbers for three things related to the EMS API. As Eudora changes it will have different
version numbers. However every version of Eudora will not result in a change in the API definition so the
API has its own version number. It is a single integer. It is also possible that Eudora will support multiple
API versions for backward compatibility. The third version number is associated with the SDK. It may
change independent of the Eudora version number. Both the Eudora version and the SDK version will
change when the API version number changes. The current status is:

API: Current version is 4

Eudora: Macintosh versions 4.0 and higher support API version 1, version 3, version 4

Windows versions 4.0 and higher support API version 2, version 3, version 4

SDK: We provide an SDK for both the Macintosh and Windows on our web site at
<http://www.eudora.com/developers/emsapi/>

Eudora EMS API Page 9

3. Translator Object Types and Formats
This section discusses the scheme used to describe the types and data formats of the input and output data
that is actually translated. Most of the discussion centers on MIME, the Internet standard for encoding,
structuring and typing data in Internet email.

The rest of the section is related to MIME. The translators use MIME in two ways. The first use of MIME
is used to describe the type of the input and output data for a translator. All objects that are operated on via
the EMS API have a MIME type. A translator usually determines what messages and message entities to
operate on by the MIME. A translator must always specify the MIME type of its output when it returns the
result to Eudora. These MIME types are passed to and from Eudora as parameters in the API entry point
functions. Examples of types are text/plain for plain text, image/gif for a GIF image, and
multipart/signed for an RFC-1847-style signed message. This pairing is referred to as the MIME type
(e.g. “text”) and the MIME subtype (e.g. “plain”) when passed across the API.

The second use of MIME is for the format of the actual data. This is the data that is passed across the API
by referencing a file name. The translated data can be in one of two basic formats, the native local format
(e.g., plain text in the Macintosh character set or an unencoded GIF image), or in full MIME format (e.g.,
with MIME headers, canonicalization, and transfer encoding). It is expected that most translators need only
operate on data in the local format, and thus do not need to do any MIME processing assigning and
checking the MIME types as described above.

Plug-ins that operate on multipart MIME entities are the ones that will need to have their input and output
data in MIME format. That is, the API uses standard MIME format to represent multipart MIME entities.
One example of a plug-in that will require MIME format data is one that implements RFC-1847-style
signed messages, since that format uses a two-part entity. One part is the signed data, and a second part is
the signature. Another example is a plug-in that wishes to compress (or otherwise process) the full outgoing
message including attachments.

3.1. Translated object types
As mentioned above, each entity operated on by plug-ins is described by a MIME type, and this type is
passed across the API in parameters to the entry point functions. (The term entity is used to refer to a
message or a sub-part of a MIME message) The types are used by the translators to determine whether they
should run on some data or not.

The EMS API defines a C data structure for passing MIME type information across the API to describe the
data object being operated on. Source code for managing the data structure is available in the SDK.

When performing a translation, the plug-in will check the MIME type of the input data. This is usually the
main criteria for the translator to decide whether or not it will perform the translation. The type is passed in
by Eudora, so the translator doesn’t actually have to examine the data to be translated. When the translation
is complete, the translator must return the MIME type of the result to Eudora. Except for translators invoked
in the on-request context, the MIME types for the input and output must be different (even if just by a
MIME parameter) to avoid circular translations.

3.2. Translated object data formats
This document has referred to the term MIME entity. This term comes from the MIME standard. In the
simplest case a MIME entity is just an email message. The MIME standard assumes that a message with no
MIME headers at all is a simple MIME entity of type text/plain with no transfer encoding or other
MIME features. A multipart MIME message is also considered a MIME entity, as are each of its sub-parts.

Eudora EMS API Page 10

If a message has nested multiparts, then each multipart is also a MIME entity. Basically a nested multipart
MIME message can be viewed as having a tree structure, and every node in the tree (leaf or branch) is
considered a MIME entity.

Plug-ins have the ability in certain contexts to translate any MIME entity in the structure of the message into
a completely different MIME entity. A leaf node could be translated so that it is a multi-level, nested
multipart entity. A message that has deeply nested MIME structure can be translated into a single text part.

It is expected that most translations will work on simple leaf MIME entities, those that do not have a top
level type of multipart. In certain contexts, Eudora performs the traversal of the nested MIME structure
and makes the data in the leaves available for translation so the plug-in author doesn’t have to perform the
traversal.

As is described in more detail later, each translator may be offered each MIME entity in the MIME
structure to translate. It usually decides based on the MIME type whether or not it wishes to translate the
entity. If the entity being translated is a multipart entity, then the data must be in MIME format. If it decides
to translate the entity, the data is delivered in one of two formats as described in the next section.

3.3. Translated object data formats - the local non-MIME format
As mentioned earlier, data for a translator can be in one of two formats, one of which is the local or native
non-MIME format. The local format is just the plain data as it normally is for the particular platform.
Examples are Macintosh text (in Macintosh character set with CR line endings), DOS text, a JPEG file, or a
Word document. Data in MIME format has additional headers and encoding as described below.

The actual format for each MIME entity is described by the standard or description for that MIME type
(e.g., an image/gif entity will be described by the MIME standard for that type, which most likely
references the standard for GIF images). Text formats however pose an unusual problem because they vary
significantly between the Macintosh, Windows, etc. and there are no MIME documents describing local text
formats. To solve this problem the translation API defines a type tag for the local text format for each
platform.

On the Macintosh, the MIME type for text in the local format is application/x-mac-text.
Application/x-mac-text has CR as the end of line and is in the Macintosh character set. The MIME
type returned by an on-request text translator should be the same application/x-mac-text.

For Windows, text in the local format is of type text/plain, is in the ISO-8859-1 character set and has
lines ending in CRLF. Similarly, the text returned by a translator should be in the same format and the
MIME type should be text/plain.

At present, enriched text is removed before translation in the on-request context, but not other contexts.

The above is perhaps a complicated way of saying that on the Macintosh a simple text translator should
accept and generate data of type application/x-mac-text and it can operate on data in standard
Macintosh formats. Similarly for Windows it should accept and generate data of type text/plain.

3.4. Translated object formats - the MIME Canonical Format
MIME formatted data for translation is provided in all the translation contexts, except the on-request
context, where the data is limited to text. When MIME formatted data is provided, Eudora supplies the data
as follows:

Eudora EMS API Page 11

• Converts the base data objects to their canonical format as defined by its MIME type and subtype. The
most common canonicalization is to convert text so the line endings are CRLF and the character set to a
standard one like ISO-8859-1.

• It applies content transfer encoding so the result is 7-bit clean limited line length data. This is done
using Eudora’s usual algorithm for determining which transfer encoding is best. Eudora uses quoted-
printable transfer encoding for text data and base-64 for non-text data. Whether the data is text or not is
determined by the MIME type mapping settings in Eudora.

• It assembles the MIME entity with the appropriate MIME headers. These consist of the MIME-

Version, Content-type, and Content-transfer-encoding headers with appropriate
parameters, message part boundaries, etc.

Translators that return full MIME should return similar entities. The MIME-version header should always
be included with one exception. The MIME version header should not be output by a translator for
translations on outgoing messages on the Macintosh. Macintosh Eudora always assumes MIME version 1
and generates the header for its outgoing messages. If the Content-type is omitted text/plain will be
assumed, and if the Content-transfer-encoding is omitted, 7bit will be assumed. Note that the
entities Eudora supplies will always be encoded for 7bit transport, however the translator can return the
entity with any standard transfer encoding as long as it is tagged correctly. Other MIME-related
Content-* headers can be included.

Below is an example of text in the MIME format. The lines would end with CRLF and the data would be in
this format no matter if the translation is being done on the Macintosh or Windows. If it were not in MIME
format it would not have the extra header, nor the quoted printable transfer encoding, and the character set
might not be ISO-8859-1.

Content-type: text/plain; charset=iso-8859-1
Content-transfer-encoding: quoted-printable

This is the message text and this =e1 is an a with an accent.

The API uses the tag text/plain for the local format for Windows because the character set and end of
line character are the same as the Internet standard. The above entity in Windows local format would be as
follows and has no header or transfer encoding.

This is the message text and this is á an a with an accent.

Eudora EMS API Page 12

4. Display in the User Interface
Plug-ins and translators are displayed in the user interface in several places. On the Mac all plug-ins are
shown in the About Extended Message Services dialog box found under the apple menu. On Windows the
Message Plug-in Settings dialog is accessible under the Special menu.

Translators that can operate in the ON_REQUEST context are displayed as menu items. They are enabled
for received messages, messages under composition, and most any editable text field found throughout
Eudora. When invoked they are performed immediately on the current text field (eg. a composition
message, a received message, etc.). These menu items are only active when the user’s focus is in an editable
text field and should not be used a general hook for adding menus to Eudora.

Translations that can be operated in the Q4-transmission and Q4-completion context are displayed as either
checkable icons (Macintosh) or as state icons(Windows) in the toolbar of the message composition window.
While the user is composing the message, they may be selected and deselected. Q4-completion icons will
have a light gray outline around them in Windows.

The on-request translators may return a text message. If this is returned it will be displayed as part of the
message.

Some translators operate without any user interface. These are translators that work in the on-arrival
context. They process messages as they are down-loaded from the mail server.

Attachers appear in the Message -> Attach sub-menu as menu items with the description on the menu. They
are always enabled when a new message is being composed, it simply attaches the returned files to the
message. When there is no new message in front, the Windows version will create a new message, then call
the attacher.

Special Tools appear in the Tool Menu on Windows and the Special Menu on Mac as menu items with the
description on the menu. They are always enabled.

ON_REQUEST, Attachers and Special Tool Translators can appear on the main toolbar by setting the flag
EMSF_TOOLBAR_PRESENCE which will automatically add them when Eudora starts up.

Eudora EMS API Page 13

5. The Translation Process
A translator supplies two functions that are used in the translation process itself, ems_can_translate and
ems_translate_file.

Translations may be performed in different contexts. These contexts are different events that happen to a
message, such as its arrival, display, or transmission. The details for each are described below. A given
translator can work in any number of these contexts. When a translator is called by Eudora the context it is
being called in is specified by a parameter so it may behave differently in different contexts.

When Eudora processes a message for translation the function ems_can_translate is called for each
potentially translatable MIME entity before actual translation is attempted. In some cases this is for the sake
of efficiency since ems_can_translate is more efficient than the full translation function. The function
ems_can_translate also has a special return code, namely EMSR_NOT_NOW, to delay further processing
of a message to a later time. The main purpose of EMSR_NOT_NOW is for a translator to delay all further
MIME parsing and translation. This may occur because the translator works on unparsed MIME entities. It
may also wish to preempt translation in a non-interactive context so the translation can be performed later in
a context where interaction with the user is allowed. Note that on-display translators are required to return
EMSR_NOT_NOW in the on-arrival context.

The function ems_translate_file actually performs the translation. It is passed a large number of
parameters, including the input MIME type, the location of the data to translate, the address of a progress
reporting function, and the e-mail addresses on the message. Exact details are given in Section 8.

5.1. On-arrival
The on-arrival context processes messages as they are down-loaded to Eudora from the mail server. That is,
when Eudora is talking to the POP server. In general, translators in this context should not interact with the
user or cause long delays (more than a few seconds) or they will disrupt the POP protocol session with the
mail server. This context is useful for automatically processing incoming messages. It is also necessary to
use this context so that translations can be performed in the on-display context.

The actual algorithm used by Eudora to call translators is integrated with Eudora’s MIME parsing. It
involves a pre-order traversal of the MIME structure of the message (intermediate nodes are processed
before the leaves). As each MIME entity is visited the ems_can_translate function of each translator is
called on it. If it returns EMSR_CANT_TRANS, the next translator is tried. The list of translators that are tried
are the ones that indicate they work in the on-arrival context and are ordered by type as listed below. If
ems_can_translate returns EMSR_NOW, the translation is immediately performed and the output of the
translator replaces the MIME entity that was translated. After a translation is made, the entire process of
checking each translator in the list at each node in the pre-order traversal is started over for that MIME
entity. When a complete pass is made through all translators for an entity without performing any
translation, the MIME parse of the entity is made and its sub-parts are processed. Since most messages are
not multipart and most will not be translated, this usually amounts to a single pass through the potential
translators.

If the ems_can_translate function returns EMSR_NOT_NOW, then all parsing stops and the MIME entity
as it stands is written out for later processing. The entity is written to a file and a link to the file is placed in
the original message. When the user clicks on the link, the translation process is resumed in the on-display
context for the same translator.

Eudora EMS API Page 14

In general, the order of the translations in the on-arrival context is driven by the MIME types in the received
message. When there are ambiguities, the order is by type as follows:

EMST_CERT_MANAGEMENT (first)
EMST_PREPROCESS
EMST_SIGNATURE
EMST_COALESCED
EMST_COMPRESSION
EMST_GRAPHIC_FORMAT
EMST_TEXT_FORMAT
EMST_LANGUAGE (last)

Translations in the on-arrival context should not interact with the user. If they need to interact with the user
they should delay processing until the on-display context by returning EMSR_NOT_NOW. A translator may
also vary the function it performs based on the context in which it is called. For example a signature
verification translator called in the on-arrival context may find it useful to fail silently if it does not have the
certificate needed for verification rather than interrupt the message down-load to prompt for a certificate.

Translators in this context must accept MIME and generate MIME. That is, the EMSF_REQUIRES_MIME and
EMSR_GENERATES_MIME flags are ignored and Eudora treats the translator as if they were set. Thus these
translators must be prepared to remove content transfer encoding, and parse and generate basic MIME
structure.

In the case where the received message is not MIME (missing the “MIME-Version” header), Eudora will
convert the message to MIME. This is done by adding the MIME-Version and Content-Type headers, using
the type text/plain. This transformation happens before any translation is done to the message, which means
your translator cannot distinguish between non-MIME messages which have been coerced into MIME and
messages originally MIME.

5.2. On-display
Translations in the on-display context are performed when a user clicks on a translator icon that appears in a
message body. The translator icon is put in the message body as a result of the ems_can_translate

function called in the on-arrival context returning EMSR_NOT_NOW. When the user clicks on the icon, the
parsing, recursion, and translation on the MIME structure that was begun in the on-arrival context is
resumed. When the traversal is complete the resulting MIME entity is parsed and text parts are displayed to
the user, in the message window. This includes icons for attachments that were part of the original message
or attachments that were generated as part of the translation process. Attachments can also be removed as
part of the translation process.

Important differences between this context and the on-arrival context are that ems_can_translate must
never return EMSR_NOT_NOW and that translations may interact with the user. The on-display context has the
same restriction as the on-arrival context that the input and the output must be MIME format.

When Eudora messages are stored in MIME format, translations in this context may be performed
automatically when the message is displayed - that is when the user clicks on the message index to display a
particular message. There will be no need for the user to click on a translator icon in the message body.

5.3. On-request
On-request translations are those that are performed on the currently displayed message. Translations in this
context are usually the simplest to create.

Translators that work in this context are displayed in a menu item in a sub-menu of the Edit menu. When
the user selects one, the translation is performed on the current message whether it is a received message or
a message under composition. If a section of the message is selected, then only the selection is processed.

Eudora EMS API Page 15

When complete, the translated data replaces the original data and the message is marked as changed.
Translations in this context may be fully interactive. If there is no open current message or the user’s focus
is not in an editable text field, then the menu items for these translations are disabled.

Under Windows, Eudora determines which translators are placed in the Edit menu by calling
ems_can_translate with the MIME type text/plain, and text/html. for each on-request
translator. If the result is EMSR_NOW, the translator will be placed in the menu. On the Macintosh, all on-
request translators are placed in the Edit menu, no MIME type checking is done.

Under Windows, an on-request translators may set the EMSR_REQUIRES_MIME and
EMSR_GENERATES_MIME flags or not – they are ignored. Regardless of these flags the data type will be
text/plain and the line endings will be CRLF and the translator should return the same to Eudora.

On the Macintosh, on-request translators can use the local format (described in section 3.3) if the
EMSR_REQUIRES_MIME or EMSR_GENERATES_MIME flags are set.

If the message is text/html, it will first be offered to the translator as text/html. It can either accept it with
EMSR_NOW or decline it with EMSR_CANT_TRANSLATE. If it is declined, Eudora will convert the message to
text/plain and offer it that way. Either text/plain or text/html can be returned and Eudora will put it back in
the message appropriately. This is not the case for other translation contexts.

5.4. Queue and call on transmission (Q4-transmission)
Translators that work in this context are displayed in the toolbar of the composition windows and may be
selected by the user. They are toggled on and off by clicking a button with the translator’s icon on it
(Macintosh) or by selecting the translation from a drop-down menu (Windows). The translation is actually
performed later when the message is being transmitted to the mail server via SMTP. If a message under
composition is saved and resumed later, the toggled state of all translators working in the Q4-transmission
context will be retained.

Translation in this context must operate on the full MIME structure and must work on the whole message
(must set EMSF_GENERATES_MIME, EMSF_REQUIRES_MIME and EMSF_WHOLE_MESSAGE). Translations
are performed in the reverse of the order listed above for on-arrival translations. This ordering does prevent
certain useful chains of translations from being performed (e.g., first a language translation, then a text
format translation), but this disadvantage is out weighed by it being simpler to implement, and simpler for
the user.

The EMSF_WHOLE_MESSAGE flag indicates a Q4-transmission translator wishes to operate on the whole
message, thus it will not be offered the intermediate nodes for translation. NOTE: This flag is required for
all Q4-transmission translators.

The ems_can_translate function for this context is called after the user clicks the Send/Queue button.
This allows the translator to perform a quick check that the translation will be possible later when the
message is transmitted. If ems_can_translate returns EMSR_CANT_TRANS and an error string, the string
will be displayed to the user, and the message will not be sent or queued. The user has the option of toggling
the translation off or adjusting the condition that caused the translation to fail.

It is possible for the user to queue an incompatible set of translations (e.g., the MIME type output by one
translation is not acceptable input to the next).When this happens the user will receive an error and can then
go back and deselect translations.

Translations in this context may be fully interactive.

Eudora EMS API Page 16

5.5. Queue and call on completion (Q4-completion)
Translators that work in this context are displayed in the toolbar of the composition windows and may be
selected by the user. They are toggled turned on and off by clicking a button with the translator’s icon on it.
The translation is actually performed when the Queue/Send button is clicked on. All Q4-transmission and
Q4-completion translations will occur and the message will become a MIME message attached to the
outgoing message. It will no longer be editable.

Translation in this context must operate on the full MIME structure and must work on the whole message
(must set EMSF_GENERATES_MIME, EMSF_REQUIRES_MIME and EMSF_WHOLE_MESSAGE). Translations
are performed in the reverse of the order listed above for on-arrival translations. This ordering does prevent
certain useful chains of translations from being performed (e.g., first a language translation, then a text
format translation), but this disadvantage is out weighed by it being simpler to implement, and simpler for
the user.

The ems_can_translate function for this context is called after the user clicks the Send/Queue button.
This allows the translator to perform a quick check that the translation will be possible later when the
message is transmitted. If ems_can_translate returns EMSR_CANT_TRANS and an error string, the string
will be displayed to the user, and the message will not be sent or queued. The user has the option of toggling
the translation off or adjusting the condition that caused the translation for fail.

It is possible for the user to queue an incompatible set of translations (e.g., the MIME type output by one
translation is not acceptable input to the next).When this happens the user will receive an error and can then
go back and deselect translations.

Eudora EMS API Page 17

6. Attacher Plug-ins
When a plug-in includes any attachers, there will be a menu item in the Message Ð Attach sub-menu for
each attacher. The total number of attachers in the plug-in is returned in ems_plugin_init. For each
attacher, ems_attacher_info is called. When a user in composing a message, these items will be
enabled. If an attacher menu item is selected, ems_attacher_hook is called, and the plug-in can provide
a UI for selecting or creating file(s) or any special media types.

When Eudora sends an attachment, it determines the MIME type/subtype by either looking up the file
extension in a MIME mapping table (Windows) or looking for specific resources inside Eudora
(Macintosh); see Appendix B for more information. Eudora will handle all processing of making the
attachment a MIME message so it can be sent out over the Internet.

To insure a specific MIME structure of the message, an attacher can create a file that is a fully-formatted
MIME part, and identify it with the .MSG suffix on Windows, or the ‘MiME’ type with ‘CSOm’ creator on
the Mac. These files must be complete MIME parts, all encoding, canonicalization, MIME headers, etc.
must be present in the file. Eudora will not do any further processing on the file, it will simply put it on the
wire as it’s sending out the message. This allows the user to create any MIME format, including complex,
nested multipart MIME structure. Having this control also allows the attacher to specify the disposition as
inline versus attachment via the ‘Content-Disposition’ header [DISP].

Eudora EMS API Page 18

7. Special Tools Plug-ins
When Special Tools exist within a plug-in, they will be placed on the Tools menu in Windows and on the
Special Menu on the Mac. These items will always be enabled and available to the user. The number of
Special Tools within a plug-in is returned in ems_plugin_init. For each Special Tool,
ems_special_info is called. If a Special Tool item is selected, ems_special_hook is called, and the
plug-in can do as it likes. Eudora will wait until the ems_special_hook function returns.

Eudora EMS API Page 19

8. API Reference
This section describes in full detail the calling interface, constants and related data structures. These
definitions are the same as found in the include emsapi-mac.h and ems-win.h. The basic data items and
their semantics for the API do not vary between the Macintosh and Windows platforms, but the function
declarations and data formats do vary. Having this variance between platforms makes the API simpler and
less abstract for each platform, and also increases its efficiency. In the following sections both the
Macintosh and Windows declarations are shown.

For both the Mac and Windows platforms, header files, skeleton source code, and samples are part of the
SDK. In particular, this should help with some of the complexity in working with the Macintosh Component
manager. The author should be able to create a plug-in by creating the necessary C functions and some
associated resources.

8.1. Constants
The first three letters, EMS, identify EMS API-related constants. The fourth letter groups related constants.
All constants should be stored as a long (32 bits). The constants are identical on all platforms.

Return codes report the general success or failure of a translation and are not intended to express all possible
results of a translation. Plug-ins can also pass text messages back to Eudora to be displayed to the user.

/* ----- Return codes --- store as a long --------------------- */
#define EMSR_OK (0L) /* The translation operation succeeded /
#define EMSR_UNKNOWN_FAIL (1L) /* Failed for unspecified reason */
#define EMSR_CANT_TRANS (2L) /* Don’t know how to translate this */
#define EMSR_INVALID_TRANS (3L) /* The translator ID given was invalid /
#define EMSR_NO_ENTRY (4L) /* The value requested doesn’t exist */
#define EMSR_NO_INPUT_FILE (5L) /* Couldn’t find input file */
#define EMSR_CANT_CREATE (6L) /* Couldn’t create the output file */
#define EMSR_TRANS_FAILED (7L) /* The translation failed. */
#define EMSR_INVALID (8L) /* Invalid argument(s) given */
#define EMSR_NOT_NOW (9L) /* Translation can be done not in current
 context */
#define EMSR_NOW (10L) /* Indicates translation can be performed
 right away */
#define EMSR_ABORTED (11L) /* Translation was aborted by user */
#define EMSR_DATA_UNCHANGED (12L) /* Trans OK, data was not changed */

Every translator (not attachers, nor special tools) must be one of the following types. The type is used to
determine the ordering of translations in certain contexts when ambiguities arise (see the previous section on
The Translation Process). When, in a particular plug-in, translators of type EMST_SIGNATURE and
EMST_PREPROCESS are selected together in the EMSF_Q4_TRANSMISSION or EMSF_Q4_COMPLETION
context, and a translator of type EMST_COALESCED is available it will be called instead of the two
translators. Translators of type EMST_COALESCED should not supply an icon if it is desired that they not be
displayed and selectable on the composition window. Basically the translation types are used for ordering
and grouping the translations and for nothing else.

/* ----- Translator types --- store as a long ---------------------------- */
#define EMST_NO_TYPE (-1L)
#define EMST_LANGUAGE (0x10L)
#define EMST_TEXT_FORMAT (0x20L)
#define EMST_GRAPHIC_FORMAT (0x30L)
#define EMST_COMPRESSION (0x40L)
#define EMST_COALESCED (0x50L)
#define EMST_SIGNATURE (0x60L)
#define EMST_PREPROCESS (0x70L)
#define EMST_CERT_MANAGEMENT (0x80L)

The following flags specify critical information about a translator. They specify which context it may
operate in, whether or not it can be called on the whole message or not, and the format of the input and

Eudora EMS API Page 20

output data. Eudora uses these flags to decide when to call the translator, and how to format and process the
input and output data from the translator.

/* ----- Translator info flags and contexts --- store as a long ---------- */
/* Used both as bit flags and as constants */
#define EMSF_ON_ARRIVAL (0x0001L) /* Call on message arrivial */
#define EMSF_ON_DISPLAY (0x0002L) /* Call when user views message */
#define EMSF_ON_REQUEST (0x0004L) /* Call when selected from menu */
#define EMSF_Q4_COMPLETION (0x0008L) /* Queue and call on complete
 composition of a message */
#define EMSF_Q4_TRANSMISSION (0x0010L) /* Queue and call on transmission
 of a message */
#define EMSF_WHOLE_MESSAGE (0x0200L) /* Works on the whole message even if
 it has sub-parts. (e.g. signature) */
#define EMSF_REQUIRES_MIME (0x0400L) /* Items presented for translation
 should be MIME entities with
 canonical end of line representation,
 proper transfer encoding
 and headers */
#define EMSF_GENERATES_MIME (0x0800L) /* Data produced will be MIME format */
#define EMSF_ALL_HEADERS (0x1000L) /* All headers in & out of trans when
 MIME format is used */
#define EMSF_BASIC_HEADERS (0x2000L) /* Just the basic headers */

#define EMSF_DEFAULT_Q_ON (0x4000L) /* Causes queued translation to be on
 for a new message by default */
#define EMSF_TOOLBAR_PRESENCE(0x8000L) /* Automattically appear on the Toolbar when

 Eudora starts up*/
#define EMSF_ALL_TEXT (0x10000L)/* ON_REQUEST WANTS WHOLE MESSAGE */

/* all other flag bits in the long are RESERVED and may not be used */

The final following constants define the API version number, the component type used on the Macintosh,
and the out_codes that should be returned from ems_translate when called on a translator of type
EMST_SIGNATURE. The component type goes in the thng resource of the component.

/* ----- The version of the API defined by this include file ------------- */
#define EMS_VERSION (4) /* Used in plug-in init */
#define EMS_COMPONENT ’EuTL’ /* Macintosh component type */

8.2. Macintosh data structures
/* ----- MIME Params ---------------------------- */
typedef struct emsMIMEparamS *emsMIMEParamP, **emsMIMEparamH;
typedef struct emsMIMEparamS {

long size;
Str63 name; /* MIME parameter name */
Handle value; /* handle size determines string length */

 emsMIMEparamH next; /* Handle for next param in list */
} emsMIMEparam;

/* ----- MIME Data ----------------------------- */
typedef struct emsMIMEtypeS *emsMIMEtypeP, **emsMIMEtypeH;
typedef struct emsMIMEtypeS {

long size;
Str63 mimeVersion; /* MIME-Version: header */
Str63 mimeType; /* Top-level MIME type: text,message...*/
Str63 subType; /* sub-type */
emsMIMEparamH params; /* Handle to first parameter in list */
Str63 contentDisp; /* Content-Disposition */
emsMIMEparamH contentParams; /* Handle to first parameter in list */

} emsMIMEtype;

/* ----- User Address ------------------------- */
typedef struct emsAddressS *emsAddressP, **emsAddressH;
typedef struct emsAddressS {

long size; /* Size of this data structure */
StringHandle address; /* Optional directory for config file */
StringHandle realname; /* Users full name from Eudora config */
emsAddressH next; /* Linked list of addresses */

} emsAddress;

/* ----- Header Data ---------------------------- */
typedef struct emsHeaderDataS *emsHeaderDataP, **emsHeaderDataH;

Eudora EMS API Page 21

typedef struct emsHeaderDataS {
long size; /* Size of this data structure */
emsAddressH to; /* To Header */
emsAddressH from; /* From Header */
StringPtr *subject; /* Subject Header */
emsAddressH cc; /* cc Header */
emsAddressH bcc; /* bcc Header */
Handle rawHeaders; /* The 822 headers */

} emsHeaderData;

/* ----- How Eudora is configured ------------- */
typedef struct emsMailConfigS *emsMailConfigP, **emsMailConfigH;
typedef struct emsMailConfigS {

long size; /* Size of this data structure */
FSSpec configDir; /* Optional directory for config file */
emsAddress userAddr; /* Current users address */

} emsMailConfig;

/* ----- Plugin Info -------------------------- */
typedef struct emsPluginInfoS *emsPluginInfoP, **emsPluginInfoH;
typedef struct emsPluginInfoS {

long size; /* Size of this data structure */
long id; /* Place to return unique plugin id */
long numTrans; /* Place to return num of translators */
long numAttachers; /* Place to return num of attach hooks */
long numSpecials; /* Place to return num of special hooks */
StringHandle desc; /* Return for string description of plugin */
Handle icon; /* Return for plugin icon data */

} emsPluginInfo;

/* ----- Translator Info --------------------- */
typedef struct emsTranslatorS *emsTranslatorP, **emsTranslatorH;
typedef struct emsTranslatorS {

long size; /* Size of this data structure */
long id; /* ID of translator to get info for */
long type; /* translator type, e.g., EMST_xxx */
unsigned long flags; /* translator flags */
StringHandle desc; /* translator string description */
Handle icon; /* translator icon data */
StringHandle properties; /* Properties for queued translations */

} emsTranslator;

/* ----- Menu Item Info --------------------- */
typedef struct emsMenuS *emsMenuP, **emsMenuH;
typedef struct emsMenuS {

long size; /* Size of this data structure */
long id; /* ID of menu item to get info for */
StringHandle desc; /* translator string description */
Handle icon; /* translator icon data */

 long flags; /* any special flags*/
} emsMenu;

/* ----- Translation Data -------------------- */
typedef struct emsDataFileS *emsDataFileP, **emsDataFileH;
typedef struct emsDataFileS {

long size; /* Size of this data structure */
long context;
emsMIMEtypeH mimeInfo; /* MIME type of data to check */
emsHeaderDataP header;
FSSpec file; /* The input file name */

} emsDataFile;

/* ----- Resulting Status Data -------------- */
typedef struct emsResultStatusS *emsResultStatusP, **emsResultStatusH;
typedef struct emsResultStatusS {

long size; /* Size of this data structure */
StringHandle desc; /* Returned string for display with the result */
StringHandle error; /* Place to return string with error message */
long code; /* Return for translator-specific result code */

} emsResultStatus;

/* ----- Progress Data ---------------------------- */
typedef struct emsProgressDataS *emsProgressDataP, **emsProgressDataH;

Eudora EMS API Page 22

typedef struct emsProgressDataS {
long size; /* Size of this data structure */
long value; /* Range of Progress, percent complete */
StringPtr message; /* Progress Message */

} emsProgressData;

On the Macintosh, strings passed from a translator to Eudora (such as descriptions, error messages and
email addresses) are Pascal strings. Eudora will pass a pointer to the location where the Handle to the
string should be returned. The translator must allocate this Handle with NewHandle() so that Eudora can
free it with DisposeHandle().

File path names are not used. Instead Eudora passes a pointer to an FSSpec on the stack. (Translators never
return file names to Eudora).

The structures representing a MIME type are also Handles allocated with NewHandle(). Limited-length
Pascal strings are used for all components of the MIME type, except for parameter values. The parameter
value is a Handle to a string the length of which is determined by the size of the Handle. The parameter
value is not a Pascal string because its length can potentially exceed that of a Pascal string. It is also not
NULL-terminated as the length comes from the handle size.

When Eudora passes a pointer to a location in which it expects data to be returned by a translator, it may
pass NULL. Translators must check that the pointer to the location is not NULL before placing a value in it.

Eudora EMS API Page 23

8.3. Windows data structures
/* ----- MIME Params ---------------------------- */
typedef struct emsMIMEparamS FAR*emsMIMEParamP;
typedef struct emsMIMEparamS {

long size;
LPSTR name; /* Mime parameter name (e.g., charset) */
LPSTR value; /* param value (e.g. us-ascii) */
emsMIMEParamP next; /* Linked list of parameters */

} emsMIMEparam;

/* ----- MIME Info ---------------------------- */
typedef struct emsMIMEtypeS FAR*emsMIMEtypeP;
typedef struct emsMIMEtypeS {

long size;
LPSTR version; /* The MIME-Version header */
LPSTR type; /* Top-level MIME type */
LPSTR subType; /* sub-type */
emsMIMEParamP params; /* MIME parameter list */
LPSTR contentDisp; /* Content-Disposition */
emsMIMEParamP contentParams; /* Handle to first parameter in list */

} emsMIMEtype;

/* ----- User Address ---------------------------- */
typedef struct emsAddressS FAR*emsAddressP;
typedef struct emsAddressS {

long size; /* Size of this data structure */
LPSTR address; /* Optional directory for config file */
LPSTR realname; /* Users full name from Eudora config */
emsAddressP next; /* Linked list of addresses */

} emsAddress;

/* ----- Header Data ---------------------------- */
typedef struct emsHeaderDataS FAR*emsHeaderDataP;
typedef struct emsHeaderDataS {

long size; /* Size of this data structure */
emsAddressP to; /* To Header */
emsAddressP from; /* From Header */
LPSTR subject; /* Subject Header */
emsAddressP cc; /* cc Header */
emsAddressP bcc; /* bcc Header */
LPSTR rawHeaders; /* The 822 headers */

} emsHeaderData;

/* ----- How Eudora is configured ---------------------------- */
typedef struct emsMailConfigS FAR*emsMailConfigP;
typedef struct emsMailConfigS {

long size; /* Size of this data structure */
HWND FAR*eudoraWnd; /* Eudora’s main window */
LPSTR configDir; /* Optional directory for config file */
emsAddress userAddr; /* Users full name from Eudora config */

} emsMailConfig;

/* ----- Plugin Info ---------------------------- */
typedef struct emsPluginInfoS FAR*emsPluginInfoP;
typedef struct emsPluginInfoS {

long size; /* Size of this data structure */
long numTrans; /* Place to return num of translators */
long numAttachers; /* Place to return num of attach hooks */
long numSpecials; /* Place to return num of special hooks */
LPSTR desc; /* Return for string description of plugin */
long id; /* Place to return unique plugin id */
HICON FAR*icon; /* Return for plugin icon data */

} emsPluginInfo;

/* ----- Translator Info ---------------------------- */
typedef struct emsTranslatorS FAR*emsTranslatorP;
typedef struct emsTranslatorS {

long size; /* Size of this data structure */
long id; /* ID of translator to get info for */
long type; /* translator type, e.g., EMST_xxx */
ULONG flags; /* translator flags */
LPSTR desc; /* translator string description */
HICON FAR*icon; /* translator icon data */

Eudora EMS API Page 24

LPSTR properties; /* Properties for queued translations */
} emsTranslator;

/* ----- Menu Item Info ---------------------------- */
typedef struct emsMenuS FAR*emsMenuP;
typedef struct emsMenuS {

long size; /* Size of this data structure */
long id; /* ID of translator to get info for */
LPSTR desc; /* translator string description */
HICON FAR*icon; /* Return for plugin icon data */
long flags; /* any special flags*/

} emsMenu;

/* ----- Translation Data ---------------------------- */
typedef struct emsDataFileS FAR*emsDataFileP;
typedef struct emsDataFileS {

long size; /* Size of this data structure */
long context;
emsMIMEtypeP info; /* MIME type of data to check */
emsHeaderDataP header;
LPSTR fileName; /* The input file name */

} emsDataFile;

/* ----- Resulting Status Data ---------------------------- */
typedef struct emsResultStatusS FAR*emsResultStatusP;
typedef struct emsResultStatusS {

long size; /* Size of this data structure */
LPSTR desc; /* Returned string for display with the result */
LPSTR error; /* Place to return string with error message */
long code; /* Return for translator-specific result code */

} emsResultStatus;

/* ----- Progress Data ---------------------------- */
typedef struct emsProgressDataS FAR* emsProgressDataP;
typedef struct emsProgressDataS {

long size; /* Size of this data structure */
long value; /* Range of Progress, percent complete */
LPSTR message; /* Progress Message */

} emsProgressData;

For Windows, ASCII strings for descriptions, error messages, file names, addresses and components of the
MIME type structure are all NULL-terminated strings. They may be allocated any way the plug-in author
wishes and is referred to as the plug-in’s internal allocator. Eudora will call ems_free as supplied by the
plug-in to free the storage when it is finished with the data.

The icons returned by ems_plugin_init for the whole plug-in should be a 32x32 HICON. The icons for
the individual translators should be a 16x16 HICON (creating the 16x16 HICON may involve creating a
HICON and deleting the 32x32 part). All the icons should be allocated with the plug-ins internal allocator so
Eudora can free them by calling ems_free.

When Eudora passes a pointer to a location in which it expects data to be returned by a translator, it may
pass NULL. Translators must check that the pointer is not NULL before placing a value in it.

8.4. Building Macintosh components
As mentioned previously, plug-ins on the Macintosh are implemented as Components. Components are
used, rather than other mechanisms such as Code Fragments, because they work on all Macintosh hardware
from the 68000 to the PowerPC, and on MacOS system 7.0 through current versions. It is also expected
they will be supported in future versions of MacOS. Though creating a component can be complicated, the
SDK provides most of the needed glue source code, and the job should be easier.

In general the plug-in author needs to implement a minimal set of the entry point functions. When the
Component is built the thng resource of the component must have type ‘euTL’. The version number

Eudora EMS API Page 25

specified in the thng resource must be a valid translation API version number. The upper 16 bits can be set
to the value of the constant EMS_VERSION from the API include files. The sub-type resource is not used,
but it must be unique or the translator will not be loaded by the Component Manager. There is currently no
registry for sub-types to guarantee their being unique, but this not expected to be a problem. The author
should make one up of their own. It must not be all lower case letters as those are reserved by Apple. Other
fields of the component resource such as flags, icon, and descriptions are ignored.

The SDK includes two files for building a plug-in. The first, emsapi-mac.h, includes the constants and
data structures listed here. It includes prototypes for the eight functions that are needed. For building the
translator as a component, the file ems-component.c can be used as the component main. It includes the
necessary component manager glue to accept the standard component manager calls as well as the API
calls. When it receives the API calls, it sets up the calling stack frame and then calls the functions which are
proto-typed in emsapi-mac.h. Thus ems-component.c should be compiled as a normal C file and linked
into the component.

In order to compile ems-component.c, the template file usertrans.h must be modified for the plug-in
being authored. A sample is included. It contains two sections. One is the definition of the structure
tlUserGlobals. This is a structure that is passed as the first argument for all the API calls. The translator
can define data it wants to be carried between calls to the API and store it here. This structure is
automatically allocated and managed by the component manager glue in ems-component.c. Also in
usertrans.h are C pre-processor definitions for eight constants that indicate whether an API call is
implemented by the particular plug-in. Each constant should be defined to either true or false.

Eudora looks in a pre-defined set of directories for the Components that are EMS API plug-ins. This is done
at start-up time. Each plug-in discovered is loaded and becomes active. The plug-ins must have a thng
resource as described above or they will not be loaded. For the Macintosh, the paths are:

the folder the Eudora application is in
the sub folder Eudora Stuff of the folder the application is in
the extensions folder in the active system folder

Note that the Eudora folder (where Eudora stores mailboxes and related files, but not the application file) is
not searched for plug-ins!

8.5. Building Windows DLLs
Building a translation DLL is straightforward because all that is needed is a DLL that implements a minimal
subset of the API entry point functions using the standard “C” calling convention.

Eudora looks in a pre-defined set of directories for Windows DLLs that are EMS API plug-ins. This is done
at start-up time. Each plug-in discovered is loaded and becomes active. For Windows the directories are:

The sub-directory “ plugins” of the directory the Eudora .exe file is in
The sub-directory “ plugins” of the mail directory

The fact that a particular DLL is an EMS API DLL is determined by checking that it implements the
ems_plugin_version , ems_plugin_init and one of ems_translator_info,

ems_attacher_info or ems_special_info functions.

When creating icons, Eudora supports a 256 color palette which can be found in the file safety.bmp. Most
paint programs, including Paint Shop Pro and Adobe Photoshop, can use this file to extract the palette. The
reserve entries that shouldn’t be used are indexes 11,12,13, and 14 (first color is index 0). An image may use
a different palette, but its colors will be mapped into Eudora’s regardless if shown in Eudora with the
screen mode set to 256 colors (8 bit color).

Eudora EMS API Page 26

8.6. Efficiency considerations
Most of the functions in a plug-in, except the actual translation, can usually be implemented with a very
small amount of code. These functions are also called much more frequently than the actual translation
functions. Thus in some cases it may be advantageous to implement a translator in two parts, the smaller
part which is loaded in memory all the time, and the larger part which is only loaded when translations are
to be performed.

On the Macintosh, this second part can be another component, a shared library or a code fragment. Nothing
about the API precludes any of these, and it is up to the translator author to decide which is to be used based
on which platforms are to be supported.

A similar strategy may be adopted with Windows where the bulk of the translation function is implemented
as a second DLL that is loaded only when a translation is being performed.

Eudora EMS API Page 27

8.7. Get the API version number that this plug-in implements
Macintosh:

pascal long ems_plugin_version(
short *api_version /* Out: Place to return api version */
);

Windows:
extern "C" long WINAPI ems_plugin_version(
short FAR* api_version /* Out: Place to return api version */
);

Eudora calls this function once when it is loading the plug-in to determine what version of the API it
implements. The API version that should be returned is defined in the API include files as EMS_VERSION.

Macintosh Eudora EMS-API Version

v3.0 v1

v3.1-> v3.x v1, v3

v4.x v1, v3, v4

Windows Eudora EMS-API Version

v3.0 v2

v3.1-> v3.x v2, v3

v4.x v2, v3, v4

On the Macintosh, Eudora checks the version string in the thng resource as it is loading the plug-in.

Parameters

Ï apiVersion

Put the version of the Plug-in’s API.

Return Value

EMSR_OK: All is OK, Eudora will continue loading plug-in.

Anything else: Eudora will unload the plug-in and not call any of its functions.

Eudora EMS API Page 28

8.8. Initialize plug-in and get its basic info
Macintosh:

pascal long ems_plugin_init(
 Handle globals, /* Out: Return for allocated instance structure */
 short eudoraAPIVersion, /* In: the Version of the API Eudora is using */

 emsMailConfigP mailConfig, /* In: Eudora mail configuration */
 emsPluginInfoP pluginInfo /* Out: Return Plugin Information */
);

Windows:
extern "C" long WINAPI ems_plugin_init(

 void FAR * globals, /* Out: Return for allocated instance structure */
 short eudoraAPIVersion, /* In: the Version of the API Eudora is using */

 emsMailConfigP mailConfig, /* In: Eudoras mail configuration */
 emsPluginInfoP pluginInfo /* Out: Return Plugin Information */
);

This function is called once by Eudora as the plug-in is loaded. It is a good place to do plug-in specific
initializations.

Parameters

Ï globals

Return here the pointer to globals that will be passed back in the rest of the functions. This
should be used for global data in the plug-in scope.

For the Macintosh, the globals argument is a handle to a data structure holding the plug-in’s
global state. It is passed to all functions. The Component Manager takes care of carrying this
between calls. If the plug-in is authored using SDK component main, ems-component.c, then
this structure should be defined in usertrans.h.

For Windows, the ems_plugin_init function must allocate this storage and return a pointer
to it in the location pointed to by the globals parameter. Eudora will then pass this pointer into
all other translation API calls for that plug-in-in. It should be de-allocated in the
ems_plug_in_finish function.

Ð eudoraAPIVersion

The version of the API Eudora is using.

mailConfig

Ð size sizeof(emsMailConfig)

Ð eudoraWnd [Windows only]

A pointer to Eudora’s main application window.

Ð configDir

The path of a folder in which is the suggested location for a plug-ins own configuration data.
This will be the users mail directory + the plug-ins directory. This path varies as the Eudora
folder and setting path varies, thus a plug-in’s settings will vary with the Eudora settings if
the user has multiple Eudora set ups on the system.

Eudora EMS API Page 29

Ð userAddr

The userAddr -> realname is the user’s human name as entered in the “Real Name” setting of
the dominant personality. The userAddr -> address is the rfc-822 address the user has
configured as their return address, or if no return address has been configured, it is the POP
account of the dominant personality.

pluginInfo

Ð size sizeof(emsPluginInfo)

Ï numTrans

The total number of translators in this plug-in. Translator IDs range from 1 to numTrans.

Ï numAttachers

The total number of special menu items in this plug-in. IDs range from 1 to numAttachers.

Ï numSpecials

The total number of special menu items in this plug-in. IDs range from 1 to numSpecials.

Ï desc

A short string suitable for a splash or about screen and should include the plug-in version
number. As with all strings returned to Eudora, on the Mac it must be allocated with
NewHandle() and on Windows with the plug-ins internal memory allocator.

Ï id

Each plug-in must have a unique ID number and return it in the plugin_id parameter.
These are available from an email auto-responder by sending a message to
<emsapi-ids@qualcomm.com>. See section 2.3 for more details on the auto-responder.

Ï icon

The icon is shown in the plug-ins about box. On the Macintosh it should be an icon suite
allocated with NewHandle(). For Windows it should be a 32x32 HICON allocated with the
plug-ins own allocator function.

Ï mem_rqmnt

The memory footprint required to run this plugin (Mac).

Return Value

EMSR_OK: All is OK, Eudora will continue loading plug-in.

Anything else: Eudora will unload the plug-in and not call anymore of its functions.

Eudora EMS API Page 30

8.9. Get basic translator info
Macintosh:

pascal long ems_translator_info(
 Handle globals, /* In: Pointer to plugin instance structure */
 emsTranslatorP transInfo /* In/Out: Return Translator Information */
);

Windows:
extern "C" long WINAPI ems_translator_info(
 void FAR * globals, /* In: Pointer to plugin instance structure */
 emsTranslatorP transInfo /* In/Out: Return Translator Information */
);

This function is called for each translator ID by Eudora as it builds its internal lists of translators while it
starts up. Note that any of the pointers to places to return data may be NULL so Eudora does not have to
request all the details at once. Some items like the flags and types will be loaded once initially, while others
such as the icon may be retrieved each time it is needed.

Parameters

ÏÐ globals

The pointer to the globals is passed back for the translator to use.

transInfo

Ð size sizeof(emsTranslator)

Ð id

The id selects the particular translator in the plug-in for which the data is to be returned.

Ï type

This describes what type of translator this is (e.g., EMST_LANGUAGE), it must be one of
the types that start as EMST_ .

Ï flags

The contexts in which a translator can be called. Multiple flags are bitwise or-ed together.

If EMSF_Q4_COMPLETION is set, EMSF_DEFAULT_Q_ON will default the translator to on. Set
EMSF_TOOLBAR_PRESENCE to have this on the main toolbar by default. Set
EMSF_ALL_TEXT in conjunction with EMSF_ON_REQUEST so you’ll get the whole message
instead of just the selection.

Ï desc

The description is a short string that is used for pull-down menu items. It is the only thing
that identifies a translator on the menu so it should include something that indicates which
plug-in it belongs to. An example might be “AcmeTrans Spanish-English."

Ï icon

The icon is used for presentation to the user in several places. On the Macintosh an icon
suite should be returned and should be allocated using NewHandle(). For Windows, the
icon should be a 16x16 HICON allocated with the plug-in’s memory allocator.

Eudora EMS API Page 31

Return Value

EMSR_OK: All is OK, Eudora will continue load up the translator.

Anything else: Error will be logged.

Eudora EMS API Page 32

8.10. Check to see whether a translation can be performed
Macintosh:

pascal long ems_can_translate_file(
 Handle globals, /* In: Pointer to plugin instance structure */
 emsTranslatorP trans, /* In: Translator Info */
 emsDataFileP inTransData, /* In: What to translate */
 emsResultStatusP transStatus /* Out: Translations Status information */
);

Windows:
extern "C" long WINAPI ems_can_translate(
 void FAR * globals, /* In: Pointer to plugin instance structure */
 emsTranslatorP trans, /* In: Translator Info */
 emsDataFileP inTransData, /* In: What to translate */
 emsResultStatusP transStatus /* Out: Translations Status information */
);

This function checks to see whether a data item can be translated. It is called by Eudora before every
translation is attempted and in some cases to determine whether a translation can be performed in a later
context on some data. The trans->id specifies which translator from the plug-in is being called. The
inTransData->context parameter is a long with only one bit set to indicate the context (e.g., :
EMSF_ON_ARRIVAL, or EMSF_Q4_TRANSMISSION). The MIME type of the input data is always provided
in the inTransData parameter.

Parameters

ÏÐ globals

The pointer to the globals is passed back for the translator to use.

trans

Ð size sizeof(emsTranslator)

Ð id

The id selects the particular translator in the plug-in for which the data is to be returned.

Ð properties

Only used when in the EMSF_Q4_TRANSMISSION context. ems_queued_properties can
set this.

inTransData

Ð size sizeof(emsTranslator)

Ð context

This is a long with only one bit set that represents the current context (e.g.,:
EMSF_ON_ARRIVAL, or EMSF_Q4_TRANSMISSION)

Ð info

The MIME type of the input data. This is what should be checked to see if the translator
wants to translate this message.

Eudora EMS API Page 33

header

Ð size sizeof(emsHeaderData)

Ð to

Ð from

Ð subject

Ð cc

Ð bcc

These fields will be populated when EMSF_BASIC_HEADERS is set for the translator. They
are read only.

ÐrawHeaders

This field will be populated with the message headers when EMSF_ALL_HEADERS is set for
the translator. The header is in canonical MIME format, so each line is delimited by a
carriage return-linefeed pair. This is read-only information.

transStatus

Ð size sizeof(emsResultStatus)

Ï error

If error is returned, Eudora will display this in a error dialog. If there was no error, set to
NULL.

Ï code

Return for translator-specific result code

Return Value

EMSR_NOW: The translator will translate this message. ems_translate_file will be called
next.

EMSR_NOT_NOW: The translator will translate this message, but not now. When writing an
ON_DISPLAY translator, when receiving the message ON_ARRIVAL, check to see if this is a
message that this plug-in can translate later, then return EMSR_NOT_NOW so it will be called
in the ON_DISPLAY context.

EMSR_CANT_TRANS: This is not a message that this translator can translate.

Anything else: Failure. This will cause Eudora to put up an error message associated with the
return. Fill in transStatus->error if you want Eudora to display an error. EMSR_OK is
considered a failure return.

Eudora EMS API Page 34

8.11. Performing translations
Macintosh:

pascal long ems_translate_file(
 Handle globals, /* In: Pointer to plugin instance structure */
 emsTranslatorP trans, /* In: Translator Info */
 emsDataFileP inFile, /* In: What to translate */
 emsProgress progress, /* Func to report progress/check for abort */
 emsDataFileP outFile, /* Out: Result of the translation */
 emsResultStatusP transStatus /* Out: Translations Status information */
);

Windows:
extern "C" long WINAPI ems_translate_file(
 void FAR * globals, /* In: Pointer to plugin instance structure */
 emsTranslatorP trans, /* In: Translator Info */
 emsDataFileP inFile, /* In: What to translate */
 emsProgress progress, /* Func to report progress/check for abort */
 emsDataFileP outFile, /* Out: Result of the translation */
 emsResultStatusP transStatus /* Out: Translations Status information */
);

This function performs the actual translation. Note that ems_can_translate is always called by Eudora
before this function is called so the translator author need not make the same checks here. This function will
only be called if ems_can_translate returns EMSR_NOW.

The translator may behave different ways in different contexts. For example when verifying a signature in
the automatic on-display context, it may choose to fail if the certificate necessary to verify is unavailable,
but in the on-request context it may prompt the user to locate the certificate.

For translations on message text, the temporary files are deleted immediately after the translation is
complete. Attachments, however are not deleted until the user removes them. This will change when Eudora
switches to using MIME storage internally.

Parameters

ÏÐ globals

The pointer to the globals is passed back for the translator to use.

trans

Ð size sizeof(emsTranslator)

Ð id

The id selects the particular translator in the plug-in for which the data is to be returned.

Ð properties

Only used when in the EMSF_Q4_TRANSMISSION and EMSF_Q4_COMPLETION context.
ems_queued_properties can set this.

inFile

Ð size sizeof(emsTranslator)

Ð context

This is a long with only one bit set that represents the current context (e.g.,:
EMSF_ON_ARRIVAL, or EMSF_Q4_TRANSMISSION)

Eudora EMS API Page 35

Ð info

The MIME type of the input data. This is what should be checked to see if the translator
wants to translate this message.

header

Ð size sizeof(emsHeaderData)

Ð to

Ð from

Ð subject

Ð cc

Ð bcc

These fields will be populated when EMSF_BASIC_HEADERS is set for the translator.

Ð rawHeaders

This field will be populated with the message headers when EMSF_ALL_HEADERS is set for
the translator.

Ð fileName

The file to be translated. If EMSF_REQUIRES_MIME is set transInfo->flag
ems_translator_info is called, all the headers will be supplied in the file. If this is the
top most part, all the top most headers will be there, if this is a part, only the part’s headers
will be there.

progress

The translator should call the function periodically with an argument between 0 (just begun)
and 100 (complete) to indicate its progress. The translator should check the return value from
the function. If the value is 1 it should abort the translation, and if 0 it should continue. A
translator may display its own progress status and not make use of the one which Eudora
supplies. It should still call the progress function periodically with an argument of -1 to check
for an abort. If the call to the progress function returns 1 indicating abort at any time, the
translation must be aborted. In other words, the abort indication must never be ignored.

outFile

Ð size sizeof(emsTranslator)

Ï info

The translator must always return the correct MIME type of the translation output in this
parameter even if the translator generates MIME. Thus, if the translator is unwrapping a
MIME object it must parse the Content-Type: header and return its value in out_mime.
This also implies that translators that generate MIME will return the resulting output MIME
type in two places, in the actual data and in the out_mime parameter.

Except for translations in the on-request context, the input and output MIME types must be
different in order to avoid an infinite translation loop. This can be done by adding a MIME
parameter to the MIME type to indicate a translation has been performed. A good parameter
name is x-eudora-translated, and a good value is the name of the translator and the
context (e.g., spanish-english-on-arrival). Such a parameter will be ignored by all
other MIME parsing. The translator should check for this parameter in its
ems_can_translate function.

Eudora EMS API Page 36

Ð fileName

An empty output file is created by Eudora, and the name of this file is passed into the
translator. The translator should write its output data into the file. If the translation is
aborted Eudora will clean up and remove this file.

transStatus

Ð size sizeof(emsResultStatus)

Ï desc

If desc is returned it will be displayed in the message window adjacent to the entity just
translated along with some visual indication that it is tied to the entity.

Ï error

If error is returned, Eudora will display this in a error dialog. If there was no error, set to
NULL.

Ï code

For most translations the out_code is ignored, but for translations of type
EMST_SIGNATURE it should be one of the constants EMSC_SIGOK, EMSC_SIGBAD, or
EMSC_SIGUNKNOWN to indicate the status of the signature. Eudora displays the bar that ties
the icon and status message to the translated text differently, depending on the result of the
signature verification.

Return Value

EMSR_OK: The translator will translate this message. ems_translate_file will be called
next.

EMSR_DATA_UNCHANGED: Eudora will leave the original text in the message and ignore the
returned outFile data. Only applicable in the on-request state. In other states, this will be
treated as an error.

Anything else: Failure. This will cause Eudora to put up an error message associated with the
return. Fill in transStatus->error if you want Eudora to display an error.

Eudora EMS API Page 37

8.12. Finish use of a plug-in
Macintosh:

pascal long ems_plugin_finish(
 Handle globals /* In: Pointer to plugin instance structure */
);

Windows:
extern "C" long WINAPI ems_plugin_finish(
 void FAR* globals /* In: Pointer to plugin instance structure */
);

This gives the plug-in a chance to free allocated memory, save state information, etc. Windows translators
should de-allocate the globals memory, but Macintosh translators should not.

Parameters

Ð globals

The pointer to the globals is passed for clean up.

Return Value

EMSR_OK: All is OK.

Anything Else: Eudora will log an error.

Eudora EMS API Page 38

8.13. Free API data structures (Windows only)
extern "C" long WINAPI ems_free(
 void FAR* mem /* Memory to free */
);

This is called by Eudora to free data structures passed from a plug-in to Eudora. This data includes strings,
addresses, and the MIME type data structure. This is not used on the Macintosh since all data on it are
Handles allocated with standard functions.

Parameters

Ð mem

The pointer to the memory is passed for clean up.

Return Value

EMSR_OK: All is OK.

Anything Else: Eudora will log.

Eudora EMS API Page 39

8.14. Plug-in Settings Dialog
Macintosh:
pascal long ems_plugin_config(
 Handle globals, /* In: Pointer to plugin instance structure */
 emsMailConfigP mailConfig /* In: Eudora mail info */
);

Windows:
extern "C" long WINAPI ems_plugin_config(
 void FAR globals, /* In: Pointer to plugin instance structure */
 emsMailConfigP mailConfig /* In: Eudora mail info */
);

The icon and name of the plug-in will appear in a plug-ins “Installed Message Plug-ins” dialog selected
from the “Message Plug-ins Settings” item under the “Special” menu. When the user selects a plug-in and
clicks the “Settings…” button, this function will be called. The plug-in should put up its settings panel,
interact with the user and store the result.

After this function is called, Eudora will call ems_trans_info for each translator to see if flags have
changed.

Parameters

Ð globals

The pointer to the globals is passed back for the translator to use.

mailConfig

Ð configDir

The path of a folder in which is the suggested location for a plug-ins own configuration data.
This will be the users mail directory + the plug-ins directory. This path varies as the Eudora
folder and setting path varies, thus a plug-in’s settings will vary with the Eudora settings if
the user has multiple Eudora set ups on the system.

Ð userAddr

The userAddr -> realname is the user’s human name as entered in the “Real Name” setting of
the dominant personality. The userAddr -> address is the rfc-822 address the user has
configured as their return address, or if no return address has been configured, it is the POP
account of the dominant personality.

Return Value

EMSR_OK: All is OK.

Anything Else: Eudora will log.

Eudora EMS API Page 40

8.15. Queued translation properties
Macintosh:
pascal long ems_queued_properties(
 Handle globals, /* In: Pointer to plugin instance structure */
 emsTranslator trans /* In/Out: The translator */
 long *selected /* In/Out: state of this translator */
);

Windows:
extern "C" long WINAPI ems_queued_properties(
 void FAR * globals, /* In: Pointer to plugin instance structure */
 emsTranslator trans /* In/Out: The translator */
 long *selected /* In/Out: state of this translator */
);

For queued translations the user selects the translation possibly including some parameters about it, at a
different time than the translation is performed. This function allows the parameters to be stored with the
message while it is in the queue.

This function is optional. If it is not supplied, queued translations will be toggled on and off automatically
by Eudora. If this is function is present it will be called when the user clicks the icon in the composition bar.
The function is passed the usual parameters to identify the translator and context. When called, this function
may put up a dialogue and interact with the user.

If the user has selected EMST_PREPROCESS and EMST_SIGNATURE translations, and an EMST_COALESCED
translation is available, it will be called instead as described previously. The properties of the two translators
will be passed to the EMST_COALESCED translator concatenated and separated by a comma. The
EMST_SIGNATURE translator’s parameters will be first. This way nothing special need be done by the
translators a queue time. They each set their parameters as they wish.

Parameters

Ð globals

The pointer to the globals is passed back for the translator to use.

trans

Ð size sizeof(emsTranslator)

Ð id

The id selects the particular translator in the plug-in for which the data is to be returned.

Ï properties

These properties will get stored with the message only if selected is set. It will be passed
back the actual translation is performed in the ems_translate_file function. The string
must be printable ASCII characters from “!” (0x21) to “~” (0x7e) and must not contain any
commas (0x2c). The string must also be less than 100 bytes.

ÏÐ selected

Eudora will pass the current selection state. Return whether is should be selected or not.

Return Value

EMSR_OK: All is OK

Anything Else: Eudora will log.

Eudora EMS API Page 41

8.16. Attachment Menu Items
Macintosh:
pascal long ems_attacher_info(
 Handle globals, /* In: Pointer to plugin instance structure */
 emsMenuP attachMenu /* Out: The menu */
);

Windows:
extern "C" long WINAPI ems_attacher_info(
 void FAR * globals, /* In: Pointer to plugin instance structure */
 emsMenuP attachMenu /* Out: The menu */
);

Eudora will place these menus in the Message Ð Attach sub-menu. When a user selects an attachment
plug-in, the ems_attacher_hook function will be called.

Parameters

Ð globals

The pointer to the globals is passed back for the translator to use.

attachMenu

Ð size sizeof(emsMenu)

Ð id

ID of translator to get information for.

Ï desc

The text that will go in the Message->Attachment-> sub-menu.

Ï icon

A 16x16 icon that will show up in the menu and in the custom toolbar selection. NULL will
display a default icon

Ï flags

Set EMSF_TOOLBAR_PRESENCE so this will show up on the main toolbar on startup.

Return Value

EMSR_OK: All is OK.

Anything Else: Eudora will not load up the item.

Eudora EMS API Page 42

8.17. Attachment Menu Hook
Macintosh:
pascal long ems_attacher_hook(
 Handle globals, /* In: Pointer to plugin instance structure */
 emsMenuP attachMenu, /* In: The menu */
 FSSpec *attachDir, /* In: Location to put attachments */
 long *numAttach, /* Out: Number of files attached */
 emsDataFileH *attachFiles /* Out: Name of files written */
);

Windows:
extern "C" long WINAPI ems_attacher_hook(
 void FAR * globals, /* In: Pointer to plugin instance structure */
 emsMenuP attachMenu, /* In: The menu */
 LPSTR attachDir, /* In: Location to put attachments */
 long * numAttach, /* Out: Number of files attached */
 emsDataFileP ** attachFiles /* Out: Name of files written */
);

When a user selects an attacher, the ems_attacher_hook function will be called. The plug-in can create a
user interface to select or create a file. The path to this file should be returned.

Parameters

Ð globals

The pointer to the globals is passed back for the translator to use.

attachMenu

Ð size sizeof(emsMenu)

Ð id

ID of translator to get information for.

Ï desc

The text that will go in the Message->Attachment-> sub-menu.

Ð attachDir

The suggested directory to put the attached file. If the file is put into this directory, Eudora will
manage when the file is deleted.

Ð numAttach

The number of files that will be attached.

AttachFiles (this is an array of Attached files, so ‘n’ files can be attached)

Ï size sizeof(emsTranslator)

Ï fileName

The file to be attached

Return Value

EMSR_OK: All is OK. AttachFile must contain a path to a file as well.

Eudora EMS API Page 43

Anything Else: Eudora will log an error.

Eudora EMS API Page 44

8.18. Special Menu Items
Macintosh:
pascal long ems_special_info(
 Handle globals, /* In: Pointer to plugin instance structure */
 emsMenuP specialMenu /* Out: The menu */
);

Windows:
extern "C" long WINAPI ems_special_info(
 void FAR * globals, /* In: Pointer to plugin instance structure */
 emsMenuP specialMenu /* Out: The menu */
);

Eudora will place these menus in the Tools (Windows) or Special (Macintosh) menu. When a user selects
an attacher menu item, the ems_special_hook function will be called.

Parameters

Ð globals

The pointer to the globals is passed back for the translator to use.

attachMenu

Ð size sizeof(emsMenu)

Ð id

ID of translator to get information for.

Ï desc

The text that will go in the menu item.

Ï icon

A 16x16 icon that will show up in the menu and in the custom toolbar selection. NULL will
display a default icon.

Ï flags

Set EMSF_TOOLBAR_PRESENCE so this will show up on the main toolbar on startup.

Return Value

EMSR_OK: All is OK.

Anything Else: Eudora will not load up the item.

Eudora EMS API Page 45

8.19. Special Menu Hook
Macintosh:
pascal long ems_special_hook(
 Handle globals, /* In: Pointer to plugin instance structure */
 emsMenuP specialMenu /* In: The menu */
);

Windows:
extern "C" long WINAPI ems_special_hook(
 void FAR * globals, /* In: Pointer to plugin instance structure */
 emsMenuP specialMenu /* In: The menu */
);

This will be called the special menu item is selected by the user.

Parameters

Ð globals

The pointer to the globals is passed back for the translator to use.

attachMenu

Ð size sizeof(emsMenu)

Ð id

ID of translator to get information for.

Return Value

EMSR_OK: All is OK.

Anything Else: Eudora will log an error.

Eudora EMS API Page 46

9. Changes in latest API descriptions

December 1997
• Updated to V4
• EMSF_Q4_COMPLETION supported for outgoing messages
• Translator Icons will be displayed for Attachers, Special Tools, struct emsMenu now includes

icon and flags fields.
• EMSF_TOOLBAR_PRESENCE will default translator icons on main toolbar
• Non-Mime messages will be sent to translators as text/plain for the ON_ARRIVAL context.
• ON_REQUEST translators will now get the option of handling text/html or text/plain

EMSF_ALL_TEXT will give all the text to ON_REQUEST translators

August 1997
• Finalized v3
• Complete format overhaul to elliminate unwanted fonts and styles
• Removed discussion of future features which do not apply to v4
• Revised figure 1
• Appendix B - MIME Type Mappings added
• Section 6: Attacher Plug-ins revised

December 1996
• Updated to V3
• Parameter Blocks passed into functions instead of parameter lists
• ems_attacher_info, ems_attacher_hook
• ems_special_info, ems_special_hook
• removed translator subtype
• access to all headers
• EMSR_UNCHANGED allows for translators that don’t change data
• access to content-disposition

August 20, 1996
• Incremented API version number to 2
• Implemented the settings dialogue
• Implemented queued_properties
• Added properties parameter to ems_can_translate(), ems_translate_file() and

ems_translate_buf()
• Added user name, address and configuration folder to ems_plugin_init() call
• Changed name of ems_can_translate_file() to ems_can_translate() and removed a

couple of parameters.

July 19, 1996
• Clarified features in version 1 vs. future versions
• Completed name change from tlapi to ems api
• Added description of ID allocating auto responder
• Major clarifications to use of MIME format and type
• Added about box to list loaded plug-ins
• Clarifications on the translation process
• More consistent terminology and notation
• Specifies Windows icon format

Eudora EMS API Page 47

• Specifies Windows plug-in search directories
• Abort return code added, plug-ins required to abort when told to do so
• Moved MIME background to an appendix
• Dropped the buffer version of ems_can_translate

May 22, 1996
• Removed DOES_MIME_LEAVES since it was unused and meaningless
• Progress function now works.
• Described some future additions
• on-request translators now checks MIME types
• More documentation clarifications and rewording (MIME-related stuff)
• Described planned implementation of buffer-based translation
• Significant support for Windows added (but Windows SDK isn’t available yet)
• Windows allocator function added

April 1996
• Switch to separate Macintosh and Windows API definitions
• Removed OP code and lookup function
• Added calling interface details for Mac and Windows
• Added export warning for translation authors
• Page numbering and minor wording changes
• Major clarifications
• Added module_version function
• Removed de-allocator and version arguments from module_init

• Added module icon argument to module_init

Eudora EMS API Page 48

10. References
[Component] Inside Macintosh: More Macintosh Toolbox. Addison Wesley 1993.

[DLL] Windows SDK that describes DLL’s

[Crocker] CROCKER, D. Standard for the format of ARPA Internet Text Messages. Internet
Engineering Task Force, RFC 822. 1982.

[DISP] DORNER, S. AND TROOST, R. Commuinicating Presentation Information in Internet
Messages: The Content-Disposition Header. Internet Engineering Task Force, RFC 1806.

[MIME] BORENSTEIN, N., FREED, N., KLENSIN, J., MOORE, K., AND POSTEL, J. MIME: Multipart
Internet Mail Extensions. Internet Engineering Task Force, RFC 2045, 2046, 2047, 2048

[FREED] FREED, NED, ET AL. Security Multipart for MIME: multipart/signed and
multipart/encrypted. Internet Engineering Task Force, RFC 1847. 1995

[Lang] ALVESTRAND, HARALD. Tags for Identifcation of Langages. Internet Engineering Task
Force, RFC 1766. 1995

[Enriched] RESNICK, PETE AND WALKER, AMANDA. RFC-1896, The text/enriched content type.
Internet Engineering Task Force, RFC 1896. 1996

Eudora EMS API Page 49

Appendix A - A brief introduction to MIME

MIME (Multipart Internet Mail Extensions) [MIME] is the Internet standard for describing objects in
Internet e-mail. It is also used in other applications on the Internet such as the World-Wide Web. The
MIME standard has three main functions. It provides type tagging information for e-mail messages and
their parts. It provides a format for representing object types and message structure, and it provides transfer
encoding for safely passing 8bit text and binary data through 7bit text-only data paths.

Content-Type: MULTIPART/MIXED; BOUNDARY="-559023410-851401618-831602781=:25682"

---559023410-851401618-831602781=:25682
Content-Type: TEXT/PLAIN; charset=US-ASCII

This is a little text part of the message

---559023410-851401618-831602781=:25682
Content-Type: IMAGE/GIF; charset=US-ASCII
Content-Transfer-Encoding: BASE64
Content-Disposition: attachment; name="apipict.gif"

IC8qID09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09
eHRlbmRlZCBNZXNzYWdlIFNlcnZpY2VzIEFQSSBTREsgMS4wYjIgKE1heSB4
eCAxOTk2KQ0KICAgIFRoaXMgU0RLIHN1cHBvcnRzIEFQSSB2ZXJzaW9uIDEN
CiAgICBDb3B5cmlnaHQgMTk5NSwgMTk5NiBRVUFMQ09NTSBJbmMuDQogICAg

---559023410-851401618-831602781=:25682--

A small example of a MIME e-mail message is shown above. It is a two-part message with the first part
being some text and the second part being an attachment. The second part is a GIF image with base64
encoding so the binary GIF image can be passed through 7-bit channels.

Each MIME type has a top level type, a sub-type and optional parameters. The top-level content types are
relatively fixed and currently number seven: text, application, multipart, message, image, audio and video.
The multipart type is of particular importance because it is a container for any number of MIME objects,
thus MIME allows nested structuring of message objects. There are many sub-types for each top-level type.
New sub-types can be registered as long as there is a document giving a basic description of them. The
actual type information is usually expressed as ASCII text in the form type/sub-type. The type may also
include parameters which allow specification of further details about the types. The set of parameters is
completely dependent on the sub-type, though some are common to more than one sub-type. Two common
parameters are character-set and language.

In addition to defining a typing scheme, MIME very precisely specifies data formats for representing the
type data and for creating a data object that combines the actual content data and the type information.

Because MIME objects are commonly transferred via Internet e-mail, often a 7bit text-only path, the MIME
standard also includes an encoding scheme for expressing arbitrary data as 7bit text with limited line
lengths. This is known as “content transfer encoding”.

Because MIME is used to pass objects over the network between unlike computing platforms (e.g.,
Macintosh and Windows), it defines a notion of a canonical format for data objects. This is a format for a
data object of a specific type that is either common to the platforms it is used on, or is defined to be the
interchange format for the object across platforms. The most important canonical format is for text objects
because the end-of-line delimiter for text files varies between major computing platforms. Canonical text in
MIME messages has lines separated by the CRLF (carriage return and line feed) pair and does not include
CR or LF except at the end of a line.

A canonical on-the-wire formatted MIME entity is an octet stream (which may be in the process of being
transmitted, in a file on disk, or in a memory buffer) representing message objects in their canonical format
tagged with MIME types.

Eudora EMS API Page 50

It possible to define proprietary MIME types for specific translator applications. It is also possible to go
through the standards process to define new MIME types to be used widely on the Internet. The types
enable translators to easily and efficiently recognize data on which they wish to operate.

The reader is referred to the MIME standards documents [MIME] for further details.

Eudora EMS API Page 51

Appendix B - MIME type mappings

When a file is attached either manually or via an EMS API attacher plug-in, Eudora tries to find the correct
MIME type/subtype for the attachment. If the MIME type/subtype cannot be found, the default
“application/octet-stream” is used.

Each platform has its own method for determining the MIME type of a file.

Windows

Under Windows, the MIME type of the file is determined by the file extension. There is a section of the
EUDORA.INI file which maps many common file extensions to their MIME type/subtype. Within the
EUDORA.INI file, the “MAPPINGS” section contains all the extension to MIME mappings.

Each line in the MAPPINGS section has the following format:

<direction>=<extension>,<Mac creator>,<Mac type>,<MIME type>,<MIME subtype>

An example section:

[Mappings]
out=txt,ttxt,TEXT,text,plain
both=doc,MSWD,,application,msword
in=xls,XCEL,,,

The direction specifies when the given mapping should be applied. This field can be either “in”, “out”,
or “both.” Messages received by Eudora are processed by the “in” and “both” mappings. Composed
messages being sent are processed by the “out” and “both” mappings.

Note that every mapping line has exactly four commas, regardless of how much information is
provided.

Macintosh

On the Macintosh, MIME mappings for attachments are controlled by resources inside the Eudora
application of type 'EuIM' and 'EuOM'. These resources relate the MIME format's content type and
sub-type with file extensions and Macintosh type and creator codes. These resources also contain flags
which specify whether the attachment is text, a basic type, and other properties.

