
Copyright © 2006 RSA, The Security Division of EMC. All rights reserved. License to copy this
document and furnish the copies to others is granted provided that the above copyright notice is included
on all such copies. This document should be identified as “RSA Public-Key Cryptography Standards
(PKCS)” in all material mentioning or referencing this document

PKCS #11 v2.20 Amendment 3 - Draft 2

Additional PKCS#11 Mechanisms

RSA Laboratories

October 2006

Editor’s note: This is the second draft of this amendment. Comments and feedback are
welcome and should be sent to the Cryptoki mailing list (Cryptoki@rsasecurity.com) or

the editor (pkcs-editor@rsasecurity.com)

Table of Contents

1 INTRODUCTION... 1

2 DEFINITIONS .. 1

3 MECHANISMS... 1
3.1 RSA ADDITIONAL VARIANTS.. 2

3.1.1 Definitions... 2
3.1.2 PKCS #1 RSA OAEP mechanism parameters... 2
3.1.3 PKCS #1 v1.5 RSA signature with SHA-224... 2
3.1.4 PKCS #1 RSA PSS signature with SHA-224 ... 2

3.2 SHA-224.. 3
3.2.1 Definitions... 3
3.2.2 SHA-224 digest.. 3
3.2.3 General-length SHA-224-HMAC ... 3
3.2.4 SHA-224-HMAC.. 4
3.2.5 SHA-224 key derivation... 4

3.3 AES WITH COUNTER... 5
3.3.1 Definitions... 5
3.3.2 AES with Counter mechanism parameters.. 5
♦ CK_ AES_CTR _PARAMS; CK_ AES_CTR _PARAMS_PTR.. 5
3.3.3 AES with Counter Encryption / Decryption.. 6

3.4 CAMELLIA... 6
3.4.1 Definitions... 7
3.4.2 Camellia secret key objects ... 7
3.4.3 Camellia key generation.. 8
3.4.4 Camellia-ECB ... 8
3.4.5 CAMELLIA-CBC... 9
3.4.6 Camellia-CBC with PKCS padding.. 10
3.4.7 General-length Camellia-MAC.. 11

 ii

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

3.4.8 Camellia-MAC .. 12
3.5 KEY DERIVATION BY DATA ENCRYPTION - CAMELLIA.. 12

Definitions .. 13
Mechanism Parameters ... 13

A. MANIFEST CONSTANTS ... 14

B. INTELLECTUAL PROPERTY CONSIDERATIONS.. 14

C. REFERENCES.. 16

D. ABOUT PKCS... 16

List of Tables

TABLE 1, MECHANISMS VS. FUNCTIONS ...1
TABLE 2, PKCS #1 MASK GENERATION FUNCTIONS...2
TABLE 3, SHA-224: DATA LENGTH..3
TABLE 4, GENERAL-LENGTH SHA-224-HMAC: KEY AND DATA LENGTH.........................4
TABLE 2, CAMELLIA SECRET KEY OBJECT ATTRIBUTES ..7
TABLE 3, CAMELLIA-ECB: KEY AND DATA LENGTH ..9
TABLE 4, CAMELLIA-CBC: KEY AND DATA LENGTH.. 10
TABLE 5, CAMELLIA-CBC WITH PKCS PADDING: KEY AND DATA LENGTH.................... 11
TABLE 6, GENERAL-LENGTH CAMELLIA-MAC: KEY AND DATA LENGTH 11
TABLE 7, CAMELLIA-MAC: KEY AND DATA LENGTH... 12
TABLE 8, MECHANISM PARAMETERS FOR CAMELLIA-BASED KEY DERIVATION 13

PKCS #11 V2.20 AMDENDMENT 3 1

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

1 Introduction

This document is an amendment to PKCS #11 v2.20 [1] and describes extensions to
PKCS #11 to support additional mechanisms.

2 Definitions

 AES Advanced Encryption Standard, as defined in FIPS
PUB 197.

 CAMELLIA The Camellia encryption algorithm, as defined in RFC
3713.

 SHA-224 The Secure Hash Algorithm with a 224-bit message
digest, as defined in RFC 3874.

3 Mechanisms

The following table shows, for the mechanisms defined in this document, their support by
different cryptographic operations. For any particular token, of course, a particular
operation may well support only a subset of the mechanisms listed. There is also no
guarantee that a token that supports one mechanism for some operation supports any
other mechanism for any other operation (or even supports that same mechanism for any
other operation).

Table 1, Mechanisms vs. Functions
 Functions

Mechanism

Encrypt
&

Decrypt

Sign
&

Verify

SR
&

VR1

Digest

Gen.
 Key/
Key
Pair

Wrap
&

Unwrap

Derive

CKM_SHA224
CKM_SHA224_HMAC
CKM_SHA224_HMAC_GENERAL
CKM_SHA224_RSA_PKCS
CKM_SHA224_RSA_PKCS_PSS
CKM_SHA224_KEY_DERIVATION
CKM_AES_CTR
CKM_CAMELLIA_KEY_GEN
CKM_CAMELLIA_ECB
CKM_CAMELLIA_CBC
CKM_CAMELLIA_CBC_PAD
CKM_CAMELLIA_MAC_GENERAL
CKM_CAMELLIA_MAC
CKM_CAMELLIA_ECB_ENCRYPT_DATA
CKM_CAMELLIA_CBC_ENCRYPT_DATA

The remainder of this section will present in detail the mechanisms and the parameters
which are supplied to them.

PKCS #11 V2.20 AMDENDMENT 3 2

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

3.1 RSA additional variants

For completeness and consistency with all the other SHA variants the following additions
have been made to include the SHA-224 variant of these mechanisms.

3.1.1 Definitions

Mechanisms:

CKM_SHA224_RSA_PKCS
CKM_SHA224_RSA_PKCS_PSS

3.1.2 PKCS #1 RSA OAEP mechanism parameters

The following table lists the added MGF functions.

Table 2, PKCS #1 Mask Generation Functions

Source Identifier Value
CKG_MGF1_SHA224 0x00000005

3.1.3 PKCS #1 v1.5 RSA signature with SHA-224

The PKCS #1 v1.5 RSA signature with SHA-224 mechanism, denoted
CKM_SHA224_RSA_PKCS perform similarly as the other CKM_SHAX_RSA_PKCS
mechanisms but using the SHA-224 hash functions.

3.1.4 PKCS #1 RSA PSS signature with SHA-224

The PKCS #1 RSA PSS signature with SHA-224 mechanism, denoted
CKM_SHA224_RSA_PKCS_PSS, perform similarly as the other
CKM_SHAX_RSA_PSS mechanisms but using the SHA-224, hash functions.

3.2 SHA-224

3.2.1 Definitions

Mechanisms:

CKM_SHA224
CKM_SHA224_HMAC
CKM_SHA224_HMAC_GENERAL
CKM_SHA224_KEY_DERIVATION

PKCS #11 V2.20 AMDENDMENT 3 3

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

3.2.2 SHA-224 digest

The SHA-224 mechanism, denoted CKM_SHA224, is a mechanism for message
digesting, following the Secure Hash Algorithm with a 224-bit message digest defined in
[2].

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

Table 3, SHA-224: Data Length

Function Input length Digest length
C_Digest any 28

3.2.3 General-length SHA-224-HMAC

The general-length SHA-224-HMAC mechanism, denoted
CKM_SHA224_HMAC_GENERAL, is the same as the general-length SHA-1-HMAC
mechanism except that it uses the HMAC construction based on the SHA-224 hash
function and length of the output should be in the range 0-28 The keys it uses are generic
secret keys. FIPS-198 compliant tokens may require the key length to be at least 14 bytes;
that is, half the size of the SHA-224 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-28 (the output size of SHA-224
is 28 bytes). FIPS-198 compliant tokens may constrain the output length to be at least 4 or
14 (half the maximum length). Signatures (MACs) produced by this mechanism will be
taken from the start of the full 28 byte HMAC output.

Table 4, General-length SHA-224-HMAC: Key And Data Length

Function Key type Data
length

Signature length

C_Sign generic secret Any 0-28, depending on parameters
C_Verify generic secret Any 0-28, depending on parameters

3.2.4 SHA-224-HMAC

The SHA-224-HMAC mechanism, denoted CKM_SHA224_HMAC, is a special case of
the general-length SHA-224-HMAC mechanism.

It has no parameter, and always produces an output of length 28.

PKCS #11 V2.20 AMDENDMENT 3 4

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

3.2.5 SHA-224 key derivation

SHA-224 key derivation, denoted CKM_SHA224_KEY_DERIVATION, is the same as
the SHA-1 key derivation mechanism in Section Error! Reference source not found.,
except that it uses the SHA-224 hash function and the relevant length is 28 bytes.

PKCS #11 V2.20 AMDENDMENT 3 5

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

3.3 AES with Counter

3.3.1 Definitions

Mechanisms:

CKM_AES_CTR

3.3.2 AES with Counter mechanism parameters

♦ CK_ AES_CTR _PARAMS; CK_ AES_CTR _PARAMS_PTR

CK_ AES_CTR _PARAMS is a structure that provides the parameters to the
CKM_AES_CTR mechanism. It is defined as follows:

typedef struct CK_AES_CTR_PARAMS {
 CK_ULONG ulCounterBits;
 CK_BYTE cb[16];
} CK_AES_CTR_PARAMS;

ulCounterBits specifies the number of bits in the counter block (cb) that shall be
incremented. This number shall be such that 0 < ulCounterBits <= 128. For any values
outside this range the mechanism shall return
CKR_MECHANISM_PARAM_INVALID.

It's up to the caller to initialize all of the bits in the counter block including the counter
bits. The counter bits are the least significant bits of the counter block (cb). They are a
big-endian value usually starting with 1. The rest of ‘cb’ is for the nonce, and maybe an
optional IV.

E.g. as defined in RFC 3686 [4]:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Nonce |
 +-+
 | Initialization Vector (IV) |
 | |
 +-+
 | Block Counter |
 +-+

This construction permits each packet to consist of up to 232-1 blocks = 4,294,967,295
blocks = 68,719,476,720 octets.

CK_ AES_CTR _PARAMS_PTR is a pointer to a CK_ AES_CTR _PARAMS.

PKCS #11 V2.20 AMDENDMENT 3 6

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

3.3.3 AES with Counter Encryption / Decryption

Generic AES counter mode is described in NIST Special Publication 800-38A [3], and in
RFC 3686 [4]. These describe encryption using a counter block which may include a
nonce to guarantee uniqueness of the counter block. Since the nonce is not incremented,
the mechanism parameter must specify the number of counter bits in the counter block.

The block counter is incremented by 1 after each block of plaintext is processed. There is
no support for any other increment functions in this mechanism.

If an attempt to encrypt/decrypt is made which will cause an overflow of the counter
block’s counter bits to be used then the mechanism shall return
CKR_DATA_LEN_RANGE. Note that the mechanism should allow the final post
increment of the counter to overflow (if it implements it this way) but not allow any
further processing after this point. E.g. if ulCounterBits = 2 and the counter bits start as 1
then only 3 blocks of data can be processed.

3.4 CAMELLIA

Camellia is a block cipher with 128-bit block size and 128-, 192-, and 256-bit keys, similar
to AES. Camellia is described e.g. in IETF RFC 3713 ([6]).

3.4.1 Definitions

This section defines the key type “CKK_CAMELLIA” for type CK_KEY_TYPE as used
in the CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_CAMELLIA_KEY_GEN
CKM_CAMELLIA_ECB
CKM_CAMELLIA_CBC
CKM_CAMELLIA_MAC
CKM_CAMELLIA_MAC_GENERAL
CKM_CAMELLIA_CBC_PAD

3.4.2 Camellia secret key objects

Camellia secret key objects (object class CKO_SECRET_KEY, key type
CKK_CAMELLIA) hold Camellia keys. The following table defines the Camellia secret
key object attributes, in addition to the common attributes defined for this object class:

PKCS #11 V2.20 AMDENDMENT 3 7

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

Table 5, Camellia Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (16, 24, or 32

bytes)
CKA_VALUE_LEN2,3,6 CK_ULONG Length in bytes of key

value
- Refer to table 15 of [1] for footnotes.

The following is a sample template for creating a Camellia secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAMELLIA;
CK_UTF8CHAR label[] = “A Camellia secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

3.4.3 Camellia key generation

The Camellia key generation mechanism, denoted CKM_CAMELLIA_KEY_GEN, is a
key generation mechanism for Camellia.

It does not have a parameter.

The mechanism generates Camellia keys with a particular length in bytes, as specified in
the CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the Camellia key type
(specifically, the flags indicating which functions the key supports) may be specified in the
template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes,
in bytes.

PKCS #11 V2.20 AMDENDMENT 3 8

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

3.4.4 Camellia-ECB

Camellia-ECB, denoted CKM_CAMELLIA_ECB, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on
Camellia and electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to block size minus one null bytes so that the resulting
length is a multiple of the block size. The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 6, Camellia-ECB: Key And Data Length

Function Key type Input
length

Output length Comments

C_Encrypt CKK_CAMELLIA multiple
of block

size

same as input length no final part

C_Decrypt CKK_CAMELLIA multiple
of block

size

same as input length no final part

C_WrapKey CKK_CAMELLIA any input length rounded
up to multiple of block

size

C_UnwrapKey CKK_CAMELLIA multiple
of block

size

determined by type of
key being unwrapped

or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes,
in bytes.

PKCS #11 V2.20 AMDENDMENT 3 9

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

3.4.5 CAMELLIA-CBC

Camellia-CBC, denoted CKM_CAMELLIA_CBC, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on
Camellia and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to block size minus one null bytes so that the resulting
length is a multiple of the block size. The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 7, Camellia-CBC: Key And Data Length

Function Key type Input
length

Output length Comments

C_Encrypt CKK_CAMELLIA multiple of
block size

same as input length no final
part

C_Decrypt CKK_CAMELLIA multiple of
block size

same as input length no final
part

C_WrapKey CKK_CAMELLIA any input length rounded
up to multiple of the

block size

C_UnwrapKey CKK_CAMELLIA multiple of
block size

determined by type
of key being

unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes,
in bytes.

PKCS #11 V2.20 AMDENDMENT 3 10

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

3.4.6 Camellia-CBC with PKCS padding

Camellia-CBC with PKCS padding, denoted CKM_CAMELLIA_CBC_PAD, is a
mechanism for single- and multiple-part encryption and decryption; key wrapping; and key
unwrapping, based on Camellia; cipher-block chaining mode; and the block cipher padding
method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and
DSA private keys (see Section TBA for details). The entries in the table below for data
length constraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 8, Camellia-CBC with PKCS Padding: Key And Data Length

Function Key type Input
length

Output length

C_Encrypt CKK_CAMELLIA any input length rounded up to
multiple of the block size

C_Decrypt CKK_CAMELLIA multiple of
block size

between 1 and block size
bytes shorter than input

length
C_WrapKey CKK_CAMELLIA any input length rounded up to

multiple of the block size
C_UnwrapKey CKK_CAMELLIA multiple of

block size
between 1 and block length

bytes shorter than input
length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes,
in bytes.

3.4.7 General-length Camellia-MAC

General-length Camellia -MAC, denoted CKM_CAMELLIA_MAC_GENERAL, is a
mechanism for single- and multiple-part signatures and verification, based on Camellia and
data authentication as defined in [5].

PKCS #11 V2.20 AMDENDMENT 3 11

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the
output length desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final Camellia cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 9, General-length Camellia-MAC: Key And Data Length

Function Key type Data
length

Signature length

C_Sign CKK_CAMELLIA any 0-block size, as specified in parameters
C_Verify CKK_CAMELLIA any 0-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes,
in bytes.

3.4.8 Camellia-MAC

Camellia-MAC, denoted by CKM_CAMELLIA_MAC, is a special case of the general-
length Camellia-MAC mechanism. Camellia-MAC always produces and verifies MACs
that are half the block size in length.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 10, Camellia-MAC: Key And Data Length

Function Key type Data
length

Signature length

C_Sign CKK_CAMELLIA any ½ block size (8 bytes)
C_Verify CKK_CAMELLIA any ½ block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes,
in bytes.

3.5 Key derivation by data encryption - Camellia

These mechanisms allow derivation of keys using the result of an encryption operation as
the key value. They are for use with the C_DeriveKey function.

PKCS #11 V2.20 AMDENDMENT 3 12

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

Definitions

Mechanisms:

CKM_CAMELLIA_ECB_ENCRYPT_DATA
CKM_CAMELLIA_CBC_ENCRYPT_DATA

typedef struct CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS {
 CK_BYTE iv[16];
 CK_BYTE_PTR pData;
 CK_ULONG length;
} CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS;
typedef CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS CK_PTR
CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS_PTR;

Mechanism Parameters

Uses CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS, and
CK_KEY_DERIVATION_STRING_DATA as defined in section TBA

Table 11, Mechanism Parameters for Camellia-based key derivation

CKM_CAMELLIA_ECB_ENCRYPT_DATA Uses CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted and must
be a multiple of 16 long.

CKM_CAMELLIA_CBC_ENCRYPT_DATA Uses
CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the data.
The data value part
must be a multiple of 16 bytes long.

PKCS #11 V2.20 AMDENDMENT 3 13

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

A. Manifest constants

The following definitions can be found in the appropriate header file.

#define CKM_SHA224 0x00000255
#define CKM_SHA224_HMAC 0x00000256
#define CKM_SHA224_HMAC_GENERAL 0x00000257
#define CKM_SHA224_RSA_PKCS 0x00000046
#define CKM_SHA224_RSA_PKCS_PSS 0x00000047
#define CKM_SHA224_KEY_DERIVATION 0x00000396
#define CKG_MGF1_SHA224 0x00000005

#define CKM_AES_CTR 0x00001086

#define CKK_CAMELLIA 0x00000025
#define CKM_CAMELLIA_KEY_GEN 0x00000550
#define CKM_CAMELLIA_ECB 0x00000551
#define CKM_CAMELLIA_CBC 0x00000552
#define CKM_CAMELLIA_MAC 0x00000553
#define CKM_CAMELLIA_MAC_GENERAL 0x00000554
#define CKM_CAMELLIA_CBC_PAD 0x00000555
#define CKM_CAMELLIA_ECB_ENCRYPT_DATA 0x00000556
#define CKM_CAMELLIA_CBC_ENCRYPT_DATA 0x00000557

B. Intellectual property considerations

RSA makes no patent claims on the general constructions described in this document,
although specific underlying techniques may be covered.

Copyright © 2006 RSA, The Security Division of EMC. All rights reserved. License to
copy this document and furnish the copies to others is granted provided that the above
copyright notice is included on all such copies. This document should be identified as
“RSA: PKCS #11 V2.20 Amendment 3” in all material mentioning or referencing this
document.

RSA is a registered trademark of RSA, The Security Division of EMC in the United States
and/or other countries. The names of other products or services mentioned may be the
trademarks of their respective owners.

This document and the information contained herein are provided on an "AS IS" basis and
RSA DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. RSA
makes no representations regarding intellectual property claims by other parties. Such
determination is the responsibility of the user.

PKCS #11 V2.20 AMDENDMENT 3 14

Copyright  2006 RSA, The Security Division of EMC PKCS #11 V2.20 Amendment 3 – draft 1

C. References

[1] RSA Laboratories. PKCS #11: Cryptographic Token Interface Standard. Version
2.20, June 2004. URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-
11v2-20.pdf.

[2] Smit et al, “A 224-bit One-way Hash Function: SHA-224,” IETF RFC 3874, June
2004. URL: http://ietf.org/rfc/rfc3874.txt.

[3] National Institute for Standards and Technology, “Recommendation for Block
Cipher Modes of Operation,” NIST SP 800-38A. URL:
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

[4] Housley, “Using Advanced Encryption Standard (AES) Counter Mode With IPsec
Encapsulating Security Payload (ESP),” IETF RFC 3686, January 2004. URL:
http://ietf.org/rfc/rfc3686.txt.

[5] FIPS Publication 113, “Computer Data Authentication,” U.S. DoC/NIST, May
1985. URL: http:// http://www.itl.nist.gov/fipspubs/fip113.htm.

[6] Matsui, et al, ”A Description of the Camellia Encryption Algorithm,” IETF RFC
3717, April 2004. URL: http://ietf.org/rfc/rfc3713.txt.

D. About PKCS

The Public Key Cryptography Standards are documents produced by RSA in cooperation
with secure systems developers for the purpose of simplifying integration and management
of accelerating the deployment of public-key cryptography and strong authentication
technology into secure applications, and to enhance the user experience of these
technologies.

RSA plans further development of the PKCS series through mailing list discussions and
occasional workshops, and suggestions for improvement are welcome. Results may also
be submitted to standards forums. For more information, contact:

PKCS Editor
RSA, The Security Division of EMC
174 Middlesex Turnpike
Bedford, MA 01730 USA
pkcss-editor@rsasecurity.com
http://www.rsasecurity.com/rsalabs/

