
Copyright © 2005 RSA Security Inc. All rights reserved. License to copy this document and furnish the
copies to others is granted provided that the above copyright notice is included on all such copies. This
document should be identified as “RSA Security Inc. One-Time Password Specifications (OTPS)” in all
material mentioning or referencing this document.

PKCS #11 v2.20 Amendment 2
PKCS #11 Mechanisms for the Cryptographic Token Key

Initialization Protocol
RSA Laboratories

December 27, 2005

TABLE OF CONTENTS

1 INTRODUCTION... 2
1.1 SCOPE .. 2
1.2 BACKGROUND .. 2
1.3 DOCUMENT ORGANIZATION... 2

2 ACRONYMS AND NOTATION .. 2
2.1 ACRONYMS... 2
2.2 NOTATION .. 3

3 PRINCIPLES OF OPERATION .. 3
4 MECHANISMS... 4

4.1 CT-KIP.. 4
4.1.1 Definitions... 4
4.1.2 CT-KIP Mechanism parameters ... 4
♦ CK_KIP_ PARAMS; CK_KIP_ PARAMS_PTR ... 4
4.1.3 CT-KIP key derivation ... 5
4.1.4 CT-KIP key wrap and key unwrap.. 5
4.1.5 CT-KIP signature generation ... 5

A. MANIFEST CONSTANTS ... 7
A.1 NOTICE REGARDING HEADER FILES .. 7
A.2 MECHANISMS ... 7

B. USING PKCS #11 WITH CT-KIP.. 7
C. INTELLECTUAL PROPERTY CONSIDERATIONS.. 10
D. REFERENCES.. 10
E. ABOUT OTPS... 10

2PKCS #11 MECHANISMS FOR THE CRYPTOGRAPHIC TOKEN KEY INITIALIZATION PROTOCOL

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 2

1 Introduction

1.1 Scope
This document is an amendment to PKCS #11 v2.20 [1] and describes extensions to
PKCS #11 to support the Cryptographic Token Key Initialization Protocol described in
[2].
The mechanisms defined herein are intended for general use within computer and
communications systems employing connected cryptographic tokens (or software
emulations thereof).

1.2 Background
A cryptographic token may be a handheld hardware device, a hardware device connected
to a personal computer through an electronic interface such as USB, or a software module
resident on a personal computer, which offers some cryptographic functionality that may
be used e.g., to authenticate a user towards some service. Increasingly, these tokens work
in a connected fashion, enabling their programmatic initialization as well as
programmatic retrieval of their output values. This document intends to meet the need for
an open and interoperable mechanism to programmatically initialize and configure
connected cryptographic tokens with a secret key shared by an external party. A
companion document entitled "Cryptographic Token Key Initialization Protocol" [2]
describes the protocol that is intended for use with the mechanisms defined here.

1.3 Document organization
The organization of this document is as follows:

− Section 1 is an introduction.

− Section 2 defines acronyms and notation used in this document.

− Section 3 describes the operational principles for the key initialization.

− Section 4 defines the mechanisms in detail.

− Appendix A collects the PKCS #11 constants defined herein.

− Appendix B describes how the mechanisms defined in this document may be used
during a CT-KIP protocol run.

− Appendices C, D, and E cover intellectual property issues, give references to
other publications and standards, and provide general information about the One-
Time Password Specifications.

2 Acronyms and notation

2.1 Acronyms
CT-KIP Cryptographic Token Key Initialization Protocol (as defined in [2])

MAC Message Authentication Code

PKCS #11 MECHANISMS FOR THE CRYPTOGRAPHIC TOKEN KEY INITIALIZATION
PROTOCOL 3

Copyright © 2005 RSA Security Inc. PKCS #11 v2.20 Amendment 2

PDU Protocol Data Unit

2.2 Notation

C structure declarations are made in the Courier typeface. PKCS #11 functions and
structure names are written in boldface. Function parameter names and structure
components are written in italic. XML elements are written in brackets and bold
Helvetica: <element>.

3 Principles of Operation

C_DeriveKey,
C_WrapKey,

C_Verify

Client Application

PKCS #11 Library

Internal Token API

Token (or software
version thereof)

Server Application

Figure 1: PKCS #11 and CT-KIP integration

Figure 1 shows an integration of PKCS #11 into an application that generates
cryptographic keys through the use of CT-KIP. The application invokes C_DeriveKey to
derive a key of a particular type on the token. The key may subsequently be used as a
basis to e.g., generate one-time password values. The application communicates with a
CT-KIP server that participates in the key derivation and stores a copy of the key in its
database. The key is transferred to the server in wrapped form, after a call to
C_WrapKey. The server authenticates itself to the client and the client verifies the
authentication by calls to C_Verify.

4PKCS #11 MECHANISMS FOR THE CRYPTOGRAPHIC TOKEN KEY INITIALIZATION PROTOCOL

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 2

4 Mechanisms
The following table shows, for the mechanisms defined in this document, their support by
different cryptographic operations. For any particular token, of course, a particular
operation may well support only a subset of the mechanisms listed. There is also no
guarantee that a token that supports one mechanism for some operation supports any
other mechanism for any other operation (or even supports that same mechanism for any
other operation).

Table 1: Mechanisms vs. applicable functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest

Gen.

 Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_KIP_DERIVE

CKM_KIP_WRAP

CKM_KIP_MAC

The remainder of this section will present in detail the mechanisms and the parameters
that are supplied to them.

4.1 CT-KIP

4.1.1 Definitions
Mechanisms:

CKM_KIP_DERIVE
CKM_KIP_WRAP
CKM_KIP_MAC

4.1.2 CT-KIP Mechanism parameters

♦ CK_KIP_ PARAMS; CK_KIP_ PARAMS_PTR
CK_KIP_PARAMS is a structure that provides the parameters to all the CT-KIP related
mechanisms: The CKM_KIP_DERIVE key derivation mechanism, the
CKM_KIP_WRAP key wrap and key unwrap mechanism, and the CKM_KIP_MAC
signature mechanism. The structure is defined as follows:

typedef struct CK_KIP_PARAMS {
 CK_MECHANISM_PTR pMechanism;
 CK_OBJECT_HANDLE hKey;
 CK_BYTE_PTR pSeed;
 CK_ULONG ulSeedLen;
} CK_KIP_PARAMS;

The fields of the structure have the following meanings:

PKCS #11 MECHANISMS FOR THE CRYPTOGRAPHIC TOKEN KEY INITIALIZATION
PROTOCOL 5

Copyright © 2005 RSA Security Inc. PKCS #11 v2.20 Amendment 2

 pMechanism pointer to the underlying cryptographic mechanism
(e.g. AES, SHA-256), see further [2], Appendix D

 hKey handle to a key that will contribute to the entropy of
the derived key (CKM_KIP_DERIVE) or will be used
in the MAC operation (CKM_KIP_MAC)

 pSeed pointer to an input seed
 ulSeedLen length in bytes of the input seed

CK_KIP_PARAMS_PTR is a pointer to a CK_KIP_PARAMS structure.

4.1.3 CT-KIP key derivation
The CT-KIP key derivation mechanism, denoted CKM_KIP_DERIVE, is a key
derivation mechanism that is capable of generating secret keys of potentially any type,
subject to token limitations.
It takes a parameter of type CK_KIP_PARAMS which allows for the passing of the
desired underlying cryptographic mechanism as well as some other data. In particular,
when the hKey parameter is a handle to an existing key, that key will be used in the key
derivation in addition to the hBaseKey of C_DeriveKey. The pSeed parameter may be
used to seed the key derivation operation.

The mechanism derives a secret key with a particular set of attributes as specified in the
attributes of the template for the key.

The mechanism contributes the CKA_CLASS and CKA_VALUE attributes to the new
key. Other attributes supported by the key type may be specified in the template for the
key, or else will be assigned default initial values. Since the mechanism is generic, the
CKA_KEY_TYPE attribute should be set in the template, if the key is to be used with a
particular mechanism.

4.1.4 CT-KIP key wrap and key unwrap
The CT-KIP key wrap and unwrap mechanism, denoted CKM_KIP_WRAP, is a key
wrap mechanism that is capable of wrapping and unwrapping generic secret keys.

It takes a parameter of type CK_KIP_PARAMS, which allows for the passing of the
desired underlying cryptographic mechanism as well as some other data. It does not make
use of the hKey parameter of CK_KIP_PARAMS.

4.1.5 CT-KIP signature generation
The CT-KIP signature (MAC) mechanism, denoted CKM_KIP_MAC, is a mechanism
used to produce a message authentication code of arbitrary length. The keys it uses are
secret keys.
It takes a parameter of type CK_KIP_PARAMS, which allows for the passing of the
desired underlying cryptographic mechanism as well as some other data. The mechanism
does not make use of the pSeed and the ulSeedLen parameters of CT_KIP_PARAMS.

6PKCS #11 MECHANISMS FOR THE CRYPTOGRAPHIC TOKEN KEY INITIALIZATION PROTOCOL

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 2

This mechanism produces a MAC of the length specified by pulSignatureLen parameter
in calls to C_Sign.

If a call to C_Sign with this mechanism fails, then no output will be generated.

PKCS #11 MECHANISMS FOR THE CRYPTOGRAPHIC TOKEN KEY INITIALIZATION
PROTOCOL 7

Copyright © 2005 RSA Security Inc. PKCS #11 v2.20 Amendment 2

A. Manifest constants

A.1 Notice regarding header files
A C or C++ source file in a Cryptoki application or library can define all the types, and
mechanisms described here by including the header file ct-kip.h. The inclusion of the ct-
kip.h header file should be preceded by an inclusion of the top-level Cryptoki header file
pkcs11.h, and the source file must also specify the preprocessor directives indicated in
Section 8 of [1].

A.2 Mechanisms
#define CKM_KIP_DERIVE 0x00000510
#define CKM_KIP_WRAP 0x00000511
#define CKM_KIP_MAC 0x00000512

B. Using PKCS #11 with CT-KIP
A suggested procedure to perform CT-KIP with a cryptographic token through the PKCS
#11 interface using the mechanisms defined herein is as follows (see also [1]):

a. On the client side,

I. The client selects a suitable slot and token (e.g. through use of the <TokenID>
or the <PlatformInfo> element of the CT-KIP trigger message).

II. Optionally, a nonce R is generated, e.g. by calling C_SeedRandom and
C_GenerateRandom.

III. The client sends its first message to the server, potentially including the
nonce R.

b. On the server side,

I. A nonce RS is generated, e.g. by calling C_SeedRandom and
C_GenerateRandom.

II. If the server needs to authenticate its first CT-KIP message, and use of
CKM_KIP_MAC has been negotiated, it calls C_SignInit with
CKM_KIP_MAC as the mechanism followed by a call to C_Sign. In the
call to C_SignInit, KAUTH (see [2]) shall be the signature key, the hKey
parameter in the CK_KIP_PARAMS structure shall be set to NULL_PTR,
the pSeed parameter of the CT_KIP_PARAMS structure shall also be set to
NULL_PTR and the ulSeedLen parameter shall be set to zero. In the call to
C_Sign, the pData parameter shall be set to point to (the concatenation of
the nonce R, if received, and) the nonce RS (see [2] for a definition of the
variables), and the ulDataLen parameter shall hold the length of the
(concatenated) string. The desired length of the MAC shall be specified
through the pulSignatureLen parameter as usual.

8PKCS #11 MECHANISMS FOR THE CRYPTOGRAPHIC TOKEN KEY INITIALIZATION PROTOCOL

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 2

III. The server sends its first message to the client, including RS, the server’s
public key K (or an identifier for a shared secret key K), and optionally the
MAC.

c. On the client side,

I. If a MAC was received, it is verified. If the MAC does not verify, or was
required but not received, the protocol session ends with a failure.

II. If the MAC verified, or was not required and not present, a generic secret
key, RC, is generated by calling C_GenerateKey with the
CKM_GENERIC_SECRET_KEY_GEN mechanism. The pTemplate
attribute shall have CKA_EXTRACTABLE and CKA_SENSITIVE set to
CK_TRUE, and should have CKA_ALLOWED_MECHANISMS set to
CKM_KIP_DERIVE only.

III. The generic secret key RC is wrapped by calling C_WrapKey. If the
server’s public key is used to wrap RC, and that key is temporary only, then
the CKA_EXTRACTABLE attribute of RC shall be set to CK_FALSE
once RC has been wrapped and the server’s public key is to be destroyed. If
a shared secret key is used to wrap RC, and use of the CT-KIP key wrapping
algorithm was negotiated, then the CKM_KIP_WRAP mechanism shall be
used. The hKey handle in the CK_KIP_PARAMS structure shall be set to
NULL_PTR. The pSeed parameter in the CK_KIP_PARAMS structure
shall point to the nonce RS provided by the CT-KIP server, and the
ulSeedLen parameter shall indicate the length of RS. The hWrappingKey
parameter in the call to C_WrapKey shall be set to refer to the wrapping
key.

IV. The client sends its second message to the server, including the wrapped
generic secret key RC.

d. On the server side,
I. Once the wrapped generic secret key RC has been received, the server calls

C_UnwrapKey. If use of the CT-KIP key wrapping algorithm was
negotiated, then CKM_KIP_WRAP shall be used to unwrap RC. When
calling C_UnwrapKey, the CK_KIP_PARAMS structure shall be set as
described in c.III above. The hUnwrappingKey function parameter shall
refer to the shared secret key and the pTemplate function parameter shall
have CKA_SENSITIVE set to CK_TRUE, CKA_KEY_TYPE set to
CKK_GENERIC_SECRET and should have
CKA_ALLOWED_MECHANISMS set to CKM_KIP_DERIVE only.
This will return a handle to the generic secret key RC.

II. A token key, KTOKEN, is derived from RC by calling C_DeriveKey with the
CKM_KIP_DERIVE mechanism, using RC as hBaseKey. The hKey handle
in the CK_KIP_PARAMS structure shall refer either to the public key
supplied by the CT-KIP server, or alternatively, the shared secret key
indicated by the server. The pSeed parameter shall point to the nonce RS
provided by the CT-KIP server, and the ulSeedLen parameter shall indicate

PKCS #11 MECHANISMS FOR THE CRYPTOGRAPHIC TOKEN KEY INITIALIZATION
PROTOCOL 9

Copyright © 2005 RSA Security Inc. PKCS #11 v2.20 Amendment 2

the length of RS. The pTemplate attribute shall be set in accordance with
local policy and as negotiated in the protocol. This will return a handle to
the token key, KTOKEN.

III. For the server’s last CT-KIP message to the client, if use of the CT-KIP
MAC algorithm has been negotiated, then the MAC is calculated by calling
C_SignInit with the CKM_KIP_MAC mechanism followed by a call to
C_Sign. In the call to C_SignInit, KAUTH (see [2]) shall be the signature key,
the hKey parameter in the CK_KIP_PARAMS structure shall be a handle
to the generic secret key RC, the pSeed parameter of the
CT_KIP_PARAMS structure shall be set to NULL_PTR, and the
ulSeedLen parameter shall be set to zero. In the call to C_Sign, the pData
parameter shall be set to NULL_PTR and the ulDataLen parameter shall be
set to 0. The desired length of the MAC shall be specified through the
pulSignatureLen parameter as usual.

IV. The server sends its second message to the client, including the MAC.

e. On the client side,
I. The MAC is verified in a reciprocal fashion as it was generated by the

server. If use of the CKM_KIP_MAC mechanism was negotiated, then in
the call to C_VerifyInit, the hKey parameter in the CK_KIP_PARAMS
structure shall refer to RC, the pSeed parameter shall be set to NULL_PTR,
and ulSeedLen shall be set to 0. The hKey parameter of C_VerifyInit shall
refer to KAUTH. In the call to C_Verify, pData shall be set to NULL_PTR,
ulDataLen to 0, pSignature to the MAC value received from the server, and
ulSignatureLen to the length of the MAC. If the MAC does not verify the
protocol session ends with a failure.

II. A token key, KTOKEN, is derived from RC by calling C_DeriveKey with the
CKM_KIP_DERIVE mechanism, using RC as hBaseKey. The hKey handle
in the CK_KIP_PARAMS structure shall be set to NULL_PTR as token
policy must dictate use of the same key as was used to wrap RC. The pSeed
parameter shall point to the nonce RS provided by the CT-KIP server, and
the ulSeedLen parameter shall indicate the length of RS. The pTemplate
attribute shall be set in accordance with local policy and as negotiated and
expressed in the protocol. In particular, the value of the <KeyID> element in
the server’s response message may be used as CKA_ID. The call to
C_DeriveKey will, if successful, return a handle to KTOKEN. 1

1 When KAUTH is the newly generated KTOKEN, the client will need to call C_DeriveKey before calling
C_VerifyInit and C_Verify (since the hKey parameter of C_VerifyInit shall refer to KTOKEN). In this case,
the token should not allow KTOKEN to be used for any other operation than the verification of the MAC value
until the MAC has successfully been verified.

10PKCS #11 MECHANISMS FOR THE CRYPTOGRAPHIC TOKEN KEY INITIALIZATION PROTOCOL

Copyright © 2005 RSA Security Inc. All rights reserved. PKCS #11 v2.20 Amendment 2

C. Intellectual property considerations
RSA Security makes no patent claims on the general constructions described in this
document, although specific underlying techniques may be covered.
Copyright © 2005 RSA Security Inc. All rights reserved. License to copy this document
and furnish the copies to others is granted provided that the above copyright notice is
included on all such copies. This document should be identified as “RSA Security Inc.
One-Time Password Specifications (OTPS)” in all material mentioning or referencing
this document.

RSA and RSA Security are registered trademarks of RSA Security Inc. in the United
States and/or other countries. The names of other products or services mentioned may be
the trademarks of their respective owners.
This document and the information contained herein are provided on an "AS IS" basis
and RSA SECURITY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. RSA Security makes no representations regarding intellectual property
claims by other parties. Such determination is the responsibility of the user.

D. References
[1] RSA Laboratories. PKCS #11: Cryptographic Token Interface Standard. Version

2.20, June 2004. URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-
11v2-20.pdf

[2] RSA Laboratories. Cryptographic Token Key Initialization Protocol. Version 1.0,
December 2005. URL: ftp://ftp.rsasecurity.com/pub/otps/ct-kip/ct-kip-v1-0.pdf.

E. About OTPS
The One-Time Password Specifications are documents produced by RSA Laboratories in
cooperation with secure systems developers for the purpose of simplifying integration
and management of strong authentication technology into secure applications, and to
enhance the user experience of this technology.
Further development of the OTPS series will occur through mailing list discussions and
occasional workshops, and suggestions for improvement are welcome. As four our PKCS
documents, results may also be submitted to standards forums. For more information,
contact:

OTPS Editor
RSA Laboratories
174 Middlesex Turnpike
Bedford, MA 01730 USA
otps-editor@rsasecurity.com
http://www.rsasecurity.com/rsalabs/

