RSA

LABORATORIES

PKCS #11 v2.20 Amendment 1

PKCS #11 Mechanisms for One-Time Password Tokens

RSA Laboratories
December 27, 2005

TABLE OF CONTENTS
1 INTRODUCTION 2
1.1 SCOPE ...ttt s 2
1.2 BACKGROUND ...ttt s st 2
1.3 DOCUMENT ORGANIZATIONciutiiiiiiiiiiieiiiie ittt st st saa e b sbe e s sne s e saaeesanee s 3
2 USAGE OVERVIEW.....ccccnnniiiinnniiossssisssssssiss 3
2.1 CASE 1: GENERATION OF OTP VALUEScccoiiiiiiiiiiiiiiiiiiie i 4
2.2 CASE 2: VERIFICATION OF PROVIDED OTP VALUESccooiiiiiiiiiiiiiiiiiiciccccecc e 5
2.3 CASE 3: GENERATION OF OTP KEYS ...coiiiiiiiiiiiiiiiiiiiiiicciic e 6
3 OTP OBJECTS cuucccooniiiiinneincinneicnsnneeicsssnesssssssesssssssessssssssssssssesssssssesssssssssssssssssssssssssssssesssssssassss 6
3.1 KEY OBIECTS ..ottt s e s 6
4 OTP-RELATED NOTIFICATIONScoiirirttiicinssnnneneticssssssnsseenssssssssnsssssssssssssssssssssssssssssssses 9
5 OTP MECHANISMS .9
5.1 OTP MECHANISM PARAMETERSccocuiiiiiiiiiiiiiie ittt st 10
$ CK PARAM TYPEco.oooooeooeoeoeeeoeeeeoeeeeeeeeeeeeeeeeee e 10
¢ CK OTP PARAM; CK_OTP PARAM PTR...........co.covovooeooeeeeeeeeeeeoeeeeeeeeeeeeeese 12
¢ CK _OTP _PARAMS; CK_OTP PARAMS PTR..........cocovoooooeeeoeeeeeeeeeeoeeeeeeeeeeeeee 13
¢ CK _OTP SIGNATURE_INFO, CK_OTP_SIGNATURE INFO PTR...........ccccccovevvvvven., 13
5.2 RSA SECURID ..ottt 14
5.2.1 RSA SecurID Secret K€Yy ODJECLS...........ccccceviuiiiiiiiiiiiiiieet ettt 14
5.2.2 RSA SecurID K€y GENEFALIONc..cocueiiiiiiiiiiiiiieet ettt 15
5.2.3 RSA SecurID OTP generation and validationccccceeeveiiaeiiineaeiiiieeiiiieeeeeeennn 16
5204 REIUFI VAIUES...........cccoveeeieeeeeeeee e et 16
53 OATH HOTP ..ottt ettt e et e e et e e 16
5.3.1 OATH HOTP SeCret K€Y OBDJECLScocueiiiiiiiiiiiiiieit et 16
5.3.2 HOTP K€Y GEREFALION ...ttt 17
5.3.3 HOTP OTP generation and Validationcccocieviiimiiiniiiniiiiieiie e 17
5.4 ACTIVIDENTITY ACTT ..o 18

Copyright © 2005 RSA Security Inc. All rights reserved. License to copy this document and furnish the
copies to others is granted provided that the above copyright notice is included on all such copies. This
document should be identified as “RSA Security Inc. One-Time Password Specifications (OTPS)” in all
material mentioning or referencing this document.

2 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

5.4.1 ACTI SECret k€Y OBJECES........c.eooviiiiiiiiiiiieee ettt 18

5.4.2 ACTIKEY GENEFALION ...ttt 19

5.4.3 ACTI OTP generation and validation......................coccccvciiimoiiiiiiiiiiiiiiieieee e, 19

A. MANIFEST CONSTANTS 20
Al OBJIECT CLASSES ...ttteiuittte ettt e eiieee e sttt e e sttt e et ee sttt eesaureeeeaabeeeesanneeesatneeeesabneeesanneeenannes 20
A2 KEY TYPES ...ttt ettt ettt sttt sae e sttt e st e e st e e sabne e e saneee e s 20
A3 IMECHANISMS ..ciiiiieeiiitteeniieeeeiiete e sttt e e sttt e eabeeee sttt eesatreeesaateeeesabaeeesanneeeesabneeesanneeenannes 20
A4 ATTRIBUTES «...ottteiiiitee ettt ettt e ettt e e ettt e e sttt e e sttt e et e e sttt e e satneeeesanneeesaenneeesanaeeesanneeeanes 20
AS ATTRIBUTE CONSTANTS ...oetieiuiitteeiiietennitteeenireeeenineteestuneeesaneeeestneteesuneeesnanneeeseuneeeesnneeenen 20
A6 OTHER CONSTANTS ..ciiitieeiiitteeititeeeiteteesiiteeeesateeeesaneeeesetreeesaabaeeesaneeeesanneteesanneeesnanneeenannes 21
A7 INOTIFICATIONS ... ouiiiieeiiittee sttt e enitee e ettt e e sttt e e sttt e ettt e e sttt e e satneteesanneeeseneeeesaneeeesanneeeanes 21
A8 RETURN VALUESettiiiitieeniitte ettt e eitet sttt eete e sttt e e st e st e e st e e saineeeesanneeesanneeenannes 21

B. EXAMPLE CODE 21
B.1 DISCLAIMER CONCERNING SAMPLE CODEceiiiiiiteniieeeenireeeeniireeenireeeesireeeennneeesnenneeesnnes 21
B.2 OTP RETRIEVALottiiiiiiiieeniiitteeiitte e ettt e e sttt e ettt e e st e e saine e e seateeeesaneeeesaineeeenanneeesanneeenannes 21
B.3 USER-FRIENDLY MODE OTP TOKENcccuttiiiiiiiiiiniiite ittt ettt ee e e e e 25
B.4 OTP VERIFICATIONouiiiieiiiitteiiiieeeeiietee sttt e eeeieeeesiteeeesaineeesaatneeesaneeeesanneeeesanneeesanneeesannes 26

C. INTELLECTUAL PROPERTY CONSIDERATIONS 27
D. REFERENCES 28
E. ABOUT OTPS 28

1 Introduction

1.1 Scope

This document is an amendment to PKCS #11 v.20 [1] and describes general PKCS #11
objects, procedures and mechanisms that can be used to retrieve and verify one-time
passwords (OTPs) generated by OTP tokens.

1.2 Background

A One-Time Password (OTP) token may be a handheld hardware device, a hardware
device connected to a personal computer through an electronic interface such as USB, or
a software module resident on a personal computer, which generates one-time passwords
that may be used to authenticate a user towards some service. Increasingly, these tokens
work in a connected fashion, enabling programmatic retrieval of their OTP values. To
meet the needs of applications wishing to access these connected OTP tokens in an
interoperable manner, this document extends PKCS #11 [1] to better support these
tokens, easing the task for vendors of OTP-consuming applications, and enabling a better
user experience.

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 3

This document adds basic support of One-Time Password (OTP) tokens to PKCS #11 by
defining a common OTP key type with an extensible set of attributes and by describing
how PKCS #11 functions can be used to retrieve and verify OTP values generated by an
OTP token. It also describes an OTP key generation mechanism that may be used to
execute on-token key generation.

Building on the OTP framework, the document specifies the PKCS #11 RSA SecurID™
OTP mechanisms', the OATH HOTP mechanisms®, and the Actividentity ACTI
mechanisms. Additional mechanisms may be defined separately to support other types of
OTP tokens.

A Cryptoki library supporting OTP tokens and the PKCS #11 v2.20 extensions defined
herein may also support existing PKCS #11 cryptographic tokens. It is also envisioned
that certain tokens will offer both OTP functionality and traditional cryptographic token
functionalities such as encryption, decryption, etc.

1.3 Document organization

The organization of this document is as follows:

— Section 1 is an introduction.

— Section 2 provides an overview description of the support for OTP tokens in
PKCS #11 defined herein.

— Section 3 defines the new OTP key object type and its attributes.
— Section 4 defines a new OTP-related notification.

— Section 5 defines specific OTP mechanisms.

— Appendix A collects defined PKCS #11 constants.

— Appendix B provides example usages of the OTP mechanisms.

— Appendices C, D, and E cover intellectual property issues, give references to
other publications and standards, and provide general information about the One-
Time Password Specifications.

2 Usage overview

OTP tokens represented as PKCS #11 mechanisms may be used in a variety of ways. The
usage cases can be categorized according to the type of sought functionality.

" RSA SecurID" two-factor authentication is a symmetric authentication method which is patented by RSA
Security. A user authenticates by submitting a one-time password (OTP), or PASSCODE value generated
by an RSA SecurID token. The RSA SecurID token may be a handheld hardware device, a hardware device
connected to a personal computer through an electronic interface such as USB, or a software module
resident on the personal computer.

* The HOTP algorithm is work in progress, currently defined in the IETF draft http://www.ietf.org/internet-
drafts/draft-mraihi-oath-hmac-otp-04.txt ~ developed by the Open Authentication initiative
(http://www.openauthentication.org).

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

4 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

2.1 Case 1: Generation of OTP values

P
User
Client Application
-’lf C_Signi)
PRCS #11 Library
Client API Connected Token AR
A A
v
Authentication
Senver Taoken

Figure 1: Retrieving OTP values through C_Sign

Figure 1 shows an integration of PKCS #11 into an application that needs to authenticate
users holding OTP tokens. In this particular example, a connected hardware token is
used, but a software token is equally possible. The application invokes C_Sign to retrieve
the OTP value from the token. In the example, the application then passes the retrieved
OTP value to a client API that sends it via the network to an authentication server. The
client API may implement a standard authentication protocol such as RADIUS [2] or
EAP [3], or a proprietary protocol such as that used by RSA Security's ACE/Agent®
software.

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 5

2.2 Case 2: Verification of provided OTP values

Server Application

I C_Verify()

PKCS #11 Library

!

Internal Token API

!

Token (or query to
authentication
server)

Figure 2: Server-side verification of OTP values

Figure 2 illustrates the server-side equivalent of the scenario depicted in Figure 1. In this
case, a server application invokes C_Verify with the received OTP value as the signature
value to be verified.

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

6 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

2.3 Case 3: Generation of OTP keys

Client Application

I C_GenerateKey()

PKCS #11 Library

i

Internal Token API

i

Token (or software
version thereof)

Figure 3: Generation of an OTP key

Figure 3 shows an integration of PKCS #11 into an application that generates OTP keys.
The application invokes C_GenerateKey to generate an OTP key of a particular type on
the token. The key may subsequently be used as a basis to generate OTP values.

3 OTP objects

3.1 Key objects

OTP key objects (object class CKO_OTP_KEY) hold secret keys used by OTP tokens.
The following table defines the attributes common to all OTP keys, in addition to the
attributes defined for secret keys, all of which are inherited by this class:

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

Table 1: Common OTP key attributes

Attribute

Data type

Meaning

CKA OTP_FORMAT

CK_ULONG

Format of OTP values produced with
this key:

CK_OTP_FORMAT DECIMAL =
Decimal (default) (UTF8-encoded)
CK_OTP_FORMAT HEXADECIMAL =
Hexadecimal (UTF8-encoded)

CK _OTP_FORMAT ALPHANUMERIC =
Alphanumeric (UTF8-encoded)
CK_OTP_FORMAT_BINARY = Only
binary values.

CKA OTP_LENGTH’

CK_ULONG

Default length of OTP values (in the
CKA_ OTP_FORMAT) produced with
this key.

CKA_OTP_USER_FRIENDLY MODE’

CK BBOOL

Set to CK_TRUE when the token is
capable of returning OTPs suitable for
human consumption. See the
description of

CKF USER FRIENDLY OTP below.

CKA_OTP
_CHALLENGE_REQUIREMENT’

CK_ULONG

Parameter requirements when
generating or verifying OTP values
with this key:

CK OTP_PARAM MANDATORY =
A challenge must be supplied.

CK OTP_PARAM OPTIONAL = A
challenge may be supplied but need not
be.

CK OTP_PARAM IGNORED = A
challenge, if supplied, will be ignored.

CKA_OTP_TIME_REQUIREMENT’

CK_ULONG

Parameter requirements when
generating or verifying OTP values
with this key:

CK_OTP_PARAM MANDATORY =

A time value must be supplied.

CK_OTP_PARAM_OPTIONAL = A
time value may be supplied but need
not be.

CK OTP_PARAM IGNORED = A
time value, if supplied, will be ignored.

CKA OTP_COUNTER REQUIREMENT’

CK_ULONG

Parameter requirements when
generating or verifying OTP values
with this key:

CK_OTP_PARAM_MANDATORY =
A counter value must be supplied.

CK OTP PARAM OPTIONAL = A

Copyright © 2005 RSA Security Inc. All rights

reserved.

PKCS #11 v2.20 Amendment 1

8 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

Attribute

Data type

Meaning

counter value may be supplied but need
not be.

CK OTP_PARAM IGNORED = A
counter value, if supplied, will be
ignored.

CKA_OTP_PIN_REQUIREMENT’

CK_ULONG

Parameter requirements when
generating or verifying OTP values
with this key:

CK_OTP_PARAM_MANDATORY =
A PIN value must be supplied.

CK OTP_PARAM OPTIONAL = A
PIN value may be supplied but need
not be (if not supplied, then library will
be responsible for collecting it)

CK OTP_PARAM IGNORED = A
PIN value, if supplied, will be ignored.

CKA OTP_COUNTER

Byte array

Value of the associated internal
counter. Default value is empty (i.e.
ulValueLen = 0).

CKA_OTP_TIME

RFC 2279
string

Value of the associated internal UTC
time in the form
YYYYMMDDhhmmss. Default value

is empty (i.e. ulValueLen= 0).

CKA OTP_USER IDENTIFIER

RFC 2279
string

Text string that identifies a user
associated with the OTP key (may be
used to enhance the user experience).
Default value is empty (i.e. ulValueLen
=0).

CKA OTP_SERVICE IDENTIFIER

RFC 2279
string

Text string that identifies a service that
may validate OTPs generated by this
key. Default value is empty (i.e.
ulValueLen = 0).

CKA_OTP_SERVICE_LOGO

Byte array

Logotype image that identifies a
service that may validate OTPs
generated by this key. Default value is
empty (i.e. ulValueLen = 0).

CKA OTP_SERVICE LOGO TYPE

RFC 2279
string

MIME type of the
CKA_OTP_SERVICE LOGO
attribute value. Default value is empty
(i.e. ulValueLen = 0).

CKA VALUE"*¢’

Byte array

Value of the key.

CKA VALUE_LEN*>’

CK_ULONG

Length in bytes of key value.

Refer to Table 15 in [1] for table footnotes.

Copyright © 2005 RSA Security Inc. All rights reserved.

PKCS #11 v2.20 Amendment 1

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 9

Note: A Cryptoki library may support PIN-code caching in order to reduce user
interactions. An OTP-PKCS #11 application should therefore always consult the state of
the CKA OTP_PIN REQUIREMENT attribute before each call to C_Signlnit, as the
value of this attribute may change dynamically.

For OTP tokens with multiple keys, the keys may be enumerated using C_FindObjects.
The CKA_OTP_SERVICE_IDENTIFIER and/or the CKA_OTP_SERVICE LOGO
attribute may be used to distinguish between keys. The actual choice of key for a
particular operation is however application-specific and beyond the scope of this
document.

For all OTP keys, the CKA ALLOWED MECHANISMS attribute should be set in
accordance with [1], Table 27.

4 OTP-related notifications
This document extends the set of defined notifications as follows:

CKN _OTP CHANGED Cryptoki is informing the application that the OTP for
a key on a connected token just changed. This
notification is particularly useful when applications
wish to display the current OTP value for time-based
mechanisms.

5 OTP mechanisms

The following table shows, for the OTP mechanisms defined in this document, their
support by different cryptographic operations. For any particular token, of course, a
particular operation may well support only a subset of the mechanisms listed. There is
also no guarantee that a token that supports one mechanism for some operation supports
any other mechanism for any other operation (or even supports that same mechanism for
any other operation).

Table 2: OTP mechanisms vs. applicable functions

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR' Key Unwrap

Pair

CKM_SECURID_KEY_GEN v
CKM_SECURID v
CKM_HOTP_KEY_ GEN v
CKM_HOTP v
CKM_ACTI KEY_GEN v
CKM_ACTI v

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

10 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

The remainder of this section will present in detail the OTP mechanisms and the
parameters that are supplied to them.

5.1 OTP mechanism parameters

¢ CK _PARAM_TYPE

CK_PARAM _TYPE is a value that identifies an OTP parameter type. It is defined as
follows:

t ypedef CK_ULONG CK_PARAM TYPE;
The following CK_PARAM_TYPE types are defined:
Table 3: OTP parameter types

Parameter Data type Meaning

CK_OTP_PIN RFC 2279 string | A UTF8 string containing a PIN for use when
computing or verifying PIN-based OTP values.

CK _OTP_CHALLENGE Byte array Challenge to use when computing or verifying
challenge-based OTP values.

CK OTP_TIME RFC 2279 string | UTC time value in the form
YYYYMMDDhhmmss to use when computing
or verifying time-based OTP values.

CK _OTP_COUNTER Byte array Counter value to use when computing or
verifying counter-based OTP values.

CK _OTP_FLAGS CK _FLAGS Bit flags indicating the characteristics of the
sought OTP as defined below.

CK OTP OUTPUT LENGTH | CK ULONG Desired output length (overrides any default
value). A Cryptoki library will return
CKR_MECHANISM PARAM INVALID ifa
provided length value is not supported.

CK _OTP_FORMAT CK_ULONG Returned OTP format (allowed values are the
same as for CKA OTP_FORMAT). This
parameter is only intended for C_Sign output,
see below. When not present, the returned OTP
format will be the same as the value of the
CKA OTP_FORMAT attribute for the key in
question.

CK _OTP_VALUE Byte array An actual OTP value. This parameter type is
intended for C_Sign output, see below.

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 11

The following table defines the possible values for the CK_OTP_ FLAGS type:

Table 4: OTP Mechanism Flags

Bit flag Mask

Meaning

CKF _NEXT_OTP 0x00000001

True (i.e. set) if the OTP computation shall be for
the next OTP, rather than the current one (current
being interpreted in the context of the algorithm,
e.g. for the current counter value or current time
window). A Cryptoki library shall return

CKR _MECHANISM PARAM INVALID if the
CKF NEXT OTP flag is set and the OTP
mechanism in question does not support the
concept of “next” OTP or the library is not
capable of generating the next OTP’.

CKF_EXCLUDE TIME 0x00000002

True (i.e. set) if the OTP computation must not
include a time value. Will have an effect only on
mechanisms that do include a time value in the
OTP computation and then only if the mechanism
(and token) allows exclusion of this value. A
Cryptoki library shall return

CKR MECHANISM PARAM INVALID if
exclusion of the value is not allowed.

CKF_EXCLUDE_COUNTER 0x00000004

True (i.e. set) if the OTP computation must not
include a counter value. Will have an effect only
on mechanisms that do include a counter value in
the OTP computation and then only if the
mechanism (and token) allows exclusion of this
value. A Cryptoki library shall return
CKR_MECHANISM PARAM INVALID if
exclusion of the value is not allowed.

CKF_EXCLUDE_CHALLENGE | 0x00000008

True (i.e. set) if the OTP computation must not
include a challenge. Will have an effect only on
mechanisms that do include a challenge in the
OTP computation and then only if the mechanism
(and token) allows exclusion of this value. A
Cryptoki library shall return

CKR MECHANISM PARAM INVALID if
exclusion of the value is not allowed.

? Applications that may need to retrieve the next OTP should be prepared to handle this situation. For
example, an application could store the OTP value returned by C_Sign so that, if a next OTP is required, it
can compare it to the OTP value returned by subsequent calls to C_Sign should it turn out that the library

does not support the CKF NEXT OTP flag.

Copyright © 2005 RSA Security Inc. All rights reserved.

PKCS #11 v2.20 Amendment 1

12 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

Bit flag Mask Meaning

CKF_EXCLUDE_PIN 0x00000010 True (i.e. set) if the OTP computation must not
include a PIN value. Will have an effect only on
mechanisms that do include a PIN in the OTP
computation and then only if the mechanism (and
token) allows exclusion of this value. A Cryptoki
library shall return

CKR MECHANISM PARAM INVALID if
exclusion of the value is not allowed.

CKF_USER _FRIENDLY OTP 0x00000020 True (i.e. set) if the OTP returned shall be in a
form suitable for human consumption. If this flag
is set, and the call is successful, then the returned
CK_OTP_VALUE shall be a UTF8-encoded
printable string. A Cryptoki library shall return
CKR _MECHANISM PARAM_INVALID if this
flag is set when

CKA OTP_USER FRIENDLY MODE for the
key in question is CK_FALSE.

Note: Even if CKA OTP_FORMAT is not set to CK OTP_FORMAT BINARY, then
there may still be value in setting the CKF USER FRIENDLY flag (assuming
CKA USER FRIENDLY MODE is CK TRUE, of course) if the intent is for a human
to read the generated OTP value, since it may become shorter or otherwise better suited

for a user. Applications that do not intend to provide a returned OTP value to a user
should not set the CKF_USER_FRIENDLY OTP flag.

¢ CK_OTP_PARAM; CK_OTP_PARAM_ PTR

CK_OTP_PARAM is a structure that includes the type, value, and length of an OTP
parameter. It is defined as follows:

t ypedef struct CK_OTP_PARAM {
CK_PARAM TYPE t ype;
CK_VA D _PTR pVal ue;
CK_ULONG ul Val uelLen;

} CK_OTP_PARAM

The fields of the structure have the following meanings:
type the parameter type
pValue pointer to the value of the parameter
ulValueLen length in bytes of the value

If a parameter has no value, then u/ValueLen = 0, and the value of pValue is irrelevant.
Note that pValue is a “void” pointer, facilitating the passing of arbitrary values. Both the
application and the Cryptoki library must ensure that the pointer can be safely cast to the
expected type (i.e., without word-alignment errors).

CK_OTP_PARAM_PTR is a pointer to a CK_OTP_PARAM.

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 13

¢ CK_OTP_PARAMS; CK_OTP_PARAMS PTR

CK_OTP_PARAMS is a structure that is used to provide parameters for OTP
mechanisms in a generic fashion. It is defined as follows:

typedef struct CK_OTP_PARAMS {
CK_OTP_PARAM PTR pPar ans;
CK_ULONG ul Count ;

} CK_OTP_PARANS;

The fields of the structure have the following meanings:
pParams pointer to an array of OTP parameters
ulCount the number of parameters in the array
CK_OTP_PARAMS_ PTR is a pointer to a CK_OTP_PARAMS.

When calling C_Signlnit or C_Verifylnit with a mechanism that takes a
CK_OTP_PARAMS structure as a parameter, the CK_OTP_PARAMS structure shall
be populated in accordance with the CKA_OTP_X REQUIREMENT key attributes for
the identified key, where X is PIN, CHALLENGE, TIME, or COUNTER.

For example, if CKA_OTP_TIME_REQUIREMENT =
CK OTP_ PARAM MANDATORY, then the CK_OTP_TIME parameter shall be
present. If CKA_OTP_TIME_REQUIREMENT = CK OTP PARAM OPTIONAL,
then a CK_OTP_TIME parameter may be present. If it is not present, then the library
may collect it (during the C_Sign call). If CKA_OTP_TIME_REQUIREMENT =
CK OTP PARAM IGNORED, then a provided CK_OTP_TIME parameter will
always be ignored. Additionally, a provided CK_OTP_TIME parameter will always be
ignored if CKF_EXCLUDE TIME is set in a CK_OTP_FLAGS parameter. Similarly, if
this flag is set, a library will not attempt to collect the value itself, and it will also instruct
the token not to make use of any internal value, subject to token policies. It is an error
(CKR_MECHANISM_PARAM _INVALID) to set the CKF EXCLUDE TIME flag
when the CKA_TIME_REQUIREMENT attribute is
CK OTP_PARAM MANDATORY.

The above discussion holds for all CKA_OTP_X REQUIREMENT attributes (i.e.,
CKA_OTP_PIN_REQUIREMENT, CKA_OTP_CHALLENGE_REQURIEMENT,
CKA_OTP_COUNTER_REQUIREMENT, CKA_OTP_TIME_REQUIREMENT).
A library may set a particular CKA_OTP_X REQUIREMENT attribute to
CK OTP PARAM OPTIONAL even if it is required by the mechanism as long as the
token (or the library itself) has the capability of providing the value to the computation.
One example of this is a token with an on-board clock.

In addition, applications may use the CK_OTP_FLAGS, the
CK_OTP_OUTPUT_FORMAT and the CK_OUTPUT_LENGTH parameters to set
additional parameters.

¢ CK_OTP_SIGNATURE_INFO, CK_OTP_SIGNATURE_INFO_PTR

CK_OTP_SIGNATURE_INFO is a structure that is returned by all OTP mechanisms in
successful calls to C_Sign (C_SignFinal). The structure informs applications of actual

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

14 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

parameter values used in particular OTP computations in addition to the OTP value itself.
It is used by all mechanisms for which the key belongs to the class CKO OTP _KEY and
is defined as follows:

typedef struct CK_OTP_SI GNATURE | NFO {
CK_OTP_PARAM PTR pPar ans;
CK_ULONG ul Count ;

} CK_OTP_SI GNATURE_I NFQ,

The fields of the structure have the following meanings:
pParams pointer to an array of OTP parameter values
ulCount the number of parameters in the array

After successful calls to C_Sign or C_SignFinal with an OTP mechanism, the
pSignature parameter will be set to point to a CK_OTP_SIGNATURE_INFO structure.
One of the parameters in this structure will be the OTP value itself, identified with the
CK_OTP_VALUE tag. Other parameters may be present for informational purposes,
e.g. the actual time used in the OTP calculation. In order to simplify OTP validations,
authentication protocols may permit authenticating parties to send some or all of these
parameters in addition to OTP values themselves. Applications should therefore check for
their presence in returned CK_OTP_SIGNATURE_INFO values whenever such
circumstances apply.

Since C_Sign and C_SignFinal follows the convention described in Section 11.2 of [1]
on producing output, a call to C_Sign (or C_SignFinal) with pSignature set to
NULL PTR will return (in the pulSignatureLen parameter) the required number of bytes
to hold the CK_OTP_SIGNATURE_INFO structure as well as all the data in all its
CK _OTP_PARAM components. If an application allocates a memory block based on this
information, it shall therefore not subsequently de-allocate components of such a received
value but rather de-allocate the complete CK_OTP_PARAMS structure itself. A
Cryptoki library that is called with a non-NULL pSignature pointer will assume that it
points to a contiguous memory block of the size indicated by the pulSignatureLen
parameter.

When verifying an OTP value using an OTP mechanism, pSignature shall be set to the
OTP value itself, e.g. the value of the CK_OTP_VALUE component of a
CK_OTP_PARAMS structure returned by a call to C_Sign. The CK_OTP_PARAMS
value supplied in the C_Verifylnit call sets the values to use in the verification
operation.

CK_OTP_SIGNATURE_INFO_PTR points to a CK_OTP_SIGNATURE_INFO.
5.2 RSA SecurID

5.2.1 RSA SecurlD secret key objects

RSA SecurID secret key objects (object class CKO_OTP_KEY, key type
CKK_SECURID) hold RSA SecurlD secret keys. The following table defines the RSA
SecurID secret key object attributes, in addition to the common attributes defined for this
object class:

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 15

Table 5: RSA SecurlID secret key object attributes

Attribute Data type Meaning

CKA _OTP_TIME_INTERVAL' CK ULONG Interval between OTP values produced with
this key, in seconds. Default is 60.

Refer to Table 15 in [1] for table footnotes.

The following is a sample template for creating an RSA SecurID secret key object:

CK_OBJECT_CLASS cl ass = CKO _OTP_KEY;
CK_KEY_TYPE keyType = CKK_SECURI D;
CK_DATE endDate = {...};
CK_UTF8CHAR | abel [] “RSA Securl D secret key object”;
CK_BYTE keyld[]= {...};
CK_ULONG out put Format = CK_OTP_FORVAT_DECI MAL;
CK_ULONG out put Length = 6;
CK_ULONG needPI N = CK_OTP_PARAM MANDATORY;
CK_ULONG tinmelnterval = 60;
CK_BYTE value[] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA_END DATE, &endDate, sizeof(endDate)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_SENSI Tl VE, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA SIGN, &rue, sizeof(true)},
{CKA VERI FY, &t rue, sizeof(true)},
{CKA ID, keyld, sizeof(keyld)},
{ CKA _OTP_FORVAT, &out put For mat
si zeof (out put Format) },
{ CKA OTP_LENGTH, &out put Lengt h,
si zeof (out put Lengt h) },
{CKA _OTP_PI N_REQUI REMENT, &needPI N, sizeof (needPIN)},
{CKA OTP_TI ME_I NTERVAL, &ti nelnterval,
sizeof (timelnterval)},
{CKA VALUE, val ue, sizeof(value)}

b
5.2.2 RSA SecurID key generation

The RSA SecurID key generation mechanism, denoted CKM_SECURID_KEY_GEN,
is a key generation mechanism for the RSA SecurID algorithm.

It does not have a parameter.

The mechanism generates RSA SecurID keys with a particular set of attributes as
specified in the template for the key.

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

16 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

The mechanism contributes at least the CKA_CLASS, CKA KEY_TYPE,
CKA _VALUE _LEN, and CKA_VALUE attributes to the new key. Other attributes
supported by the RSA SecurID key type may be specified in the template for the key, or
else are assigned default initial values

For this mechanism, the u/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of SecurID key sizes,
in bytes.

5.2.3 RSA SecurID OTP generation and validation

CKM_SECURID is the mechanism for the retrieval and verification of RSA SecurlD
OTP values.

The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

When signing or verifying using the CKM_SECURID mechanism, pData shall be set to
NULL _PTR and ulDataLen shall be set to 0.

5.2.4 Return values

Support for the CKM_SECURID mechanism extends the set of return values for
C_Verify with the following values:

e CKR NEW PIN MODE: The supplied OTP was not accepted and the library
requests a new OTP computed using a new PIN. The new PIN is set through means
out of scope for this document.

e CKR NEXT OTP: The supplied OTP was correct but indicated a larger than normal
drift in the token's internal state (e.g. clock, counter). To ensure this was not due to a
temporary problem, the application should provide the next one-time password to the
library for verification.

5.3 OATH HOTP

5.3.1 OATH HOTP secret key objects

HOTP secret key objects (object class CKO_OTP_KEY, key type CKK_HOTP) hold
generic secret keys and associated counter values.

The CKA_OTP_COUNTER value may be set at key generation; however, some tokens
may set it to a fixed initial value. Depending on the token’s security policy, this value
may not be modified and/or may not be revealed if the object has its CKA_SENSITIVE
attribute set to CK_TRUE or its CKA_EXTRACTABLE attribute set to CK _FALSE.

For HOTP keys, the CKA_OTP_COUNTER value shall be an 8 bytes unsigned integer
in big endian (ie. network byte order) form. The same holds true for a
CK_OTP_COUNTER value in a CK_OTP_PARAM structure.

The following is a sample template for creating a HOTP secret key object:

CK_OBJECT_CLASS cl ass = CKO _OTIP_KEY;
CK_KEY_TYPE keyType = CKK_HOTP;

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 17

CK_UTF8CHAR | abel [] = “HOTP secret key object”;
CK BYTE keyld[]={...};
CK_ULONG out put For mat
CK_ULONG out put Lengt h
CK_DATE endDate = {...
CK_BYTE count er Val ue[8] = {0};
CK_BYTE val ue[] ={...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE terrpl ate[] ={
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA_END DATE, &endDate, sizeof (endDate)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_SENSI Tl VE, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA SIGN, &rue, sizeof(true)},
{CKA VERI FY, &t rue, sizeof(true)},
{CKA ID, keyld, sizeof(keyld)},
{ CKA OTP_FORVAT, &out put For mat
si zeof (out put Format) },
{ CKA OTP_LENGTH, &out put Lengt h,
si zeof (out put Lengt h) },
{ CKA _OTP_COUNTER, counter Val ue,
si zeof (count er Val ue) },
{CKA VALUE, val ue, sizeof(value)}

CK_OTP_FORVAT _DECI MAL;
6;

~unu-

b

5.3.2 HOTP key generation

The HOTP key generation mechanism, denoted CKM_HOTP_KEY_GEN, is a key
generation mechanism for the HOTP algorithm.

It does not have a parameter.

The mechanism generates HOTP keys with a particular set of attributes as specified in the
template for the key.

The mechanism contributes at least the CKA_CLASS, CKA KEY_TYPE,
CKA_OTP_COUNTER, CKA_VALUE and CKA_VALUE_LEN attributes to the
new key. Other attributes supported by the HOTP key type may be specified in the
template for the key, or else are assigned default initial values.

For this mechanism, the u/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of HOTP key sizes, in
bytes.

5.3.3 HOTP OTP generation and validation

CKM_HOTP is the mechanism for the retrieval and verification of HOTP OTP values
based on the current internal counter, or a provided counter.

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

18 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

As for the CKM_SECURID mechanism, when signing or verifying using the
CKM_HOTP mechanism, pData shall be set to NULL PTR and u/DataLen shall be set
to 0.

For verify operations, the counter value CK_OTP_COUNTER must be provided as a
CK_OTP_PARAM parameter to C_VerifyInit. When verifying an OTP value using the
CKM_HOTP mechanism, pSignature shall be set to the OTP value itself, e.g. the value
of the CK_OTP_VALUE component of a CK_OTP_PARAMS structure in the case of
an earlier call to C_Sign.

5.4 Activldentity ACTI

5.4.1 ACTI secret key objects

ACTTI secret key objects (object class CKO_OTP_KEY, key type CKK_ ACTI) hold
Activldentity ACTI secret keys.

For ACTI keys, the CKA_OTP_COUNTER value shall be an 8 bytes unsigned integer
in big endian (i.e. network byte order) form. The same holds true for the
CK_OTP_COUNTER value in the CK_OTP_PARAM structure.

The CKA_OTP_COUNTER value may be set at key generation; however, some tokens
may set it to a fixed initial value. Depending on the token’s security policy, this value
may not be modified and/or may not be revealed if the object has its CKA_SENSITIVE
attribute set to CK_TRUE or its CKA_EXTRACTABLE attribute set to CK _FALSE.

The CKA_OTP_TIME value may be set at key generation; however, some tokens may
set it to a fixed initial value. Depending on the token’s security policy, this value may not
be modified and/or may not be revealed if the object has its CKA_SENSITIVE attribute
set to CK_TRUE or its CKA_EXTRACTABLE attribute set to CK FALSE.

The following is a sample template for creating an ACTI secret key object:

CK_OBJECT_CLASS cl ass = CKO _OTIP_KEY;
CK_KEY_TYPE keyType = CKK_ACTI ;
CK_UTF8CHAR | abel [] “ACTl secret key object”;
CK_BYTE keyld[]= {...};
CK_ULONG out put For mat
CK_ULONG out put Lengt h
CK_DATE endDate = {...
CK_BYTE count er Val ue[8] = {0};
CK_BYTE value[] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA_END DATE, &endDate, sizeof(endDate)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_SENSI Tl VE, &true, sizeof(true)},

CK_OTP_FORVAT _DECI MAL;
6;

>~ n-

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 19

{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA SIGN, &rue, sizeof(true)},
{CKA VERI FY, &true, sizeof(true)},
{CKA ID, keyld, sizeof(keyld)},

{ CKA OTP_FORVAT, &out put For mat

si zeof (out put Format) },

{ CKA OTP_LENGTH, &out put Lengt h,

si zeof (out put Lengt h) },

{ CKA OTP_COUNTER, counter Val ue,

si zeof (count er Val ue) },

{CKA VALUE, val ue, sizeof(value)}

b
5.4.2 ACTI key generation

The ACTI key generation mechanism, denoted CKM_ACTI KEY_ GEN, is a key
generation mechanism for the ACTI algorithm.

It does not have a parameter.

The mechanism generates ACTI keys with a particular set of attributes as specified in the
template for the key.

The mechanism contributes at least the CKA_CLASS, CKA KEY_TYPE,
CKA_VALUE and CKA _VALUE_LEN attributes to the new key. Other attributes
supported by the ACTI key type may be specified in the template for the key, or else are
assigned default initial values.

For this mechanism, the wu/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of ACTI key sizes, in
bytes.

5.4.3 ACTI OTP generation and validation

CKM_ACTI is the mechanism for the retrieval and verification of ACTI OTP values.
The mechanism takes a pointer to a CK_OTP_PARAMS structure as a parameter.

When signing or verifying using the CKM_ACTI mechanism, pData shall be set to
NULL_PTR and u/DataLen shall be set to 0.

When verifying an OTP value using the CKM_ACTI mechanism, pSignature shall be
set to the OTP value itself, e.g. the value of the CK_OTP_VALUE component of a
CK_OTP_PARAMS structure in the case of an earlier call to C_Sign.

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

20 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

A. Manifest constants

Note: A C or C++ source file in a Cryptoki application or library can define all the types,
mechanisms, and other constants described here by including the header file otp-
pkesl1.h. When including the otp-pkcsll.h header file, it should be preceded by an
inclusion of the top-level Cryptoki header file pkcsl1.h, and the source file must also
specify the preprocessor directives indicated in Section 8 of [1].

A.1 Object classes
#defi ne CKO _OTP_KEY 0x00000008

A.2 Key types

#defi ne CKK_SECURI D 0x00000022
#defi ne CKK_HOTP 0x00000023
#defi ne CKK_ACTI 0x00000024

A.3 Mechanisms

#defi ne CKM_SECURI D_KEY_GEN 0x00000280
#defi ne CKM_SECURI D 0x00000282
#defi ne CKM _HOTP_KEY_GEN 0x00000290
#defi ne CKM _HOTP 0x00000291
#defi ne CKM_ACTI _KEY_GEN 0x000002A0
#defi ne CKM_ACTI 0x000002A1

A.4 Attributes

#define CKA OTP_FORMAT 0x00000220
#define CKA_OTP_LENGTH 0x00000221
#define CKA_OTP_TI ME_| NTERVAL 0x00000222

#define CKA OTP_USER FRI ENDLY MODE 0x00000223
#define CKA_OTP_CHALLENGE_REQUI REMENT 0x00000224

#define CKA_OTP_TI ME_REQUI REMENT 0x00000225
#defi ne CKA_OTP_COUNTER REQUI REMENT 0x00000226
#define CKA_OTP_PI N REQUI REVENT 0x00000227
#define CKA_OTP_USER | DENTI FI ER 0x0000022A
#define CKA OTP_SERVICE_IDENTIFIER 0x0000022B
#define CKA_OTP_SERVI CE_LOGO 0x0000022C
#defi ne CKA_OTP_SERVI CE_LOGO TYPE 0x0000022D
#defi ne CKA_OTP_COUNTER 0x0000022E
#define CKA _OTP_TI ME 0x0000022F

A.5 Attribute constants
#def i ne CK_OTP_FORVAT_DECI MAL 0

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 21

#define CK_OTP_FORMAT HEXADEC! MAL
#define CK_OTP_FORMAT ALPHANUVERI C
#defi ne CK_OTP_FORMAT Bl NARY

#defi ne CK_OTP_PARAM | GNORED
#define CK_OTP_PARAM OPTI| ONAL
#defi ne CK_OTP_PARAM MANDATORY

NFPO WDNEF

A.6 Other constants

#defi ne CK_OTP_VALUE

#define CK_OTP_PI N

#def i ne CK_OTP_CHALLENGE
#define CK_OTP_TI ME

#def i ne CK_OTP_COUNTER

#defi ne CK_OTP_FLAGS

#defi ne CK _OTP_QUTPUT_LENGTH
#def i ne CK_OTP_FORVAT

~N~Noooah~wWwNELO

#defi ne CKF_NEXT_OTP 0x00000001
#defi ne CKF_EXCLUDE_TI ME 0x00000002
#defi ne CKF_EXCLUDE_COUNTER 0x00000004
#defi ne CKF_EXCLUDE_CHALLENGE 0x00000008
#defi ne CKF_EXCLUDE_PI N 0x00000010
#defi ne CKF_USER FRI ENDLY OTP 0x00000020

A.7 Notifications
#def i ne CKN_OTP_CHANGED 1

A.8 Return values

#def i ne CKR_NEW PI N_MODE 0x000001BO
#def i ne CKR_NEXT_OTP 0x000001B1

B. Example code

B.1 Disclaimer concerning sample code

For the sake of brevity, sample code presented herein is somewhat incomplete. In
particular, initial steps needed to create a session with a cryptographic token are not
shown, and the error handling is simplified.

B.2 OTP retrieval

The following sample code snippet illustrates the retrieval of an OTP value from an OTP
token using the C_Sign function. The sample demonstrates the generality of the approach
described herein and does not include any OTP mechanism-specific knowledge.

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

22

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

CK_RV rv;
CK_SLOT_I D slotld;
CK_OBJECT_CLASS cl ass = CKO _OTIP_KEY;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)} };
CK_UTF8CHAR tine[] = {...};
[* UTC tinme value for OTP, or NULL */
CK_UTF8CHAR pin[] = {...};
/[* User PIN, or NULL */
CK_BYTE counter[] = {...};
[* Counter value, or NULL */
CK_BYTE chal l enge[] = {...};
/* Chal |l enge, or NULL */
CK_MECHANI SM TYPE_PTR al | owedMechani snms = NULL_PTR,
CK_MECHANI SM | NFO nechani sm nf o;
CK_MECHANI SM nechani sm
CK_ULONG i, ul OrTPLen, ul KeyCount, ul Chal Req, ul Pl NReq,
ul Ti reReq, ul Count er Req;
CK_ATTRI BUTE nmechani sms[] = { { CKA_ALLOWED MECHANI SVS,
NULL_PTR, 0} };
CK_ATTRI BUTE attributes[] = {
{ CKA_OTP_CHALLENGE_REQUI REMENT, &ul Chal Req,
si zeof (ul Chal Req) },
{ CKA_OTP_PI N_REQUI REMENT, &ul Pl NReq,
si zeof (ul PI NReq) },
{ CKA_OTP_COUNTER_REQUI REMENT, &ul Count er Req,
si zeof (ul Count er Req) },
{ CKA_OTP_TI ME_REQUI REMENT, &ul Ti meReq,
si zeof (ul TireReq) } };

CK_OTP_PARAM par anf 4] ;
CK_OTP_PARAMS par arms;
CK BYTE *pOIP; /* Storage for OTP result */

do {

/[* NB.: Mnimal error and nenory handling in this
sanpl e code. */

[* Find first OTP key on the token. */
if ((rv = C_FindObjectslnit(hSession, tenplate, 1))
= CKR_OK) {
br eak;
1
if ((rv = C_FindObj ects(hSession, &hKey, 1,
&ul KeyCount)) !'= CKR OK) {
br eak;

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 23

}s
i f (ul KeyCount == 0) {
/* No OIP key found */
br eak;

}
rv = C_Fi ndObj ect sFi nal (hSessi on);

/* Find a suitable OTIP nmechanism */
if ((rv = C_CetAttributeVal ue(hSession, hKey,
mechani snms, 1)) = CKR_OK) {

br eak;
};
if ((all owedMechani sms = (CK_MECHANI SM TYPE_PTR)
mal | oc(mechani sns[0] . ul Val ueLen)) == 0) {

br eak;

b

mechani sns[0] . pVal ue = al | ownedMechani sns;

if ((rv = C_CetAttributeVal ue(hSessi on, hKey,
mechani snms, 1)) !'= CKR_ OK) {

br eak;

b

for (i = 0; i < mechanisns[O0].ul Val ueLen/
si zeof (CK_MECHANI SM TYPE) ; ++i) {
if ((rv = C_GetMechani sm nfo(slotld,
al | onedMechani sns[i], &rechanisninfo)) ==
CKR_OK) {
if (mechanism nfo.flags & CKF_SIGN) {
br eak;
}

}
}

if (i == mechani sns[0]. ul Val ueLen) {
br eak;

}

mechani sm mechani sm = al | onedMechani sns[i];
free(all owedMechani sns) ;

/* Set required mechani sm paraneters based on
the key attributes. */
if ((rv = C_CetAttributeVal ue(hSession, hKey,
attributes, sizeof(attributes) /
sizeof (attributes[0]))) !'= CKR. XK) {

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

24

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

br eak;

}

i = 0;
i f (ul PINReq == CK_OTP_PARAM MANDATCRY) {
/* PIN val ue needed. */
paranfi].type = CK_OTP_PI N,
paranii].pVval ue = pin;
paranii ++].ul Val ueLen = sizeof (pin) - 1,
}
if (ul Chal Req == CK_OTP_PARAM MANDATORY) {
/* Chal | enge neded. */
paranfi].type = CK OIP_CHALLENGE;
paranii].pVval ue = chall enge;
paranii ++] . ul Val ueLen = si zeof (chal | enge);
}
if (ul Ti mreReq == CK_OTP_PARAM MANDATORY) {
[* Time needed (would not normally be
the case if token has its own clock). */
paranfi].type = CK OTP_TI ME;
paranii].pVvalue = tineg;
paranii ++] . ul Val ueLen = si zeof (tine) -1;
}
i f (ul CounterReq == CK _OTP_PARAM MANDATORY) {
/* Counter value needed (would not normally
be the case if token has its own counter.*/
paranfi].type = CK _OIP_COUNTER;
paranii].pVal ue = counter;
paranii ++] . ul Val ueLen = si zeof (counter);

}

par ans. pPar ams

par am
par ans. ul Count i

= 1;
mechani sm pPar anet er = &par ans;
mechani sm ul Par anet erLen = si zeof (parans);

/[* Sign to get the OTP val ue. */

if ((rv = C_Signlnit(hSession, &rechanism hKey))
= CKR_OK) {
br eak;

}

/* Get the buffer |ength needed for the OTP Val ue
and any associ ated data. */

if ((rv = C_Sign(hSession, NULL PTR, 0, NULL_PTR,
&ul OTPLen)) = CKR OK) {

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 25

br eak;

b

if ((pOTP = mall oc(ul OTPLen)) == NULL_PTR) {
br eak;

b

/* Get the actual OTP val ue and any
associ ated data. */
if ((rv = C_Sign(hSession, NULL_PTR, 0, pOIP,
&ul OTPLen)) !'= CKR K) {
br eak;

}

[* Traverse the returned pOIP here. The actual
OTP value is in CK_OTP_VALUE in pOTP. */

} while (0):

B.3 User-friendly mode OTP token

This sample demonstrates an application retrieving a user-friendly OTP value. The code
is the same as in B.1 except for the following:

/* Add these vari able declarati ons */

CK_FLAGS flags = CKF_USER FRI ENDLY_OTP;
CK _BBOOL bUser Fri endl yMode;
CK_ULONG ul For mat ;

/* Replace the declaration of the "attributes" and the
"parant variables with: */

CK_ATTRI BUTE attributes[] = {
{ CKA_OTP_CHALLENGE REQUI REMENT, &ul Chal Req,
si zeof (ul Chal Req) },
{ CKA_OTP_PI N_REQUI REMENT, &ul Pl NReq,
si zeof (ul PI NReq) },
{ CKA_OTP_COUNTER_REQUI REMENT, &ul Count er Req,
si zeof (ul Count er Req) },
{ CKA_OTP_TI ME_REQUI REMENT, &ul Ti meReq,
si zeof (ul Ti neReq) },
{ CKA_OTP_USER FRI ENDLY_MODE, &bUser Fri endl yMode,
si zeof (bUser Fri endl yMbde) },
{CKA OTP_FORVAT, &ul For mat,
si zeof (ul Format) }

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

26 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

CK_OTP_PARAM par anf 5] ;

/* Replace the assignment of the "pParani conponent
of the "parans" variable with: */

if (bUserFriendl yMode == CK_ TRUE) {
/* Token supports user-friendly OTPs */
paranfi].type = CK OIP_FLAGS;
paranii].pVval ue = &fl ags;
paranii ++] . ul Val ueLen = si zeof (CK_FLAGS) ;
} else if (ul Format == CK_OTP_FORMAT_BI NARY) {
/* Some kind of error since a user-friendly
OTP cannot be returned to an application
that needs it. */
br eak;

}s
par ams. pPar ans = par am

[* Further processing is as in B.1. */

B.4 OTP verification

The following sample code snippet illustrates the verification of an OTP value from an
RSA SecurID token, using the C_Verify function. The desired UTC time, if a time is
specified, is supplied in the CK_ OTP_PARAMS structure, as is the user’s PIN.

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_UTF8CHAR tine[] = {...};
[* UTC tinme value for OTP, or NULL */
CK_UTF8CHAR pin[] = {...};
/[* User PIN or NULL (if collected by library) */
CK_OTP_PARAM parani] = {
{CK_OTP_TI ME, time, sizeof(tine)-1},
{CK_OTP_PIN, pin, sizeof(pin)-1}
1
CK_OTP_PARAMS parans = {param 2};
CK_MECHANI SM nechani sm = {CKM SECURI D, &par ans,

si zeof (parans) };
CK_ULONG ul KeyCount ;
CK_RV rv;
CK_BYTE OTP[] = {...}; /* Supplied OTP val ue. */
CK_ULONG ul OTPLen = strlen((CK _CHAR PTR) OTP);
CK_OBJECT_CLASS cl ass = CKO _OTP_KEY;
CK_KEY_TYPE keyType = CKK_SECURI D;

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 27

CK_ATTRI BUTE templ ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY _TYPE, &keyType, sizeof (keyType)},
1

/* Find the RSA Securl D key on the token. */

rv = C_FindOojectslnit(hSession, tenplate, 2);

if (rv == CKR_.OK) {
rv C _Fi ndnj ect s(hSessi on, &hKey, 1, &ul KeyCount);
rv C _Fi ndnj ect sFi nal (hSessi on);

if ((rv !'= CKR.X) || (ul KeyCount == 0)) {
printf(" \nError: unable to find RSA Securl D key on
t oken.\n");
return(rv);

rv = C Verifylnit(hSession, &mechani sm hKey);
if (rv == CKR_X) {

ul OTPLen = si zeof (OTP);

rv = C Verify(hSession, NULL PTR, 0, OIP, ul OTPLen);
}

switch(rv) {
case CKR &K
printf("\nSupplied OTP value verified.\n");
br eak;

case CKR_SI GNATURE_I NVALI D
printf("\nSupplied OTP value not verified.\n");
br eak;

defaul t:
printf("\nError:Unable to verify OIP value.\n");
br eak;

}

return(rv);

C. Intellectual property considerations

RSA Security makes no patent claims on the general constructions described in this
document, although specific underlying techniques may be covered. The RSA SecurlD
technology is covered by a number of US patents (and foreign counterparts), in particular
US patent nos. 4,856,062, 4,885,778, 5,097,505, 5,168,520, and 5,657,388. Additional
patents are pending.

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

28 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

Copyright © 2005 RSA Security Inc. All rights reserved. License to copy this document
and furnish the copies to others is granted provided that the above copyright notice is
included on all such copies. This document should be identified as “RSA Security Inc.
One-Time Password Specifications (OTPS)” in all material mentioning or referencing
this document.

ACE/Agent, RSA, RSA Security and SecurID are registered trademarks or trademarks of
RSA Security Inc. in the United States and/or other countries. The names of other
products or services mentioned may be the trademarks of their respective owners.

This document and the information contained herein are provided on an "AS IS" basis
and RSA SECURITY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. RSA Security makes no representations regarding intellectual property
claims by other parties. Such determination is the responsibility of the user.

D. References
[1] RSA Laboratories, PKCS #11: Cryptographic Token Interface Standard. Version
2.20, June 2004. URL: fip:/ftp.rsasecurity.com/pub/pkes/pkes-11/v2-20/pkes-
11v2-20.pdf.
[2] Rigney et al, “Remote Authentication Dial In User Service (RADIUS)”, IETF
RFC2865, June 2000. URL: http://ietf org/rfc/rfc2865.txt.

[3] Aboba et al, “Extensible Authentication Protocol (EAP)”, IETF RFC 3748, June
2004. URL: http://ietf.org/rfc/rfc3748.txt.

E. About OTPS

The One-Time Password Specifications are documents produced by RSA Laboratories in
cooperation with secure systems developers for the purpose of simplifying integration
and management of strong authentication technology into secure applications, and to
enhance the user experience of this technology.

Further development of the OTPS series will occur through mailing list discussions and
occasional workshops, and suggestions for improvement are welcome. As four our PKCS
documents, results may also be submitted to standards forums. For more information,
contact:

OTPS Editor

RSA Laboratories

174 Middlesex Turnpike

Bedford, MA 01730 USA

ot ps-edi tor @sasecurity.com
http://ww. rsasecurity. conirsal abs/

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 1

