
PKCS #11 v2.11 Amendment 1
RSA Laboratories

28 August, 2002

Table of Contents
1. SCOPE... 2
2. PERSONAL TRUSTED DEVICES .. 2

2.1 BACKGROUND.. 2
2.2 SECURITY ASPECTS .. 3
2.3 USE OF SIGNATURE POLICIES .. 3
2.4 AUTHENTICATION OF PCS TO PTDS... 3

3. CHANGES TO SECTION 3, “REFERENCES” ... 3
4. CHANGES TO SECTION 4, “DEFINITIONS”.. 4
5. CHANGES TO SECTION 9.4, “OBJECT TYPES” ... 4
6. CHANGES TO SECTION 9.5, “DATA TYPES FOR MECHANISMS”.................................... 5
7. CHANGES TO SECTION 9.6, “FUNCTION TYPES”.. 5
8. CHANGES TO SECTION 10, “OBJECTS".. 5
9. CHANGES TO SECTION 10.3, “HARDWARE FEATURE OBJECTS”.................................. 6
10. NEW SECTION 10.12 ... 7
11. CHANGES TO SECTION 12, “MECHANISMS” ... 9
A. INTELLECTUAL PROPERTY CONSIDERATIONS... 12
B. REFERENCES.. 12
C. ABOUT PKCS... 12

Copyright © 2002 RSA Laboratories, a division of RSA Security Inc. License to copy this document is
granted provided that it is identified as “RSA Security Inc. Public-Key Cryptography Standards (PKCS)”
in all material mentioning or referencing this document.
003-903081-211-001-000

PKCS #11 V2.11 AMENDMENT 1 2

1. Scope
This amendment documents the changes to PKCS #11 v2.11 [4] needed to support:

- tokens capable not only of signing information but also of securely presenting that
information to the user; and

- tokens capable of forming CMS [1] (or PKCS #7 [3]) SignerInfo values by themselves.

Note – The above capabilities are typical for Personal Trusted Devices (see the next Section), but may also be
supported by other types of tokens.

It does so by defining:

- a new hardware feature object describing the presentation capabilities of the token;

- a new object class describing mechanisms; and

- a new signature mechanism, which allows the caller to submit the information to be
signed, rather than the digest of the information.

2. Personal Trusted Devices

2.1 Background

This amendment introduces support for Personal Trusted Devices in PKCS #11. The term
“personal trusted device” (PTD) is characterized in [2] as something which “is personal,
controlled and used by one person and carried by that person most of the time…has an
application platform with associated user interfaces for transaction related services such
as banking, payment, bonus programs…[and] has the security functionality required for
transaction related services: secure sessions, authentication and authorization.” Further,
the PTD “contains a Security Element, which is used for protecting its most critical data,
such as private keys.”

There is also built-in functionality to authenticate the user/owner to the PTD, and to store
security-related objects, such as certificates.

A personal trusted device could be a PDA, a mobile phone or some other portable device.
The important thing is that its owner can rightfully regard it as a trusted computing base.
It is likely that, as mobile commerce evolves, PTDs will be an important enabler of
applications that would otherwise not be feasible.

PTDs allow secure signatures to be made both in a personal environment and in more
public environments, e.g. web cafés. The changes documented here will, when
implemented, allow an application, informed of the fact that a PTD is available to sign
the message, to provide the PTD with the message itself, and an indication of desired
signed attributes. These attributes will then be compared against some configuration in
the PTD before being accepted. The PTD may also add attributes of its own before
returning the desired signature.

Copyright © 2002 RSA Security.

PKCS #11 V2.11 AMENDMENT 1 3

2.2 Security aspects

As indicated above, when a token acts as a personal trusted device, it does so thanks to
certain characteristics, including:

- a trusted computing base;

- a user interface which is trusted;

- a security element which protects the signature keys; and

- a requirement of explicit user consent before each usage of the signature keys for
non-repudiation purposes.

The combination of these characteristics provides users with a device following the
“What You See Is What You Sign” paradigm. Users need therefore not trust software in
personal computers in order to make signatures on transactions created in those personal
computers – the transaction presented by the PTD is what needs to be authorized. While
this provides an added level of security and assurance to signers, it does not, as the next
sub-section will discuss, necessarily do so for receivers of these signatures.

2.3 Use of signature policies

A PTD may well add signed attributes of its own. One such attribute could indicate the
particular signature policy it is working under. Another such attribute could identify what
parts of a multi-part MIME message that has been presented by the PTD. The definition
of these attributes is out of scope for this document.

A certificate-issuing authority may also elect to indicate in issued certificates the policies
under which the private key may (or can) be used.

A signature-receiving application cannot in general trust signed attributes – a security
element in the PTD may have been removed from the PTD and used in another
environment which did not allow the user to view the information on a secure display
before signing, for example. Such trust may however be asserted, when a certificate-
issuing authority has vouched for the usage policies of the private key through, e.g. a
certificate policy identifier or similar.

2.4 Authentication of PCs to PTDs

In certain environments or scenarios, there might be a need for the PTD to authenticate
the requestor. Since the authentication will be carried out beneath the PKCS #11
interface, it is however out of scope for this document.

3. Changes to Section 3, “References”
[Add the following references, maintaining the alphabetical ordering of references:]

CC/PP Struct W3C. Composite Capability/Preference Profiles (CC/PP): Structure and
Vocabularies. World Wide Web Consortium, Working Draft 15 March
2001. URL: http://www.w3.org/TR/CCPP-struct-vocab/

MeT-PTD MeT. MeT PTD Definition – Personal Trusted Device Definition, Version
1.0, 21 February 2001. URL: http://www.mobiletransaction.org

Copyright © 2002 RSA Security.

http://www.w3.org/TR/CCPP-struct-vocab/
http://www.mobiletransaction.org/

PKCS #11 V2.11 AMENDMENT 1 4

RFC 2045 Freed, N., and N. Borenstein. IETF RFC 2045: Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet Message Bodies.
November 1996. URL: http://ietf.org/rfc/rfc2045.txt

RFC 2534 Masinter, L., Wing, D., Mutz, A., and K. Holtman. IETF RFC 2534:
Media Features for Display, Print, and Fax. March 1999. URL:
http://ietf.org/rfc/rfc2534.txt

RFC 2630 R. Housley. IETF RFC 2630: Cryptographic Message Syntax. June 1999.
URL: http://ietf.org/rfc/rfc2630.txt.

4. Changes to Section 4, “Definitions”
[Add the following new definitions to PKCS #11 v2.11 Section 4, maintaining the
alphabetical order of definitions:]

 CMS Cryptographic Message Syntax (see RFC 2630)
 PTD Personal Trusted Device, as defined in MeT-PTD

5. Changes to Section 9.4, “Object types”
[Add the following object class definition to the listing under the heading "CK_OBJECT
CLASS; CK_OBJECT_PTR"]

#define CKO_MECHANISM 0x00000007

[Add the following hardware feature type definition to the listing under the heading
“CK_HW_FEATURE_TYPE”:]

#define CKH_USER_INTERFACE 0x00000003

 [Add the following attribute type definitions to the listing under the heading
“CK_ATTRIBUTE_TYPE”:]

#define CKA_PIXEL_X 0x00000400
#define CKA_PIXEL_Y 0x00000401
#define CKA_RESOLUTION 0x00000402
#define CKA_CHAR_ROWS 0x00000403
#define CKA_CHAR_COLUMNS 0x00000404
#define CKA_COLOR 0x00000405
#define CKA_BITS_PER_PIXEL 0x00000406
#define CKA_CHAR_SETS 0x00000480
#define CKA_ENCODING_METHODS 0x00000481
#define CKA_MIME_TYPES 0x00000482
#define CKA_MECHANISM_TYPE 0x00000500
#define CKA_REQUIRED_CMS_ATTRIBUTES 0x00000501
#define CKA_DEFAULT_CMS_ATTRIBUTES 0x00000502
#define CKA_SUPPORTED_CMS_ATTRIBUTES 0x00000503

Copyright © 2002 RSA Security.

http://ietf.org/rfc/rfc2045.txt
http://ietf.org/rfc/rfc2534.txt
http://ietf.org/rfc/rfc2630.txt

PKCS #11 V2.11 AMENDMENT 1 5

6. Changes to Section 9.5, “Data types for mechanisms”
[Add the following mechanism definition in the listing under the heading
“CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR,” maintaining the numerical
ordering of definitions:]

#define CKM_CMS_SIG 0x00000500

7. Changes to Section 9.6, “Function types”
[Add the following definition to the list of return values under the heading" CK_RV",
maintaining the numerical order of return values:]

#define CKR_FUNCTION_REJECTED 0x00000200

8. Changes to Section 10, “Objects"
[Replace Figure 5 with the following figure:]

Storage

Token
Private
Label
Modifiable

Data

Application
Object Identifier
Value

Key

Domain
parameters

Certificate

Hardware feature
Feature type

Mechanism
Mechanism type

Object
Class

Copyright © 2002 RSA Security.

PKCS #11 V2.11 AMENDMENT 1 6

9. Changes to Section 10.3, “Hardware Feature Objects”
[Replace Figure 6 with the following figure:]

Monotonic Counter
Reset by Init
Has Been Reset
Value

Clock
Value

User Interface
Pixel X
Pixel Y
Resolution
Char Rows
Char Columns
Color
Bits Per Pixel
Char Sets
Encoding Methods
MIME Types

HW Feature
Feature Type

[Replace the paragraph directly after Table 16 with the following paragraph:]

This version of Cryptoki supports the following values for
CKA_HW_FEATURE_TYPE: CKH_MONOTONIC_COUNTER, CKH_CLOCK,
and CKH_USER_INTERFACE.

[Add a new sub-subsection 10.3.3 as follows:]

10.3.3 User Interface Objects

User interface objects represent the presentation capabilities of the device.

Copyright © 2002 RSA Security.

PKCS #11 V2.11 AMENDMENT 1 7

Attribute Data type Meaning
CKA_PIXEL_X CK_ULONG Screen resolution (in pixels) in X-axis (e.g.

1280)
CKA_PIXEL_Y CK_ULONG Screen resolution (in pixels) in Y-axis (e.g.

1024)
CKA_RESOLUTION CK_ULONG DPI, pixels per inch
CKA_CHAR_ROWS CK_ULONG For character-oriented displays; number of

character rows (e.g. 24)
CKA_CHAR_COLUMNS CK_ULONG For character-oriented displays: number of

character columns (e.g. 80). If display is of
proportional-font type, this is the width of the
display in “em”-s (letter “M”), see CC/PP
Struct.

CKA_COLOR CK_BBOOL Color support
CKA_BITS_PER_PIXEL CK_ULONG The number of bits of color or grayscale

information per pixel.
CKA_CHAR_SETS RFC 2279 string String indicating supported character sets, as

defined by IANA MIBenum sets
(www.iana.org). Supported character sets are
separated with “;”. E.g. a token supporting
iso-8859-1 and us-ascii would set the
attribute value to “4;3”.

CKA_ENCODING_METHODS RFC 2279 string String indicating supported content transfer
encoding methods, as defined by IANA
(www.iana.org). Supported methods are
separated with “;”. E.g. a token supporting
7bit, 8bit and base64 could set the attribute
value to “7bit;8bit;base64”.

CKA_MIME_TYPES RFC 2279 string String indicating supported (presentable)
MIME-types, as defined by IANA
(www.iana.org). Supported types are
separated with “;”. E.g. a token supporting
MIME types "a/b", "a/c" and "a/d" would set
the attribute value to “a/b;a/c;a/d”.

The selection of attributes, and associated data types, has been done in an attempt to stay
as aligned with RFC 2534 and CC/PP Struct as possible. The special value
CK_UNAVAILABLE_INFORMATION may be used for CK_ULONG-based attributes
when information is not available or applicable.

None of the attribute values may be set by an application.

The value of the CKA_ENCODING_METHODS attribute may be used when the
application needs to send MIME objects with encoded content to the token.

10. New section 10.12
[Add a new section 10.12 as follows:]

Copyright © 2002 RSA Security.

http://www.iana.org/
http://www.iana.org/
http://www.iana.org/

PKCS #11 V2.11 AMENDMENT 1 8

10.12 Mechanism Objects

Mechanism objects provide information about mechanisms supported by a device beyond
that given by the CK_MECHANISM_INFO structure.

When searching for objects using C_FindObjectsInit and C_FindObjects, mechanism
objects are not returned unless the CKA_CLASS attribute in the template has the value
CKO_MECHANISM. This protects applications written to previous versions of
cryptoki from finding objects that they do not understand.

Attribute Data Type Meaning
CKA_MECHANISM_TYPE CK_MECHANISM_TYPE The type of mechanism

object

 This version of cryptoki supports the following values for
CKA_MECHANISM_TYPE: CKM_CMS_SIG.

The CKA_MECHANISM_TYPE attribute may not be set.

10.12.1 CMS Signature Mechanism Objects

These objects provide information relating to the CKM_CMS_SIG mechanism.
CKM_CMS_SIG mechanism object attributes represent information about supported
CMS signature attributes in the token. They are only present on tokens supporting the
CKM_CMS_SIG mechanism, but must be present on those tokens.

Attribute Data type Meaning
CKA_REQUIRED_CMS_ATTRIBUTES Byte array Attributes the token always will include in

the set of CMS signed attributes
CKA_DEFAULT_CMS_ATTRIBUTES Byte array Attributes the token will include in the set

of CMS signed attributes in the absence of
any attributes specified by the application

CKA_SUPPORTED_CMS_ATTRIBUTES Byte array Attributes the token may include in the set
of CMS signed attributes upon request by
the application

The contents of each byte array will be a DER-encoded list of CMS Attributes with
optional accompanying values. Any attributes in the list shall be identified with its object
identifier, and any values shall be DER-encoded. The list of attributes is defined in
ASN.1 as:
 Attributes ::= SET SIZE (1..MAX) OF Attribute

 Attribute ::= SEQUENCE {
 attrType OBJECT IDENTIFIER,
 attrValues SET OF ANY DEFINED BY OBJECT IDENTIFIER OPTIONAL
 }

The client may not set any of the attributes.

Copyright © 2002 RSA Security.

PKCS #11 V2.11 AMENDMENT 1 9

11. Changes to Section 12, “Mechanisms”

[Add the following entry to Table 63, just after the “CKM_TLS_KEY_AND_MAC_DERIVE”
entry, indicating that the new mechanism supports signatures with and without message
recovery:]

CKM_CMS_SIG

[Add new sub-sections 12.44 and 12.45 as follows:]

12.44 CMS mechanism parameters

♦ CK_CMS_SIG_PARAMS, CK_CMS_SIG_PARAMS_PTR

CK_CMS_SIG_PARAMS is a structure that provides the parameters to the
CKM_CMS_SIG mechanism. It is defined as follows:

typedef struct CK_CMS_SIG_PARAMS {
CK_OBJECT_HANDLE certificateHandle;
CK_MECHANISM_PTR pSigningMechanism;
CK_MECHANISM_PTR pDigestMechanism;
CK_UTF8CHAR_PTR pContentType;
CK_BYTE_PTR pRequestedAttributes;
CK_ULONG ulRequestedAttributesLen;
CK_BYTE_PTR pRequiredAttributes;
CK_ULONG ulRequiredAttributesLen;
} CK_CMS_SIG_PARAMS;

The fields of the structure have the following meanings:

 certificateHandle Object handle for a certificate associated with the
signing key. The token may use information from
this certificate to identify the signer in the SignerInfo
result value. CertificateHandle may be NULL_PTR if
the certificate is not available as a PKCS #11 object
or if the calling application leaves the choice of
certificate completely to the token.

 pSigningMechanism Mechanism to use when signing a constructed CMS
SignedAttributes value. E.g.
CKM_SHA1_RSA_PKCS.

 pDigestMechanism Mechanism to use when digesting the data. Value
shall be NULL_PTR when the digest mechanism to
use follows from the pSigningMechanism parameter.

 pContentType NULL-terminated string indicating complete MIME
Content-type of message to be signed; or the value
NULL_PTR if the message is a MIME object (which
the token can parse to determine its MIME Content-

Copyright © 2002 RSA Security.

PKCS #11 V2.11 AMENDMENT 1 10

type if required). Use the value
“application/octet-stream“ if the MIME type for
the message is unknown or undefined. Note that the
pContentType string shall conform to the syntax
specified in RFC 2045, i.e. any parameters needed for
correct presentation of the content by the token (such
as, for example, a non-default “charset”) must be
present. The token must follow rules and procedures
defined in RFC 2045 when presenting the content.

 pRequestedAttributes Pointer to DER-encoded list of CMS Attributes the
caller requests to be included in the signed attributes.
Token may freely ignore this list or modify any
supplied values.

 ulRequestedAttributesLen Length in bytes of the value pointed to by
pRequestedAttributes

 pRequiredAttributes Pointer to DER-encoded list of CMS Attributes (with
accompanying values) required to be included in the
resulting signed attributes. Token must not modify
any supplied values. If the token does not support one
or more of the attributes, or does not accept provided
values, the signature operation will fail. The token
will use its own default attributes when signing if
both the pRequestedAttributes and
pRequiredAttributes field are set to NULL_PTR.

 ulRequiredAttributesLen Length in bytes, of the value pointed to by
pRequiredAttributes.

12.45 CMS mechanisms

12.45.1 CMS signatures

The CMS mechanism, denoted CKM_CMS_SIG, is a multi-purpose mechanism based
on the structures defined in PKCS #7 and RFC 2630. It supports single- or multiple-part
signatures with and without message recovery. The mechanism is intended for use with,
e.g., PTDs (see MeT-PTD) or other capable tokens. The token will construct a CMS
SignedAttributes value and compute a signature on this value. The content of the
SignedAttributes value is decided by the token, however the caller can suggest some
attributes in the parameter pRequestedAttributes. The caller can also require some
attributes to be present through the parameters pRequiredAttributes. The signature is
computed in accordance with the parameter pSigningMechanism.

When this mechanism is used in successful calls to C_Sign or C_SignFinal, the
pSignature return value will point to a DER-encoded value of type SignerInfo. SignerInfo is
defined in ASN.1 as follows (for a complete definition of all fields and types, see RFC
2630):

Copyright © 2002 RSA Security.

PKCS #11 V2.11 AMENDMENT 1 11

SignerInfo ::= SEQUENCE {
 version CMSVersion,
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

The certificateHandle parameter, when set, helps the token populate the sid field of the
SignerInfo value. If certificateHandle is NULL_PTR the choice of a suitable certificate
reference in the SignerInfo result value is left to the token (the token could, e.g., interact
with the user).

This mechanism shall not be used in calls to C_Verify or C_VerifyFinal (use the
pSigningMechanism mechanism instead).

In order for an application to find out what attributes are supported by a token, what
attributes that will be added by default, and what attributes that always will be added, it
shall analyze the contents of the CKH_CMS_ATTRIBUTES hardware feature object.

For the pRequiredAttributes field, the token may have to interact with the user to find out
whether to accept a proposed value or not. The token should never accept any proposed
attribute values without some kind of confirmation from its owner (but this could be
through, e.g., configuration or policy settings and not direct interaction). If a user rejects
proposed values, or the signature request as such, the value
CKR_FUNCTION_REJECTED shall be returned.

When possible, applications should use the CKM_CMS_SIG mechanism when
generating CMS-compatible signatures rather than lower-level mechanisms such as
CKM_SHA1_RSA_PKCS. This is especially true when the signatures are to be made on
content that the token is able to present to a user. Exceptions may include those cases
where the token does not support a particular signing attribute. Note however that the
token may refuse usage of a particular signature key unless the content to be signed is
known (i.e. the CKM_CMS_SIG mechanism is used).

When a token does not have presentation capabilities, the PKCS #11-aware application
may avoid sending the whole message to the token by electing to use a suitable signature
mechanism (e.g. CKM_RSA_PKCS) as the pSigningMechanism value in the
CKM_CMS_SIG_PARAMS structure, and digesting the message itself before passing
it to the token.

PKCS #11-aware applications making use of tokens with presentation capabilities,
should attempt to provide messages to be signed by the token in a format possible for the
token to present to the user. Tokens that receive multipart MIME-messages for which
only certain parts are possible to present may fail the signature operation with a return
value of CKR_DATA_INVALID, but may also choose to add a signing attribute
indicating which parts of the message that were possible to present.

Copyright © 2002 RSA Security.

PKCS #11 V2.11 AMENDMENT 1 12

Copyright © 2002 RSA Security.

A. Intellectual property considerations
RSA Security makes no patent claims on the general constructions described in this
document, although specific underlying techniques may be covered.

License to copy this document is granted provided that it is identified as “RSA Security
Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

RSA Security makes no representations regarding intellectual property claims by other
parties. Such determination is the responsibility of the user.

B. References
[1] R. Housley. IETF RFC 2630: Cryptographic Message Syntax. June 1999. URL:

http://ietf.org/rfc/rfc2630.txt.

[2] “MeT PTD Definition – Personal Trusted Device Definition,” Version 1.0, 21
February 2001. URL: http://www.mobiletransaction.org

[3] RSA Laboratories. PKCS #7 v1.5: Cryptographic Message Syntax Standard.
November 1, 1993. URL: http://www.rsalabs.com/pkcs/

[4] RSA Laboratories. PKCS #11 v2.11 (Revision 1): Cryptographic Token Interface.
November 2001. URL: http://www.rsalabs.com/pkcs/

C. About PKCS
The Public-Key Cryptography Standards are specifications produced by RSA
Laboratories in cooperation with secure systems developers worldwide for the purpose of
accelerating the deployment of public-key cryptography. First published in 1991 as a
result of meetings with a small group of early adopters of public-key technology, the
PKCS documents have become widely referenced and implemented. Contributions from
the PKCS series have become part of many formal and de facto standards, including
ANSI X9 documents, PKIX, SET, S/MIME, and SSL.

Further development of PKCS occurs through mailing list discussions and occasional
workshops, and suggestions for improvement are welcome. For more information,
contact:

PKCS Editor
RSA Laboratories
20 Crosby Drive
Bedford, MA 01730 USA
pkcs-editor@rsasecurity.com
http://www.rsasecurity.com/rsalabs/

http://ietf.org/rfc/rfc2630.txt
http://www.mobiletransaction.org/
http://www.rsalabs.com/pkcs/
http://www.rsalabs.com/pkcs/
mailto:pkcs-editor@rsa.com
http://www.rsasecurity.com/rsalabs/

	Scope
	Personal Trusted Devices
	Changes to Section 3, “References”
	Changes to Section 4, “Definitions”
	Changes to Section 9.4, “Object types”
	Changes to Section 9.5, “Data types for mechanism
	Changes to Section 9.6, “Function types”
	Changes to Section 10, “Objects"
	Changes to Section 10.3, “Hardware Feature Object
	New section 10.12
	Changes to Section 12, “Mechanisms”

