Constructing Symmetric Ciphers Using the CAST Design Procedure

CARLISLE M. ADAMS
Entrust Technologies, P.O. Box 3511 Station C, Ottawa, Canada, K1Y $4 H 7$
cadams@entrust.com

Keywords: Design of Encryption Algorithms, Block Ciphers, Substitution Boxes, Key Scheduling, Differential Cryptanalysis, Linear Cryptanalysis

Abstract

This paper describes the CAST design procedure for constructing a family of DES-like Substitution-Permutation Network (SPN) cryptosystems which appear to have good resistance to differential cryptanalysis, linear cryptanalysis, and related-key cryptanalysis, along with a number of other desirable cryptographic properties. Details of the design choices in the procedure are given, including those regarding the component substitution boxes (s-boxes), the overall framework, the key schedule, and the round function. An example CAST cipher, an output of this design procedure, is presented as an aid to understanding the concepts and to encourage detailed analysis by the cryptologic community.

1. Introduction and Motivation

This paper describes the CAST design procedure for a family of encryption algorithms. The ciphers produced, known as CAST ciphers, appear to have good resistance to differential cryptanalysis [8], linear cryptanalysis [33], and related-key cryptanalysis [9]. Furthermore, they can be shown to possess a number of desirable cryptographic properties such as avalanche [18, 19], Strict Avalanche Criterion (SAC) [54], Bit Independence Criterion (BIC) [54], and an absence of weak and semi-weak keys [25, 12, 40]. CAST ciphers are based on the well-understood and extensively-analyzed framework of the Feistel cipher [18, 19] - the framework used in DES - but with a number of improvements (compared to DES) in both the round function and the key schedule which provide good cryptographic properties in fewer rounds than DES. These ciphers therefore have very good encryption / decryption performance (comparing very favourably with many alternatives of similar cryptographic strength) and can be designed with parameters which make them particularly suitable for software implementations on 32-bit machines.

The search for a general-purpose design procedure for symmetric encryption algorithms is motivated by a number of factors, including the following.

- Despite years of speculation and warning regarding the inevitable limit to the useful lifetime of the Data Encryption Standard (as originally defined in [41]), this algorithm remains firmly entrenched in a number of environments partly because there is no obvious candidate for a DES replacement with acceptable speed and security.
- New and powerful cryptanalytic attacks have forced re-designs of suggested candidates such as FEAL [38, 39, 8], LOKI [10, 8, 11], and IDEA [29, 30]. Thus, such attacks
must be accounted for and avoided in the design procedure itself, so that algorithms produced by the procedure are known to be immune to these attacks.
- The continued disparity between "domestic-strength" cryptography and "exportablestrength" cryptography, along with the potential for multiple flavours of exportablestrength cryptography (perhaps depending on "commercial escrow" considerations), means that the paradigm of a single DES replacement algorithm almost certainly has to be abandoned in favour of a design procedure describing a family of algorithms where keysize is at least one parameter defining a specific instance of the family. Recent cipher proposals such as SAFER [32], Blowfish [49], and RC5 [48] have recognized and addressed this requirement.

1.1. Background

Some aspects of the CAST design procedure were discussed in [1, 5-7]. Analysis of CAST-like ciphers containing purely randomly-generated s-boxes with respect to both linear and differential cryptanalysis was presented in [24, 31]. As well, cryptanalysis of a 6-round CAST cipher was described in [47]; this statistical attack requires a work factor of roughly 2^{48} operations and requires 82 known plaintexts.

1.2. Outline of the Paper

The remainder of the paper is organized as follows. Section 2 presents an overview of the CAST design procedure, with subsections covering substitution box design, Feisteltype Substitution-Permutation Network (SPN) considerations, the importance of key scheduling, and possibilities for the round function. Section 3 presents a deeper treatment of the design procedure, giving further details, along with assertions and theorems, regarding these four main aspects of CAST cipher design. The fourth section covers design alternatives available for both the SPN framework and the implementation of the round function. Section 5, along with Appendix A, gives the specification for an example CAST cipher, one produced using the design procedure described in this paper. Finally, Section 6 closes the paper with some concluding comments.

2. Overview of the CAST Design Procedure

This section gives a brief overview of the concepts and considerations relevant to the CAST design procedure. The four main aspects of a CAST cipher (s-boxes, framework, key schedule, and round function) are covered separately.

2.1. S-Box Design Overview

An $m \times n$ substitution box is a $2^{m_{\times n}}$ lookup table, mapping m input bits to n output bits. It substitutes, or replaces, the input with the output such that any change to the input vector results in a random-looking change to the output vector which is returned. The substitution layer in an SPN cipher is of critical importance to security since it is the primary source of nonlinearity in the algorithm (note that the permutation layer is a linear mapping from input to output).

The dimensions m and n can be of any size; however, the larger the dimension m, the (exponentially) larger the lookup table. For this reason m is typically chosen to be less than 10. The CAST design procedure makes use of substitution boxes which have fewer input bits than output bits (e.g., 8×32); this is the opposite of DES and many other ciphers which use s-boxes with more input bits than output bits (e.g., $6 \times 4)^{1}$.

Research into cipher design and analysis suggests that s-boxes with specific properties are of great importance in avoiding certain classes of cryptanalytic attacks such as differential and linear cryptanalysis. However, it can be very difficult (and, in some cases, impossible) to satisfy some of these properties using "small" s-boxes. The CAST design procedure therefore incorporates a construction algorithm for "large" (e.g., 8×32) s-boxes which possess several important cryptographic properties.

2.2. Framework Design Overview

Ciphers designed around a new basis for cryptographic security (most notably RC5 [48], based upon the conjectured security of data-dependent rotation operations) may prove to be extremely attractive candidates for DES replacement algorithms, but are not yet mature enough to be recommended for widespread use. The CAST procedure is instead based upon a framework which has been extensively analyzed by the cryptologic community for well over 20 years.

The CAST framework is the "Substitution-Permutation Network" (SPN) concept as originally put forward by Shannon [51]. SPNs are schemes which alternate layers of bit substitutions with layers of bit permutations, where the number of layers has a direct impact on the security of the cipher. Furthermore, CAST uses the Feistel structure [18, 19]

[^0]to implement the SPN. This is because the Feistel structure is well-studied and appears to be free of basic structural weaknesses, whereas some other forms of the SPN, such as the "tree structure" [22, 23] have some inherent weaknesses [22, 45] unless a significant number of layers are added (which may destroy the one property, "completeness" ${ }^{2}$, which tree structures are provably able to achieve). Note that some other forms of SPN, such as that employed in SAFER [32], also appear currently to be free of basic structural weaknesses, but have not been subject to intense analysis for nearly as long as the Feistel structure.

The following diagram illustrates a general Feistel-structured SPN. Basic operation is as follows. A message block of $2 n$ bits is input and split into a left half L_{1} and a right half R_{1}. The right half and a subkey K_{1} are input to a "round function", f_{1}, the output of which is used to modify (through XOR addition) the left half. Swapping the left and right halves completes round one. This process continues for as many rounds as are defined for the cipher. After the final round (which does not contain a swap in order to simplify implementation of the decryption process), the left and right halves are concatenated to form the ciphertext.

Fig.1: SPN (Feistel) Cipher

[^1]The parameters which can be selected for the framework are the blocksizes (the number of bits in both the plaintext and ciphertext data blocks) and the number of rounds. For all cases "higher" typically means greater security but (particularly for the number of rounds) reduced encryption / decryption speed. Except for the use of randomized encryption, the plaintext and ciphertext blocksizes are chosen to be equal so that the encryption process results in no data expansion (an important consideration in many applications).

As is evident in the work by Biham [8] and by Knudsen [27], good s-box design is not sufficient to guarantee good SPN cryptosystems (both results show that finding 6×4 sboxes resistant to differential cryptanalysis in isolation - that is, with relatively flat Output XOR distributions - and putting them directly in DES makes the "improved" algorithm much more susceptible to differential cryptanalysis than the original). It is therefore of great importance to design the substitution-permutation network such that it takes advantage of the good properties of the s-boxes without introducing any cryptographic weaknesses.

2.3. Key Schedule Design Overview

Keying in the CAST design procedure is done in the manner typical for Feistel networks. That is, an input key (a "primary key") is used to create a number of subkeys according to a specified key scheduling algorithm; the subkey for a given round is input to the round function for use in modifying the input data for that round.

The design of a good key schedule is a crucial aspect of cipher design. A key schedule should possess a number of properties, including some guarantee of key/ciphertext Strict Avalanche Criterion ${ }^{3}$ and Bit Independence Criterion ${ }^{4}$ in order to avoid certain key clustering ${ }^{5}$ attacks [17, 23, 53]. Furthermore, it should ensure that the primary key bits

[^2]used in round i to create subkey i are different from those used in round $i+1$ to create subkey $i+1$ (this is due to the work of Grossman and Tuckerman [20], who showed that DES-like cryptosystems without a key that varies through successive rounds can be broken). Finally, all key bits should be used by round $N / 2$ (in an N-round cipher) and then reused in the remaining rounds (to ensure good key avalanche for both encryption and decryption).

The critical difference between the key schedule proposed in the CAST design procedure and other schedules described in the open literature is the dependence upon substitution boxes for the creation of the subkeys. Other key schedules (the one in DES, for example) typically use a complex bit-selection algorithm to select bits of the primary key for the subkey for round i. As is clear from the work by Knudsen [28] and by Biham [9], any weaknesses in this bit selection algorithm can lead to simple cryptanalysis of the cipher, regardless of the number of rounds. The schedule proposed in CAST instead uses a very simple bit-selection algorithm and a set of "key schedule s-boxes" to create the subkey for each round. These s-boxes must possess specific properties to ensure cryptographically good key schedules (see Section 3.3 below).

2.4. Round Function Design Overview

The round function in CAST, as stated above, makes use of s-boxes which have fewer input bits than output bits. This is accomplished as follows. Within the round function the input data half is modified by the subkey for that round and is split into several pieces. Each piece is input to a separate substitution box; the s-box outputs are combined using XOR or other binary operations; and the result is the output of the round function. Although each $m \times n$ s-box on its own necessarily causes data expansion (since $m<n$), using the set of s-boxes in this way results in no expansion of the message half, allowing the SPN to have input and output blocksizes which are equal.

2.4.1. Avoiding Certain Attacks

Another aspect of round function design involves a specific proposal to guard against differential and linear attacks. Differential [8] and linear [33] cryptanalysis are generalpurpose attacks which may be applied to a variety of substitution-permutation network (DES-like) ciphers. Both methods work on the principle of finding high-probability attacks

[^3]on a single round and then building up "characteristics" (sets of consecutive rounds which interact in useful ways); characteristics which include a sufficient number of rounds can lead to cryptanalysis of the cipher. The probability of a characteristic is equal to the product of the probabilities of the included rounds ${ }^{6}$; this "characteristic probability" determines the work factor ${ }^{7}$ of the attack. If the work factor of the attack is less than the work factor for exhaustive search of the key space, the cipher is theoretically broken.

Resistance to these attacks can be achieved either by adding rounds (which reduces the speed of the cipher) or by improving the properties of the round s-boxes (which may or may not make the round probability low enough to avoid the need to add rounds in a given cipher). The latter approach has been pursued by a number of researchers (see $[4,5,16,43$, 50, 52], for example).

The approach proposed in the CAST design procedure presented below includes both of the above. More importantly, however, it also includes a slight alteration to the typical DES-like round function which renders it "intrinsically immune" (as opposed to computationally immune) to differential and linear cryptanalysis as described in [8, 33]. Such an alteration is generally applicable to all DES-like ciphers and may, in some ciphers, be added with little degradation in encryption / decryption speed.

3. Detailed Design

This section covers the four main aspects of a CAST cipher (s-boxes, framework, key schedule, and round function) in more detail than the previous section and provides a number of assertions, theorems, and remarks regarding the cryptographic properties relevant to each aspect.

[^4]
3.1. Detailed S-Box Design

For the design of $m \times n(m<n)$ s-boxes ${ }^{8}$, let n be an integer multiple of m (where $2 n$ is the blocksize of the cipher); in particular, let $n=r m$ where r is an integer greater than 1 (note that then $m \leq \log _{2} C(n, n / 2)=\log _{2}($ " n choose $n / 2$ ")). Such s-boxes can be constructed as follows. Choose n distinct binary bent (see, for example, [42, 46,3]) vectors ϕ_{i} of length 2^{m} such that linear combinations of these vectors sum (modulo 2) to highly nonlinear, near-SAC-fulfilling vectors (Nyberg's work [43] shows that these linear combinations cannot all be bent since $m<2 n$; however, it is important that they be highly nonlinear and close to SAC-fulfilling so as to satisfy the Output Bit Independence Criterion and aid in resistance to linear cryptanalysis). Furthermore, choose half the ϕ_{i} to be of weight $\left(2^{m-1}+2^{(m / 2)-1}\right)$ and the other half to be of weight $\left(2^{m-1}-2^{(m / 2)-1}\right)$; these are the two weights possible for binary bent vectors of length 2^{m}. Set the n vectors ϕ_{i} to be the columns of the matrix M representing the s-box. Note that each new s-box should be generated from an independent "pool" of bent vectors to ensure that columns in different s-boxes are distinct and not linearly related.

Check that M has 2^{m} distinct rows and that the Hamming weight of each row and the Hamming distance between pairs of rows is close to $n / 2$ (i.e., that the set of weights and the set of distances each have a mean of $n / 2$ and some suitably small - but nonzero variance) ${ }^{9}$. If these conditions are not satisfied, continue choosing suitable bent vectors (i.e., candidate ϕ_{i}) and checking the resulting matrix until the conditions are satisfied. Note that it is possible to construct 8×32 s-boxes which meet these conditions within a few weeks of running time on common computing platforms.

The following assertions and theorems apply to substitution boxes constructed according to the above procedure.

Assertion 1: S-boxes constructed as described above have good confusion, diffusion, and avalanche.

[^5]Discussion: It is not difficult to see that the given requirements on the s-box rows and columns lead to good s-box confusion and diffusion properties (as described by Shannon [51]) and also ensure good avalanche (as discussed in [18, 19] and echoed in [26]).

Theorem 1: Using bent binary vectors as the columns of the $2^{m} \times n$ matrix which describes an s-box ensures that the s-box will respond "ideally" in the sense of highest-order strict avalanche criterion $[2,4]^{10}$ to arbitrary changes in the input vector.
Proof: Highest-order SAC is guaranteed for each output bit - this is a property of bent Boolean functions which was proven in [34]. By definition [54], an s-box satisfies the highest-order SAC if and only if each of its output bits satisfies the highest-order SAC.

Assertion 2: If the columns in the s-box matrix are bent vectors whose linear combinations are highly nonlinearly related and near SAC-fulfilling, then the s-box will show close proximity to highest-order (output) bit independence criterion. That is, small changes in the m input bits will cause each of the n output bits to change virtually independently of all other output bits. Furthermore, such s-boxes aid in immunity to linear cryptanalysis [33].
Discussion: It can be shown that if columns ϕ_{j} and ϕ_{k} sum modulo 2 to a linear vector, then s-box output bits j and k will either always change together or never change together when any input bit i is inverted (i.e., they will have a correlation coefficient of ± 1). At the other extreme, if ϕ_{j} and ϕ_{k} sum to a bent vector, then j and k will change independently for any input change. Because it is impossible for all column sums to be bent (since $m<2 n$), the CAST design procedure uses s-boxes in which the column sums are highly nonlinear and near SAC-fulfilling but not necessarily bent. Proximity to BIC is defined in terms of proximity to SAC: if columns ϕ_{j} and ϕ_{k} sum to a vector which comes close to satisfying the SAC (i.e., over all single-bit input changes, the output changes with probability γ, where $(0.5-\omega) \leq \gamma \leq(0.5+\omega)$ and ω is "small"), then output bits j and k will act "virtually" independently (i.e., will have a correlation coefficient which is nonzero, but "small", as determined by ω), for all single-bit input changes. In highest-order BIC the sums of all column subsets are considered (not just pairs). Requiring that these sums are near-SACfulfilling means (by definition) that the s-box will have close proximity to highest-order BIC ${ }^{11}$. Such s-boxes aid in immunity to linear cryptanalysis because there is no linear

[^6]combination of component functions which has a small Hamming distance to an affine Boolean function (see the discussion in Section 8.1 of [50]).

Lemma 1: $m \times n$ s-boxes designed according to the above procedure can be made to have a largest value, L, in the difference distribution table such that $2 \leq L \leq 2^{\mathrm{m} / 2}$.
Proof: Let a CAST s-box be constructed by beginning with Nyberg's "perfect nonlinear" $m \times m / 2$ s-box and adding binary bent vectors as matrix columns until the full $2^{m} \times n$ matrix M is complete (adhering to the design constraints given above). Without loss of generality, assume that the first $m / 2$ columns of M correspond to a perfect nonlinear s-box (i.e., these columns are bent and all nonzero linear combinations of these columns (modulo 2) are also bent). Consider the $2^{m-1} \times n$ matrix M^{\prime} of avalanche vectors ${ }^{12}$ corresponding to a given change in the s-box input (see [4,54] for details). In this matrix all columns are of Hamming weight 2^{m-2} (since the columns of M are bent) and all nonzero linear combinations of the first $m / 2$ columns are also of Hamming weight 2^{m-2}. It is not difficult to see that within the first $m / 2$ columns of M^{\prime}, therefore, each $m / 2$-bit "row" will occur exactly $T=2^{m-1} / 2^{m / 2}$ times, so that regardless of the remaining columns of M^{\prime}, each full n bit row can occur a maximum of T times. Thus, the largest value in the difference distribution table for this s-box is $L \leq 2 T=2^{m / 2}$. Clearly, each additional column in M^{\prime} (beyond the $m / 2$ initial columns) has the ability to reduce T; in the limit (when n is sufficiently large compared with m), every row of M^{\prime} is unique, so that $T=1$. Therefore $L \geq 2$.

Remark 1: Although starting with a perfect s-box provides a guaranteed upper bound on L, in practice the same result can be achieved without the perfect s-box if n is sufficiently large. For example, it is not difficult to construct 8×32 s-boxes with $L=2$ which do not have four component columns which form a perfect s-box. This is why the use of a perfect s-box has not been made a stipulation of the s-box design procedure given above.

3.2. Detailed Framework Design

As was stated previously, the primary parameter options in framework design are blocksize and number of rounds. Aside from the constraint that the blocksize be large

[^7]enough to preclude birthday-attack-derived analysis of the plaintext data, the only real blocksize consideration is ease of implementation. On current machines and for many typical environments, 64 bits (the blocksize of DES) is an attractive choice because left and right data halves and other variables fit nicely into 32-bit registers. However, in the future a larger choice may be warranted for environments wherein significantly more than 2^{32} data blocks (i.e., 2^{33} or more) may be encrypted using a single key.

The number of rounds in the framework appears to be a much more important and delicate decision. There need to be enough rounds to provide the desired level of security, but not so many that the cipher is unacceptably slow for its intended applications. In an SPN of the Feistel type it is clear that the left half of the input data is modified by the output of the round function in rounds $1,3,5,7$, and so on, and the right half is modified in rounds $2,4,6,8$, and so on. Thus, it is clear that for equal treatment of both halves the number of rounds must be even. However, it is less obvious how many rounds is "enough".

Differential and linear cryptanalysis, the two most powerful attacks currently known for DES-like ciphers, have helped to quantify this design parameter. It has long been known, for example, that DES with 5 or 6 rounds can be broken, but not until 1990, with the introduction of differential cryptanalysis [8], was it clear why 16 rounds were actually used in its design - fewer rounds could not withstand a differential attack [13]. With subsequent improvements to the differential attack [8] and with the introduction of linear cryptanalysis, it now appears that 18-20 rounds would be necessary for DES to be theoretically as strong as its keysize.

A prudent design guideline, therefore, is to select a number of rounds which has an acceptably high work factor for both differential and linear cryptanalysis and then either add a few more rounds or modify the round function to make these attacks even more difficult (in order to add a "safety margin"). As will be seen in Section 3.4, the CAST design procedure chooses the second approach for both security and performance reasons.

Theorem 2: With respect to differential cryptanalysis, N-round ciphers designed according to the CAST procedure can be constructed with $N-2$ round characteristics which have probability significantly smaller than the inverse of the size of the keyspace.

Proof: Recall from Lemma 1 that the largest value in the difference distribution table of CAST-designed $m \times n$ s-boxes is L, where $2 \leq L \leq 2^{m / 2}$. Select for the round function only s-boxes for which $L=2$. Therefore the highest probability in each table is $P=L / 2^{m} \leq 2^{1-m}$. Consider now the f function of this SPN. If a multi-bit change is made to the vector V which is input to f (so that a change is made to the input of each of x of the component sboxes used for f), then the characteristic [30] of f (that is, the most successful differential cryptanalytic attack for that single round) has probability at most $P_{f}=2^{x(1-m)+y}$ (because the s-box outputs are combined (e.g., using XOR) rather than simply concatenated (as in DES)). Note that the y in the exponent accounts for the possibility that there may be as many as 2^{y} sets of the r component s-box output XORs which combine to produce a desired output XOR of f; randomness arguments suggest that y is expected to be less than 4. Given P_{f}, the strategy for differential cryptanalysis in this cipher must be to change the inputs of the smallest number of s-boxes possible in f in each round.

Let ΔV be an input XOR for f for which the corresponding output XOR is zero. To ensure that such a ΔV must involve 3 or more s-boxes, the following condition is stipulated: for all pairs of s-boxes in the round function, ensure that $\mathrm{S}_{\mathrm{i}}(\mathrm{a}) \oplus \mathrm{S}_{\mathrm{j}}(\mathrm{b}) \neq \mathrm{S}_{\mathrm{i}}(\mathrm{c}) \oplus \mathrm{S}_{\mathrm{j}}(\mathrm{d})$ except when $a=c$ and $b=d$ (in which case, of course, they must be equal). The probability of the characteristic for a single round could therefore be as high as $P_{f}=2^{3(1-m)+y}$. Hence, assuming an $N-2$ round characteristic (for an N-round cipher), the probability of the characteristic could be as high as $P_{f}^{(N-2) / 2}=2^{(3(1-m)+y)(N-2) / 2}$, since ΔV is only used on every other round and an input XOR of zero is used otherwise ${ }^{13}$.

For parameters $m=8$, and $N=12$, and with a conservative estimate of $y=5$, the characteristic probability is $\leq 2^{-80}$. This value can be decreased dramatically, if desired, by doing extra checking during the s-box construction / selection process to ensure that $y<5$, or that ΔV must involve all 4 s-boxes.

Remark 2: It has been shown [30, 44] that immunity against differential attacks can only be proven through the use of differentials, not characteristics. However, since the probability of an r-round differential with input difference A and output difference B is the sum of the probabilities of all r-round characteristics with input difference A and output difference B [44], it would be necessary that there exist significantly more than 2^{16} such maximum-probability characteristics in order for a differential to exist which would

[^8]threaten a cipher with a 64-bit blocksize. We therefore conjecture immunity to differential cryptanalysis for CAST-designed ciphers with this blocksize.

Theorem 3: With respect to linear cryptanalysis, N-round ciphers designed according to the CAST procedure can be constructed with linear relations requiring a number of known plaintexts approximately equal to the total number of possible plaintexts.
Proof: The relationship in a CAST cipher between the minimum nonlinearity of the $m \times n$ substitution boxes in the round function ($N_{\text {min }}$), the number of rounds in the overall cipher (N), and the number of known plaintexts required for the recovery of a single key bit with 97.7% confidence $\left(N_{L}\right)$ has been given by Heys and Tavares [24]:

$$
N_{L} \geq \frac{2^{2-4 N}}{\left(\frac{2^{m-1}-N_{\min }}{2^{m}}\right)^{4 N}}=4 \times\left(\frac{1}{1-N_{\min } / 2^{m-1}}\right)^{4 N}
$$

This relationship was derived by substituting α (the number of s-box linear approximations involved in the overall linear approximation) into the "piling-up lemma" of [33] to get $\left|p_{L}-\frac{1}{2}\right| \leq 2^{\alpha-1}\left|p-\frac{1}{2}\right|^{\alpha}$ and noting that $N_{L}=\left|p_{L}-\frac{1}{2}\right|^{-2}$ for 97.7% confidence in the suggested key. The value α was estimated at $2 N$, assuming 4 s-boxes per CAST round function (thus 4 s-boxes involved in the best 2-round approximation), and $N / 2$ iterations of the best 2-round approximation. Finally, $\left|p-\frac{1}{2}\right|$ depends on the nonlinearity of the component s-boxes: $\left|p-\frac{1}{2}\right|=\left(\frac{2^{m-1}-N_{\text {min }}}{2^{m}}\right)$.

Substituting $N_{\min }=74$ and $N=12$ results in N_{L} being lower-bounded ${ }^{14}$ by approximately 2^{62} (which appears to be adequate security for a 64-bit blocksize since there are only 2^{64} possible plaintexts and since it is not currently known how tight this lower bound is for CAST-designed ciphers). As another example, for a cipher with a 96-bit blocksize, α may be estimated at $3 N$ (that is, the cipher may be constructed with 6 s-boxes per round); thus, for the same $N_{\min }$ and $N, N_{L} \geq 4 \times\left(\frac{1}{1-N_{\min } / 2^{m-1}}\right)^{6 N} \approx 2^{96.6}$.

It should be noted that 8×32 s-boxes with minimum nonlinearity $N_{\text {min }}=74$ have been constructed using the CAST procedure; more rounds, higher nonlinearity s-boxes, or

[^9]additional operations in the round function (see Section 3.4) should all permit CAST ciphers with longer keys to be used with sufficient resistance to linear cryptanalysis.

Remark 3: Like the situation in differential cryptanalysis with characteristics and differentials, immunity to linear cryptanalysis can only be proved using "total linear relations", not "linear relations" (as used in the theorem above). However, a number of factors suggest that CAST ciphers are immune to this attack. Firstly, the lower bound for linear relations appears to be acceptably high and is not known to be tight. Secondly, the structure of the CAST round function (e.g., the XOR sum of a number of s-boxes) is such that any subset of output bits must involve data bits and key bits from each component sbox (thus, finding "useful" multi-round linear relations appears to be more difficult for CAST than for DES). Finally, the goal of linear cryptanalysis is to derive, with reasonable probability, the XOR sum of a subset of subkey bits. In DES and some other ciphers, these subkey bits correspond directly to bits of the primary key and so exhaustive search on primary key bits not deduced by the attack recovers the entire key. In CAST, however, the subkey bits do not correspond directly to primary key bits (see Section 3.3 below or the example key schedule in Appendix A) and so it is not clear that knowing a subset of these bits will aid in any significant way in recovering the primary key.

3.3. Detailed Key Schedule Design

As indicated in Section 2.3 above, the key schedule used in the CAST design procedure has three main components: a relatively simple bit-selection algorithm mapping primary key bits to "partial key" bits; one or more "key transformation" steps; and a set of "key schedule s-boxes" which are used to create subkeys from partial keys in each round. A simple key schedule for an 8 -round algorithm employing a 64-bit key is as follows (this schedule is for illustrative purposes, using a relatively small number of rounds and little complexity in order to show how an absence of inverse $S_{S R}$ keys can be proven; in practice, a more involved schedule (with more entropy per subkey [47]) would be used - see Appendix A, which provides a schedule for a 16-round algorithm with a 128-bit key).

Let $K E Y=k_{1} k_{2} k_{3} k_{4} k_{5} k_{6} k_{7} k_{8}$, where k_{i} is the $i^{t h}$ byte of the primary key. The partial keys K_{i}^{\prime} are selected from the primary key according to the following bit-selection algorithm: $K_{1}^{\prime}=k_{1} k_{2}, K_{2}^{\prime}=k_{3} k_{4}, K_{3}^{\prime}=k_{5} k_{6}, K_{4}^{\prime}=k_{7} k_{8}, K_{5}^{\prime}=k_{4}{ }^{\prime} k_{3}{ }^{\prime}, K_{6}^{\prime}=k_{2}{ }^{\prime} k_{1}{ }^{\prime}, K_{7}^{\prime}=k_{8}{ }^{\prime} k_{7}$, $K_{8}^{\prime}=k_{6}{ }^{\prime} k_{5}{ }^{\prime}$, where $K E Y$ is transformed to $K E Y^{\prime}=k_{1}{ }^{\prime} k_{2}{ }^{\prime} k_{3^{\prime}} k_{4}{ }^{\prime} k_{5^{\prime}} k_{6^{\prime}} k_{7}{ }^{\prime} k_{8}^{\prime}$ between round 4 and round 5. The key transformation step is defined by:

$$
\begin{aligned}
k_{1}{ }^{\prime} k_{2}{ }_{2} k_{3} k_{4}^{\prime} & =k_{1} k_{2} k_{3} k_{4} \oplus S_{1}\left[k_{5}\right] \oplus S_{2}\left[k_{7}\right] ; \\
k_{5^{\prime}} k_{6^{\prime}} k_{7} k_{8}^{\prime} & =k_{5} k_{6} k_{7} k_{8} \oplus S_{1}\left[k_{2}^{\prime}\right] \oplus S_{2}\left[k_{4}^{\prime}\right] .
\end{aligned}
$$

The bytes of $K E Y^{\prime}$ are used to construct the final four partial keys, as shown above. The set of partial keys is used to construct the subkeys K_{i} using key schedule s-boxes S_{1} and S_{2} :

$$
K_{i}=S_{l}\left(K_{i, 1}^{\prime}\right) \oplus S_{2}\left(K_{i, 2}^{\prime}\right)
$$

where $K_{i, j}^{\prime}$ denotes the $j^{t h}$ byte of K_{i}^{\prime}. Although a similar schedule can be constructed for a more involved 12- or 16 -round system or for different block or key sizes, for simplicity of notation and concreteness of explanation, the theorem and remarks below apply to the specific example given here.

3.3.1. Definitions Related to Key Scheduling

In a block cipher, an inverse key I for a given encryption key K is defined to be a key such that $\operatorname{ENC}_{I}(p)=\operatorname{ENC}_{K}{ }^{-1}(p)=\mathrm{DEC}_{K}(p)$ for any plaintext vector p. Furthermore, a fixed point of a key K is a plaintext vector x such that $\operatorname{ENC}_{K}(x)=x$ and an anti-fixed point of a key K is a plaintext vector x such that $\operatorname{ENC}_{K}(x)$ is the complement of x.

From work done on cycling properties and key scheduling in DES [12, 14, 25, 40], the following definitions have been introduced. A key is weak if it is its own inverse (such keys generate a palindromic set of subkeys ${ }^{15}$ and have 2^{32} fixed points in DES). A key is semi-weak if it is not weak but its inverse is easily found - there are two subclasses: a key is semi-weak, anti-palindromic if its complement is its inverse (such keys generate an antipalindromic set of subkeys ${ }^{16}$ and have 2^{32} anti-fixed points in DES); a key is semi-weak, non-anti-palindromic if its inverse is also semi-weak, non-anti-palindromic (such keys generate a set of subkeys with the property that $K_{i} \oplus K_{N+1-i}=V$, where N is the number of rounds and $V=000 \ldots 0111 \ldots 1$ or $111 \ldots 1000 \ldots 0$ in DES). DES has 4 weak keys, 4 semiweak anti-palindromic keys, and 8 semi-weak non-anti-palindromic keys.

Let H and K be keys which generate sets of subkeys H_{i} and $K_{i}, i=1, \ldots, N$, respectively, for an N-round DES-like (Feistel-type SPN) cipher. We define H to be a subkey reflection inverse key of K (denoted inverse ${ }_{S R}$) if $K_{i}=H_{N+1-i}, i=1, \ldots, N$. It is clear that a subkey

[^10]reflection inverse key of K is an inverse key of K; whether the converse always holds true for DES-like ciphers is an open question. Thus, for a given key $K,\{H\} \subseteq\{I\}$. In DES the semi-weak key pairs are subkey reflection inverses of each other and the weak keys are subkey reflection inverses of themselves.

3.3.2. Key Schedule Theorem and Remarks

Theorem 4: Ciphers using the key schedule proposed in Section 3.3 can be shown to have no inverse $e_{S R}$ key $H \in\{0,1\}^{64}$ for any key $K \in\{0,1\}^{64}$.
Proof: There are two steps to this proof. Let $S_{1}\left[k_{2}{ }^{\prime}\right] \oplus S_{2}\left[k_{4}{ }^{\prime}\right]$ be equal to the 4-byte vector $a_{1} a_{2} a_{3} a_{4}$ and let $S_{1}\left[k_{5}\right] \oplus S_{2}\left[k_{7}\right]$ be equal to the 4 -byte vector $b_{1} b_{2} b_{3} b_{4}$. In the first (general) step, we prove that for the transformation given in the key schedule of Section 3.3, if inverse ${ }_{S R}$ keys exist for the cipher then $a_{1}=a_{2}, a_{3}=a_{4}, b_{1}=b_{2}$, and $b_{3}=b_{4}$ all simultaneously hold. The second step, which is specific to each implementation of the CAST design, is to examine the specific s-boxes chosen in the implementation to verify that the equalities do not hold simultaneously (note that s-boxes satisfying this condition do exist).

Step 1:
Theorem: For the transformation given in the key schedule of Section 3.3, if inverse ${ }_{\text {SR }}$ keys exist for the cipher then the subkeys $K_{i}=H_{N+1-i}$ (by definition) and the partial keys $K_{i}^{\prime}=H_{N+1-i}^{\prime}$ (by construction of the key schedule s-boxes; see Section 3.1). Therefore, $a_{1}=a_{2}, a_{3}=a_{4}, b_{1}=b_{2}$, and $b_{3}=b_{4}$ all simultaneously hold, where a_{i} and b_{i} are defined as above.

Proof: Let H and K be cipher keys whose respective key schedules are given by Section 3.3. If H is the inverse ${ }_{S R}$ of K then $h_{1}=k_{6^{\prime}}, h_{2}=k_{5}{ }^{\prime}, h_{3}=k_{8^{\prime}}, h_{4}=k_{7}{ }^{\prime}, h_{5}=k_{2^{\prime}}$, $h_{6}=k_{1^{\prime}}, h_{7}=k_{4^{\prime}}, h_{8}=k_{3^{\prime}}$, and $h_{1^{\prime}}=k_{6}, h_{2}^{\prime}=k_{5}, h_{3^{\prime}}=k_{8}, h_{4}^{\prime}=k_{7}, h_{5^{\prime}}=k_{2}, h_{6^{\prime}}=k_{1}, h_{7^{\prime}}=k_{4}, h_{8^{\prime}}=k_{3}$.
Substituting these equalities into the key schedule transformation step gives:

$$
\begin{aligned}
& h_{1}{ }^{\prime} h_{2}^{\prime} h_{3^{\prime}} h_{4^{\prime}}=h_{1} h_{2} h_{3} h_{4} \oplus S_{1}\left[h_{5}\right] \oplus S_{2}\left[h_{7}\right] \\
& \text { or } k_{6} k_{5} k_{8} k_{7}=k_{6}{ }^{\prime} k_{5}{ }^{\prime} k_{8^{\prime}} k_{7^{\prime}} \oplus S_{1}\left[k_{2}{ }^{\prime}\right] \oplus S_{2}\left[k_{4^{\prime}}\right] \\
& =k_{6^{\prime}} k_{5}{ }^{\prime} k_{8^{\prime}} k_{7^{\prime}} \oplus k_{5} k_{6} k_{7} k_{8} \oplus k_{5^{\prime}} k_{6^{\prime}} k_{7}{ }^{\prime} k_{8}^{\prime} \\
& h_{5}{ }^{\prime} h_{6}{ }^{\prime} h_{7}{ }^{\prime} h_{8^{\prime}}=h_{5} h_{6} h_{7} h_{8} \oplus S_{1}\left[h_{2}{ }^{\prime}\right] \oplus S_{2}\left[h_{4^{\prime}}\right] \\
& \text { or } k_{2} k_{1} k_{4} k_{3}=k_{2}{ }^{\prime} k_{1}{ }^{\prime} k_{4}{ }^{\prime} k_{3^{\prime}} \oplus S_{1}\left[k_{5}\right] \oplus S_{2}\left[k_{7}\right] \\
& =k_{2}{ }^{\prime} k_{1}{ }^{\prime} k_{4}{ }^{\prime} k_{3}{ }^{\prime} \oplus k_{1} k_{2} k_{3} k_{4} \oplus k_{1}{ }^{\prime} k_{2}{ }^{\prime} k_{3}{ }^{\prime} k_{4}{ }^{\prime}
\end{aligned}
$$

Therefore, $k_{6}=k_{6^{\prime}} \oplus k_{5} \oplus k_{5^{\prime}}=k_{6^{\prime}} \oplus a_{1}$, whence $a_{1}=a_{2}$. Similarly, the remaining substitutions yield $a_{3}=a_{4}, b_{1}=b_{2}$, and $b_{3}=b_{4}$. Note that these must hold simultaneously since the equalities given for the h_{i} and k_{i} necessarily hold simultaneously.

Step 2:

For any specific implementation of the CAST design, the key schedule s-boxes (S_{1} and S_{2}) can be examined to determine whether $a_{1}=a_{2}, a_{3}=a_{4}, b_{1}=b_{2}$, and $b_{3}=b_{4}$ hold simultaneously. If these do not hold simultaneously then the cipher has been shown to have no inverse ${ }_{\text {SR }}$ key H for any given key K (otherwise a new S_{1} and S_{2} can be chosen and Step 2 can be repeated).

Although the proof above applies to an 8-round implementation of a CAST cipher, the result can be extended to higher numbers of rounds. This may be done by modifying the proof itself (using essentially the same format and procedure, but with notation based on the new key schedule), or simply by using the eight subkeys above as the first four and last four subkeys in an N-round cipher ($N>8$). This latter approach works because if the cipher has inversesR keys, then certain equalities must hold between the first four and last four subkeys. Verifying that the equalities do not hold for these eight subkeys, then, ensures that the N-round cipher has no inverse ${ }_{S R}$ keys.

Assertion 3: Ciphers using the key schedule proposed in this paper are immune to relatedkey cryptanalysis as described in [9].
Discussion: There are no related keys [27, 9] in the key schedule described in Section 3.3 (i.e., the derivation algorithm of a subkey from previous subkeys is not the same in all rounds because of the construction procedure and the transformation step), and so ciphers using this key schedule are not vulnerable to the "chosen-key-chosen-plaintext", "chosen-key-known-plaintext", or "chosen-plaintext-unknown-related-keys" attacks as described in [9].

Remark 4: From Theorem 4 above, this key schedule avoids all inverse SR $^{\text {keys. It }}$ is therefore guaranteed to avoid the fixed points associated with weak and semi-weak keys in DES (since using this key schedule in DES would guarantee the non-existence of weak and semi-weak keys). From all evidence available thus far in the open literature, fixed points have only been easily ${ }^{17}$ found in DES-like ciphers for weak and semi-weak keys; we

[^11]therefore conjecture that ciphers using the key schedule proposed in Section 3.3 have no easily-found fixed points for any key.

Remark 5: The CAST procedure has no known complementation properties (unlike DES, for example) and so CAST-designed ciphers appear not to be vulnerable to reduced key searches based on this type of weakness.

Theorem 4 and the above remarks regarding the key schedule are due to the fact that sboxes are employed in the schedule itself (i.e., in the generation of the subkeys), rather than simply in the use of the subkeys. To the author's knowledge, this is a novel proposal in key scheduling which appears to have some interesting properties.

3.4. Detailed Round Function Design

The round function given in Section 2.4 for a CAST cipher with a 64-bit blocksize and 8×32 s-boxes can be illustrated as follows. A 32 -bit data half is input to the function along with a subkey K_{i}. These two quantities are combined using operation " a " and the 32 -bit result is split into four 8 -bit pieces. Each piece is input to a different $8 \times 32 \mathrm{~s}$-box $\left(S_{1}, \ldots\right.$, S_{4}). S-boxes S_{1} and S_{2} are combined using operation " b "; the result is combined with S_{3} using operation " c "; this second result is combined with S_{4} using operation " d ". The final 32-bit result is the output of the round function.

Fig. 2:
CAST Round Function
A simple way to complete the definition of the CAST round function is to specify that all operations (a, b, c, and d) are XOR additions of 32-bit quantities, although other - more complex - operations may be used instead (for example, see the discussion in the following subsection regarding the first operation a).

Assertion 4: The CAST round function exhibits good confusion, diffusion, and avalanche.
Discussion: It is not difficult to see that the round function possesses these properties due to the fact that the component s-boxes possess these properties (Assertion 1).

Remark 6: Although confusion, diffusion, and avalanche are somewhat vague terms and cannot be proven formally, they can be argued on an intuitive level for the CAST s-boxes and round function. Note that a round function which achieves all three properties simultaneously should lead to a faster buildup of complexity and data / key interdependency in a Feistel network than a round function which does not. This appears to be the case for CAST ciphers, which show very good statistical properties after only 2-3 rounds whereas DES, for example, requires 5-6 rounds to display similar properties ${ }^{18}$.

[^12]Theorem 5: For appropriate design choices, the CAST round function is guaranteed to exhibit highest-order SAC for both plaintext and key changes.
Proof: Given that each s-box satisfies the avalanche property and guarantees highest-order SAC ${ }^{19}$ (see Section 3.1), any change to the input of s-box S_{i} causes approximately half its output bits to change. If operations b, c, and d in the round function f are XOR addition (see above), then approximately half the bits in the modified message half will be inverted. Let V be the vector of changes to the output of S_{i} when its input is changed. Then $V=\left(v_{1}\right.$, $\left.v_{2}, \ldots, v_{n}\right)$, where v_{i} is a random binary variable with $\operatorname{Prob}\left(v_{i}=0\right)=\operatorname{Prob}\left(v_{i}=1\right)=1 / 2$. Similarly, let $W=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ be the vector of changes to s-box S_{j} when its input is changed. Clearly, if $Z=V \oplus W$, then $\operatorname{Prob}\left(z_{i}=0\right)=\operatorname{Prob}\left(v_{i}=w_{i}\right)=1 / 2$ if v_{i} and w_{i} are independent (that is, have a correlation coefficient of zero over all possible inputs). This is guaranteed for S_{i} and S_{j} if columns ϕ_{i} and ϕ_{j} in the corresponding s-box matrices sum (modulo 2) to a bent vector. This means that if changes are made to both S_{i} and S_{j}, it is still the case that the outputs of f will change with probability $1 / 2$. This argument generalizes to any number of the s-boxes (once the corresponding output bits are independent), which proves that any change to the input of f changes each bit in the output of f with probability $1 / 2$ over all inputs. The limit to the number of $m \times n$ s-boxes with independent corresponding output bits is a direct result of Nyberg's "perfect" s-box theorem: it is $m / 2$. Therefore, if $t \leq m / 2$ (where t is the number of s-boxes used for the data half in f), the simplest way to achieve the independence is to choose the corresponding columns in the sbox matrices such that they are the columns of an $m \times m / 2$ "perfect" s-box. Note that key/ciphertext highest-order SAC imposes no requirement beyond that needed for plaintext/ciphertext highest-order SAC because of the definition of f.

Remark 7: In practice, close proximity to highest-order SAC appears to be readily achieved for the CAST round function without the requirement that operations b, c, and d be XOR addition and even without the requirement that perfect s-boxes be used as the columns for corresponding output bits.

Assertion 5: For appropriate design choices, the CAST round function exhibits close proximity to highest-order BIC for both plaintext and key changes.
Discussion: A similar argument to the one above can be used to show that close proximity to highest-order BIC can be achieved for both plaintext and key changes when operations b, c, and d are XOR addition. Again, however, in practice it appears that this property is

[^13]readily achieved for the CAST round function whether or not XOR addition is used as the binary operation.

Remark 8: Although this seems to be difficult to prove theoretically, the above properties of the round function (confusion, diffusion, avalanche, highest-order SAC, and highestorder BIC) lend evidence to the conjecture that an N-round CAST cipher employing such a round function will behave as a random permutation for arbitrary input bit changes.

3.4.1. Operation " a " and Intrinsic Immunity to Attacks

As discussed previously, the number of rounds and the properties of the round function s-boxes can be chosen to provide computational immunity to differential and linear cryptanalysis. We now discuss the proposal that extra work in the round function specifically, some care in the choice of operation " a " - can conceivably give intrinsic immunity to these attacks (in that the attacks as described in [8,33] can no longer be mounted); see also Section 4.2.

3.4.1.1. Differential and Linear Cryptanalysis

Differential and linear cryptanalysis (chosen- and known-plaintext attacks, respectively) are similar in flavour in that both rely on s-box properties to formulate an attack on a single s-box. Each then generalizes this to attack the round function and extends the round function attack to create a number of characteristics for the overall cipher. The most successful characteristic (that is, the one with highest probability) theoretically breaks the cipher if its work factor is less than the work factor for exhaustive search of the key space (even if the attack requires an impractical amount of chosen or known plaintext). In terms of notation, for the DES round function let R be the data input, K be the subkey, $E(\bullet)$ be the expansion step, $S(\bullet)$ be the s-box step, $P(\bullet)$ be the permutation step, and R^{\prime} be the function output. Furthermore, let $X=E(R) \oplus K$ and $Y=S(X)$, so that $R^{\prime}=P(Y)$. Finally, let L be the left half of the data which is not input to the round function.

In differential cryptanalysis the s-box property which is exploited is its "input XOR" to "output XOR" mapping, where a specific ΔX leads to a specific ΔY with high probability. Due to the linearity in the $E(\bullet)$ and $P(\bullet)$ operations with respect to XOR, $\Delta X=X_{1} \oplus X_{2}=$ $E\left(R_{1}\right) \oplus K \oplus E\left(R_{2}\right) \oplus K=E\left(R_{1}\right) \oplus E\left(R_{2}\right)=E(\Delta R)$ during two encryptions with the same key, and $\Delta R^{\prime}=P\left(Y_{1}\right) \oplus P\left(Y_{2}\right)=P(\Delta Y)$. Thus ΔR pairs can be found which result in "useful" ΔR^{\prime} pairs, where a ΔR^{\prime} pair is "useful" in this context if it can act as a desired ΔR
pair in the following round, so that round function attacks can be iterated and concatenated into characteristics with high overall probability.

In linear cryptanalysis the s-box property which is exploited is linearity. Let $\Sigma(\bullet)$ be the XOR sum of a specific subset of the bits in the argument and let $\Sigma_{p}(\bullet)$ be the XOR sum of the permuted indices of the subset of bits used in $\Sigma(\bullet)$ with respect to the permutation $P(\bullet)$. Then $\Sigma(Y)=\Sigma(X)$ with high probability. Again due to linearity, $\Sigma(Y)=\Sigma(E(R) \oplus K)=$ $\Sigma(E(R)) \oplus \Sigma(K)$, and so $\Sigma(K)=\Sigma(E(R)) \oplus \Sigma(Y)$. Since knowing R immediately yields $\Sigma\left(E(R)\right.$) and knowing R^{\prime} immediately yields $\Sigma_{p}\left(R^{\prime}\right)=\Sigma_{p}(P(Y))=\Sigma(Y)$, various R can be found which result in "useful" R^{\prime}, where an R^{\prime} is "useful" in this context if it can be XOR'ed with a desired $\Sigma(L)$ from the previous round to yield a desired $\Sigma(R)$ for the following round, so that round function attacks can be iterated and concatenated into characteristics with high overall probability.

3.4.1.2. Modification of Operation " a "

The goal behind modifying the round function is to eliminate the possibility of both differential and linear cryptanalytic attacks (as described in [8, 33]) against the cipher. This is done by inserting a nonlinear, key-dependent operation before the s-box lookup to effectively mask the inputs to the set of s-boxes. If these inputs are well "hidden", then sbox properties (such as the input XOR to output XOR mapping, or linearity) cannot be exploited in a general round function attack because the actual inputs to the s-boxes will not be known.

More specifically, the following modification to the round function f is proposed:

$$
f(R, K)=f\left(R, K_{1}, K_{2}\right)=S\left(a\left(R \oplus K_{1}, K_{2}\right)\right)
$$

where $a(\bullet \bullet \bullet)$ is an operation with properties as defined below. For DES, the expansion operation can be placed either around R or around $\left(R \oplus K_{1}\right)$ - that is, $f(R, K)=S(a(E(R) \oplus$ $\left.\left.K_{1}, K_{2}\right)\right)$ or $f(R, K)=S\left(a\left(E\left(R \oplus K_{1}\right), K_{2}\right)\right)$ - depending on whether K_{1} is 32 or 48 bits in length. As well, the permutation operation can be placed around $S(\bullet)$ as is done in the current round definition.

Several properties are required of the function $a(\bullet, \bullet)$. These will be discussed below, but they are enumerated here for reference.
(1) The subset sum operation must not be distributive over $a(\bullet, \bullet)$.
(2) $a(\bullet, \bullet)$ must represent a nonlinear mapping from its input to its output, so that any linear change in either input leads to a nonlinear change in the output vector.
(3) $a\left(\bullet, \bullet\right.$) must effectively "hide" its $R\left(\right.$ or $E(R)$) input if K_{1} and K_{2} are unknown (in the sense that there must be no way to cancel the effect of the keys in the round function using an operation on a single R value or a pair of R values).
(4) $a(\bullet, \bullet)$ must be relatively simple to implement in software (in terms of code size and complexity).
(5) $a(\bullet, \bullet)$ must execute efficiently (no more slowly than the remainder of the round function, for example).

A function which appears to encompass all the properties listed above is modular multiplication, for an appropriate choice of modulus. If R, K_{1}, and K_{2} are 32 bits in length, two candidate moduli ${ }^{20}$ are $\left(2^{32}-1\right)$ and $\left(2^{32}+1\right)$. Meijer [35] describes a simple algorithm to carry out multiplication modulo ($2^{32}-1$) in a high-level language using only 32-bit registers, and has shown that multiplication with this modulus is a "complete" operation (in that every input bit has the potential to modify every output bit [26]), so that this modulus appears to satisfy nonlinearity, simplicity, and data hiding. However, this modulus does not satisfy the third property ideally, since zero always maps to zero, and ($2^{32}-1$) always maps to either ($2^{32}-1$) or zero (depending on the implementation), regardless of the key in use. (Note, however, that in a practical implementation it is a simple matter to ensure that the computed subkey K_{2} is never equal to 0 or to ($2^{32}-1$), and masking R with K_{1} ensures that it is not easy for the cryptanalyst to choose R such that (R $\left.\oplus K_{1}\right)$ is equal to 0 or to ($2^{32}-1$).)

The modulus $\left(2^{32}+1\right)$ may be a better choice with respect to property three than $\left(2^{32}-\right.$ 1) if either of two simple manipulations are performed. Firstly, each input can be incremented by one, so that the computation is actually done with $(R+1)$ and $(K+1)$. Thus the arguments belong to the set $\left[1,2^{32}\right]$ rather than $\left[0,2^{32}-1\right]$, avoiding both the zero and the $\left(2^{32}+1\right)$ "fixed point" inputs. Alternatively, the inputs can be left as is (so that the computation is done with R and K), with the zero input mapped to the value 2^{32} (and the 2^{32} output mapped back to zero). Implementation of multiplication using this modulus is thus only slightly more difficult using a high-level language with 32-bit registers than for the modulus ($2^{32}-1$), and on platforms where the assembly language instructions give access to the full 64-bit result of a 32-bit multiply operation, the modular reduction can be accomplished quite simply and efficiently. Furthermore, as for ($2^{32}-1$), multiplication with this modulus represents a nonlinear mapping from input to output.

[^14]In order to ensure that the modular multiplication does not perform badly with respect to property three, it is necessary that the subkey K_{2} be relatively prime to the modulus. Thus, when the subkeys are being generated, the K_{2} used in each round must not have 3, 5, 17,257 , or 65537 as factors if the modulus $n=\left(2^{32}-1\right)$, and must not have 641 or 6700417 as factors if $n=\left(2^{32}+1\right)$.

Finally, it appears that either modulus can be used to satisfy property one, since the subset sum operation is not distributive over modular multiplication.

3.4.1.3. Making the Round Function Intrinsically Immune to Differential Cryptanalysis

Property three listed above prevents a differential attack as described by Biham and Shamir, and property two prevents a simple modification to their description. Recall the equation given in Section 3.4.1.1:

$$
\Delta X=X_{1} \oplus X_{2}=E\left(R_{1}\right) \oplus K \oplus E\left(R_{2}\right) \oplus K=E\left(R_{1}\right) \oplus E\left(R_{2}\right)=E(\Delta R)
$$

during two encryptions with the same key. This is the critical component of the differential attack because it shows that the XOR sum of two data inputs (R_{1} and R_{2}) completely determines the input XOR for the round s-boxes. This is why this attack would ideally be mounted using chosen plaintext (so that the cryptanalyst can select the input XORs which will construct the highest-probability characteristic). Property three prevents such an attack with the requirement that no operation on a pair of R values can cancel the effect of the key. Modular multiplication appears to achieve property three in the modified equation

$$
\begin{aligned}
\Delta X & =X_{1} \oplus X_{2} \\
& =a\left(R_{1} \oplus K_{1}, K_{2}\right) \oplus a\left(R_{2} \oplus K_{1}, K_{2}\right) \\
& =\left(\left(\left(R_{1} \oplus K_{1}\right) * K_{2}\right) \bmod n\right) \oplus\left(\left(\left(R_{2} \oplus K_{1}\right) * K_{2}\right) \bmod n\right)
\end{aligned}
$$

since knowledge of R_{1} and R_{2} does not seem to reveal ΔX if K_{1} and K_{2} are not known. Thus, the input XOR to output XOR mapping of the round s-boxes cannot be exploited through knowledge/choice of R_{1} and R_{2}.

Modular multiplication also appears to satisfy property two because it is not obvious that any simple modification to the differential attack will cause knowledge of R_{1} and R_{2} to reveal information about ΔX if K_{1} and K_{2} are not known. This is not true of arbitrary operations which may be proposed for $a(\bullet, \bullet)$. For example, if $a(\bullet, \bullet)$ is real addition (modulo n), then re-defining ΔX to be subtraction (modulo n) yields

$$
\Delta X=\left(X_{1}-X_{2}\right) \bmod n
$$

$$
\begin{aligned}
& =\left(a\left(R_{1} \oplus K_{1}, K_{2}\right)-a\left(R_{2} \oplus K_{1}, K_{2}\right)\right) \bmod n \\
& =\left(\left(\left(\left(R_{1} \oplus K_{1}\right)+K_{2}\right) \bmod n\right)-\left(\left(\left(R_{2} \oplus K_{1}\right)+K_{2}\right) \bmod n\right)\right) \bmod n \\
& =\left(\left(R_{1} \oplus K_{1}\right)-\left(R_{2} \oplus K_{1}\right)\right) \bmod n
\end{aligned}
$$

In such a situation the difference between R_{1} and R_{2} (XOR or real subtraction) reveals a significant amount of information about ΔX which may be used in subsequent rounds to construct a characteristic.

3.4.1.4. Making the Round Function Intrinsically Immune to Linear Cryptanalysis

Property one given above prevents a linear attack as described by Matsui. Recall the equation given in Section 3.4.1.1:

$$
\Sigma(Y)=\Sigma(X)=\Sigma(E(R) \oplus K)=\Sigma(E(R)) \oplus \Sigma(K)
$$

Therefore, $\Sigma(K)=\Sigma(E(R)) \oplus \Sigma(Y)$
This is the critical component of the linear attack because the distributive nature of the subset sum operation $\Sigma(\bullet)$ over the XOR operation may allow the equivalent of one key bit to be computed ${ }^{21}$ using only knowledge of $\Sigma(E(R))$ and $\Sigma(Y)$. This is why this attack would typically be mounted using known plaintext (so that the cryptanalyst can use knowledge of Σ (plaintext) and $\Sigma($ ciphertext $)$ to work through intermediate rounds to solve for various key bits). Property one prevents such an attack by the requirement that $\Sigma(\bullet)$ not be distributive over $a(\bullet, \bullet)$. Modular multiplication appears to achieve this requirement ${ }^{22}$, as seen in the modified equation

$$
\Sigma(Y)=\Sigma(X)=\Sigma\left(\left(\left(R \oplus K_{1}\right) * K_{2}\right) \bmod n\right)
$$

since it appears that this equation cannot be rearranged in any way to solve for subset sums of K_{1} and K_{2} given only subset sums of R and Y. (Note that either $E(R)$ or $E\left(R \oplus K_{1}\right)$ may be substituted in the above equation, if required.)

[^15]
3.4.1.5. Implementing Operation " a " in a CAST Cipher

A CAST cipher implemented with a blocksize and keysize of 64 bits, four 8×32 s-boxes $S_{1} \ldots S_{4}$ in the round function, and 32-bit subkeys in each round, appears to require more chosen/known plaintexts for differential and linear attacks than exist for that blocksize if 12 or more rounds are used. If operations a, b, c, and d are all XOR addition, the round function f may be computed simply as:

$$
f(R, K)=S_{1}\left(B^{(1)}\right) \oplus \ldots \oplus S_{4}\left(B^{(4)}\right)
$$

where $B=R \oplus K$ and $B^{(j)}$ is the $j^{t h}$ byte of B. Application of the technique described in this section yields the modified computation of operation " a ", where f remains identical but B is now computed as

$$
B=\left(\left(R \oplus K_{1}\right) * K_{2}\right) \bmod n
$$

Examination of the assembly language instructions required for the modular multiplication step alone (using either ($2^{32}-1$) or $\left(2^{32}+1\right)$ as the modulus) shows that multiplication takes approximately the same amount of time as the remainder of the round on a Pentium-class PC, so that there is a performance impact of about a factor of two, compared with a version of CAST where operation " a " is simple XOR addition.

4. Alternative Operations and Design Choices

A number of options are available both for the round function operations and for the framework design which do not appear to compromise security and do not degrade encryption / decryption performance of the resulting cipher. In fact, for some choices it appears that security or performance may be enhanced, thus motivating the use of these alternatives in practice and encouraging further research into a proof of security for each alternative. If such proofs become available, the corresponding options will be formally incorporated into the CAST design procedure. Note that all alternatives have been included in the example cipher given in Section 5, primarily to stimulate analysis of these options in the context of a real cipher, but also because the author believes these to be good design choices.

4.1. Binary Operations in the Round Function

Throughout this paper the operations b, c, and d in the round function (as well as at least part of operation a) have been specified as the XOR of two binary quantities. It
should be clear, however, that other binary operations may be used instead. Particularly attractive are addition and subtraction modulo 2^{32}, since these operations take no more time than XOR and so will not degrade encryption / decryption performance in any way. Experimental evidence suggests that using such alternative operations may significantly increase security against linear cryptanalysis [56], but this is yet to be proven formally.

4.2. Extension to Operation " a "

Discussed in Section 3.4.1 was the proposal to add extra computation (using extra key bits) to the operation " a " in the round function. The specific computation suggested was multiplication with another 32 -bit subkey using a modulus of either $\left(2^{32}-1\right)$ or $\left(2^{32}+1\right)$. However, it was noted that this suggestion can degrade performance by as much as a factor of two. An alternative operation which appears to be quite attractive is rotation (i.e., circular shifting) by a given number of bits. This operation is similar to the central operation of the cipher RC5 [48], except that here we suggest a key-dependent rotation (controlled by a 5-bit subkey) rather than a data-dependent rotation, since data-dependent rotation appears to be less appropriate for a Feistel-type structure.

The extended " a " operation for a CAST cipher with a 64-bit blocksize is then

$$
a(R, K)=a\left(R, K_{1}, K_{2}\right)=\left(\left(R \bullet K_{1}\right) \lll K_{2}\right),
$$

where " \bullet " is any binary operation (such as XOR or addition modulo 2^{22}), " \lll " is the circular left shift operator, K_{1} is a 32 -bit subkey, and K_{2} is a 5 -bit subkey. The primary advantage of the rotation operation over modular multiplication is speed: on typical computing platforms the n-bit rotation $(0 \leq n \leq 31)$ specified by K_{2} can be accomplished in a small number of clock cycles, thus causing very minor performance degradation in the overall cipher. Rotation satisfies property (1) from Section 3.4.1.2 because it prevents a linear attack as described by Matsui for all cases except the extreme case where the input subset considered consists of the full set of input bits. It is highly unlikely that this extreme case applied in every round of an N-round cipher will describe a successful linear characteristic for the cipher.

4.3. Non-Uniformity within the Round Function

The discussion thus far implies that the binary operation in b, c, and d (and at least part of a) must be the same in all four instances (e.g., XOR). However, there is no reason that this needs to be the case. For example, it would be perfectly acceptable for b and d to use
addition modulo 2^{32} while c uses XOR (this is precisely the combination used in the Blowfish cipher [49]). Certainly many variations are possible, and while it is not clear that any one variation is significantly better than any other, it does appear to be the case that the use of different operations within a, b, c, and d can add to the security of the overall cipher (note that the IDEA cipher has long advanced the conviction that operations over different groups contribute to cipher security [29, 30]).

4.4. Non-Uniformity From Round to Round

Another design option is to vary the definition of the round function itself from round to round. Thus, in an N-round cipher there may be as many as N distinct rounds, or there may be a smaller number of distinct rounds with each type of round being used a certain number of times. The variations in the round definitions may be due to the kinds of options mentioned in the previous subsection or may be more complex in nature.

Whether the idea of a number of distinct rounds [55] in a cipher adds in any significant way to its cryptographic security is an open question. However, there is no evidence thus far that variations resulting from mixed operations (as suggested in Section 4.3) can in any way weaken the cipher and lead to its cryptanalysis.

5. An Example CAST Cipher

In order to facilitate detailed analysis of the CAST design procedure, and as an aid to understanding the procedure itself, an example CAST cipher (an output of the design procedure described in this paper) is provided in this section (with further details given in Appendices A, B, and C). This 16-round cipher has a blocksize of 64 bits and a keysize of 128 bits; it uses rotation in operation a to provide intrinsic immunity to linear and differential attacks; it uses a mixture of XOR, addition and subtraction (modulo 2^{32}) in the operations a, b, c, and d in the round function; and it uses three variations of the round function itself throughout the cipher. Finally, the 8×32 s-boxes used in the round function each have a minimum nonlinearity of 74 and a maximum entry of 2 in the difference distribution table.

This example cipher appears to have cryptographic strength in accordance with its keysize (128 bits) and has very good encryption / decryption performance: 3.3 MBytes/sec on a 150 MHz Pentium processor.

In order to simplify future reference (i.e., to disambiguate this example from any other CAST-designed cipher discussed elsewhere), this example cipher will be referred to as CAST-128.

5.1. Pairs of Round Keys

CAST-128 uses a pair of subkeys per round; a 32-bit quantity K_{m} is used as a "masking" key and a 5-bit quantity K_{r} is used as a "rotation" key.

5.2. Non-Identical Rounds

Three different round functions are used in CAST-128. The rounds are as follows (where "D" is the data input to the f function and " I_{a} " - " I_{d} " are the most significant byte through least significant byte of I, respectively). Note that " + " and "-" are addition and subtraction modulo 2^{32}, " \wedge " is bitwise XOR, and "<<<" is the circular left-shift operation.

```
Type 1: I = (( Kmi + D) <<< K Krim
    f = ((S1[Ia] ^ S2[Ib]) - S3[If}]) + S4[Id
Type 2: I = (( }\mp@subsup{\textrm{Kmi}}{\mp@subsup{m}{i}{\prime}}{}^\textrm{D})<<<<\mp@subsup{K}{\mp@subsup{r}{i}{}}{}
    f = ((S1[Ia] - S2[Ib]) + S3[I_c]) ^ S4[Id]
Type 3: I = (( }\mp@subsup{\textrm{Kmi}}{\mp@subsup{m}{i}{}}{}-\textrm{D})<<<<\mp@subsup{K}{\mp@subsup{r}{i}{}}{}
    f = ((S1[Ia] + S2[Ib]) ^ S3[I_c]) - S4[Id]
```

Rounds $1,4,7,10,13$, and 16 use f function Type 1.
Rounds 2, 5, 8, 11, and 14 use f function Type 2.
Rounds $3,6,9,12$, and 15 use f function Type 3.

5.3. Key Schedule

Let the 128 -bit key be $x 0 \times 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times A x B x C x D x E x F$, where $x 0$ represents the most significant byte and $\times \mathrm{F}$ represents the least significant byte.

See Appendix A for a detailed description of how to generate $\mathrm{K}_{\mathrm{m}_{\mathrm{i}}}$ and $\mathrm{K}_{\mathrm{r}_{\mathrm{i}}}$ from this key.

5.4. Substitution Boxes

CAST-128 uses eight substitution boxes: s-boxes $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$, and S 4 are round function s-boxes; S5, S6, S7, and S8 are key schedule s-boxes. Although 8 s-boxes require a total of

8 KBytes of storage, note that only 4 KBytes are required during actual encryption/decryption since subkey generation is typically done prior to any data input.

See Appendix B for the contents of s-boxes S1-S8.

6. Conclusions

The CAST design procedure can be used to produce a family of encryption algorithms which appear to have good resistance to differential cryptanalysis, linear cryptanalysis, and related-key cryptanalysis, as described in the literature. CAST ciphers also possess a number of other desirable cryptographic properties and have good encryption / decryption speed on common computing platforms.

Analysis of the procedure described in this paper by members of the cryptologic community is strongly encouraged so as to increase confidence in the various aspects of the design presented.

7. References

[1] C. M. Adams, A Formal and Practical Design Procedure for Substitution-Permutation Network Cryptosystems, Ph.D. Thesis, Department of Electrical Engineering, Queen's University, 1990.
[2] C. M. Adams and S. E. Tavares, The Use of Bent Sequences to Achieve Higher-Order Strict Avalanche Criterion in S-Box Design, Technical Report TR 90-013, Dept. of Elec. Eng., Queen's University, Kingston, Ontario, Canada, Jan., 1990.
[3] C. M. Adams and S. E. Tavares, Generating and Counting Binary Bent Sequences, IEEE Transactions on Information Theory, vol. IT-36, 1990, pp.1170-1173.
[4] C. M. Adams, On Immunity against Biham and Shamir's "Differential Cryptanalysis", Information Processing Letters, vol.41, Feb.14, 1992, pp.77-80.
[5] C. M. Adams and S. E. Tavares, Designing S-Boxes for Ciphers Resistant to Differential Cryptanalysis, Proceedings of the 3rd Symposium on the State and Progress of Research in Cryptography, Rome, Italy, Feb., 1993, pp.181-190.
[6] C. M. Adams, Simple and Effective Key Scheduling for Symmetric Ciphers, in Workshop Record of the Workshop on Selected Areas in Cryptography (SAC 94), May 5-6, 1994, pp.129-133.
[7] C. M. Adams, Designing DES-Like Ciphers with Guaranteed Resistance to Differential and Linear Attacks, in the Workshop Record of the Workshop on Selected Areas in Cryptography (SAC 95), May 18-19, 1995, pp.133-144.
[8] E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption Standard, SpringerVerlag, 1993.
[9] E. Biham, New Types of Cryptanalytic Attacks Using Related Keys, in Advances in Cryptology: Proc. of Eurocrypt '93, Springer-Verlag, 1994, pp.398-409.
[10] L. Brown, J. Pieprzyk, and J. Seberry, LOKI - A Cryptographic Primitive for Authentication and Secrecy Applications, Advances in Cryptology: Proc. of Auscrypt 90, 1990, pp.229-236.
[11] L. Brown, M. Kwan, J. Pieprzyk, and J. Seberry, Improving Resistance to Differential Cryptanalysis and the Redesign of LOKI, Advances in Cryptology: Proc. of Asiacrypt 91.
[12] D. Coppersmith, The Real Reason for Rivest's Phenomenon, in Adv. in Cryptology: Proc. of Crypto '85, Springer-Verlag, New York, 1986, pp.535-536.
[13] D. Coppersmith, The Data Encryption Standard (DES) and its Strength Against Attacks, IBM Journal of Research and Development, vol.38, \#3, May 1994, pp.243-250.
[14] D. Davies, Some Regular Properties of the 'Data Encryption Standard' Algorithm, in Advances in Cryptology: Proc. of Crypto '82, Springer-Verlag, New York, 1983, pp.89-96.
[15] D. Davies, A Message Authenticator Algorithm Suitable for A Mainframe Computer, in Advances in Cryptology: Proc. of Crypto '84, Springer-Verlag, New York, 1985, pp.394-400.
[16] M. Dawson and S. E. Tavares, An Expanded Set of S-Box Design Criteria Based on Information Theory and its Relation to Differential-Like Attacks, in Advances in Cryptology: Proc. of Eurocrypt '91, Springer-Verlag, 1992, pp.352-367.
[17] W. Diffie and M. E. Hellman, Privacy and Authentication: An Introduction to Cryptography, in Proceedings of the IEEE, vol.67, 1979, pp.397-427.
[18] H. Feistel, Cryptography and Computer Privacy, Scientific American, vol.228, 1973, pp.15-23.
[19] H. Feistel, W. Notz, and J. L. Smith, Some Cryptographic Techniques for Machine-to-Machine Data Communications, Proceedings of the IEEE, vol.63, 1975, pp.1545-1554.
[20] E. Grossman and B. Tuckerman, Analysis of a Feistel-Like Cipher Weakened by Having No Rotating Key, Technical Report RC 6375, IBM, 1977.
[21] C. Harpes, G. Kramer, and J. Massey, A Generalization of Linear Cryptanalysis and the Applicability of Matsui’s Piling-up Lemma, Proc. of Eurocrypt '95, Springer-Verlag, 1995, pp.2438.
[22] H. M. Heys and S. E. Tavares, Cryptanalysis of tree-structured substitution-permutation networks, IEE Electronics Letters, vol.29, \#1, 1993, pp.40-1.
[23] H. M. Heys, The Design of Substitution-Permutation Network Ciphers Resistant to Cryptanalysis, Ph.D. Thesis, Department of Electrical and Computer Engineering, Queen's University, 1994.
[24] H. M. Heys and S. E. Tavares, On the security of the CAST encryption algorithm, in Canadian Conference on Electrical and Computer Engineering, Halifax, Nova Scotia, Canada, Sept., 1994, pp.332-335.
[25] B. S. Kaliski Jr., R. L. Rivest, and A. T. Sherman, Is the Data Encryption Standard a Group? (Results of Cycling Experiments on DES), Journal of Cryptology, vol.1-1, 1988, pp.3-36.
[26] J. B. Kam and G. I. Davida, Structured Design of Substitution-Permutation Encryption Networks, IEEE Trans. on Computers, vol. C-28, 1979, pp.747-753.
[27] L. R. Knudsen, Cryptanalysis of LOKI91, in Advances in Cryptology: Proc. of Auscrypt '92, Springer-Verlag, 1993, pp.196-208.
[28] L. R. Knudsen, Iterative Characteristics of DES and s^{2}-DES, in Advances in Cryptology: Proc. of Crypto '92, Springer-Verlag, 1993, pp.497-511.
[29] X. Lai and J. L. Massey, A Proposal for a New Block Encryption Standard, Adv. in Cryptology: Proc. of Eurocrypt 90, Springer-Verlag, 1991, pp.389-404.
[30] X. Lai, J. L. Massey, and S. Murphy, Markov Ciphers and Differential Cryptanalysis, in Advances in Cryptology: Proc. of Eurocrypt '91, Springer-Verlag, 1991, pp.17-38.
[31] J. Lee, H. M. Heys, and S. E. Tavares, On the Resistance of the CAST Encryption Algorithm to Differential Cryptanalysis, in the Workshop Record of the Workshop on Selected Areas in Cryptography (SAC 95), May 18-19, 1995, pp.107-120.
[32] J. Massey, SAFER K-64: A Byte-Oriented Block-Ciphering Algorithm, Proceedings of the Cambridge Security Workshop on Fast Software Encryption, Cambridge, U.K., Dec. 9-11, 1993, Springer-Verlag, pp.1-17. [See also: SAFER K-64: One Year Later, in Proceedings of the Second International Workshop on Fast Software Encryption, Springer-Verlag, 1995, pp.212-241; and Strengthened Key Schedule for the Cipher SAFER, posted to the USENET newsgroup sci.crypt, September 9, 1995]
[33] M. Matsui, Linear Cryptanalysis Method for DES Cipher, in Advances in Cryptology: Proc. of Eurocrypt '93, Springer-Verlag, 1994, pp.386-397, 1994.
[34] W. Meier and O. Staffelbach, Nonlinearity Criteria for Cryptographic Functions, in Adv. in Cryptology: Proc. of Eurocrypt '89, Springer-Verlag, 1990, pp.549-562.
[35] H. Meijer, Multiplication-Permutation Encryption Networks, Technical Report \#85-171, Queen's University, Dept. of Computing and Information Science, 1985.
[36] R. Merkle, A Fast Software One-Way Hash Function, Journal of Cryptology, vol.3, \#1, 1990, pp.4358.
[37] R. Merkle, Fast Software Encryption Functions, in Advances in Cryptology: Proc. of Crypto '90, Springer-Verlag, New York, 1991, pp.477-501.
[38] S. Miyaguchi, A. Shiraishi, and A. Shimizu, Fast Data Encryption Algorithm Feal-8, Review of Electrical Communications Laboratories, vol.36, \#4, 1988.
[39] S. Miyaguchi, The FEAL Cipher Family, in Advances in Cryptology: Proc. of Crypto '90, SpringerVerlag, New York, 1991, pp.627-638.
[40] J. H. Moore and G. J. Simmons, Cycle Structure of the DES with Weak and Semi-Weak Keys, in Advances in Cryptology: Proc. of Crypto '86, Springer-Verlag, New York, 1987, pp.9-32.
[41] National Bureau of Standards (U.S.), Data Encryption Standard (DES), Federal Information Processing Standards Publication 46, Jan. 15, 1977.
[42] K. Nyberg, Constructions of bent functions and difference sets, in Advances in Cryptology: Proc. of Eurocrypt '90, Springer-Verlag, 1991, pp.151-160.
[43] K. Nyberg, Perfect nonlinear S-boxes, in Advances in Cryptology: Proc. of Eurocrypt '91, SpringerVerlag, 1991, pp.378-386.
[44] K. Nyberg and L. Knudsen, Provable Security Against Differential Cryptanalysis, in Advances in Cryptology: Proc. of Crypto '92, Springer-Verlag, 1993, pp.566-574.
[45] L. O'Connor, An average case analysis of a differential attack on a class of SP-networks, in the Workshop Record of the Workshop on Selected Areas in Cryptography (SAC 95), May 18-19, 1995, pp.121-130.
[46] B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts, and J. Vandewalle, Propagation characteristics of boolean functions, in Advances in Cryptology: Proc. of Eurocrypt '90, SpringerVerlag, Berlin, 1991, pp.161-173.
[47] V. Rijmen, B. Preneel, On Weaknesses of Non-surjective Round Functions, in Workshop Record of the Workshop on Selected Areas in Cryptography (SAC 95), May 18-19, 1995, pp.100-106.
[48] R. Rivest, The RC5 Encryption Algorithm, Proceedings of the Second International Workshop on Fast Software Encryption, Springer-Verlag, 1995, pp.86-96.
[49] B. Schneier, The Blowfish Encryption Algorithm, Proceedings of the Cambridge Security Workshop on Fast Software Encryption, Cambridge, U.K., Dec. 9-11, 1993, Springer-Verlag, pp.191-204.
[50] J. Seberry, X.-M. Zhang, and Y. Zheng, Systematic Generation of Cryptographically Robust SBoxes (Extended Abstract), in Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia, USA, Nov. 3-5, 1993, pp.171-182.
[51] C. E. Shannon, Communication Theory of Secrecy Systems, Bell Systems Technical Journal, vol. 28, 1949, pp.656-715.
[52] M. Sivabalan, S. E. Tavares, and L. E. Peppard, On the Design of SP Networks from an Information Theoretic Point of View, in Advances in Cryptology: Proc. of Crypto '92, Springer-Verlag, 1993, pp.260-279.
[53] A. F. Webster, Plaintext/Ciphertext Bit Dependencies in Cryptographic Systems, M.Sc. Thesis, Department of Electrical Engineering, Queen's University, Kingston, Ont., 1985.
[54] A. F. Webster and S. E. Tavares, On the Design of S-Boxes, in Adv. in Cryptology: Proc. of Crypto '85, Springer-Verlag, New York, 1986, pp.523-534.
[55] M. Wiener (personal communication).
[56] A. Youssef (personal communication).

Appendix A．

This appendix provides full details of the CAST－128 key schedule（see Section 5）．

A．1．Key Schedule

Let the 128 －bit key be $x 0 x 1 x 2 \times 3 x 4 \times 5 \times 6 x 7 x 8 x 9 x A x B x C x D x E x F$ ，where $x 0$ represents the most significant byte and $\times \mathrm{F}$ represents the least significant byte．

Let $\mathrm{K}_{\mathrm{m} 1}, \ldots, \mathrm{~K}_{\mathrm{m} 16}$ be sixteen 32－bit masking subkeys（one per round）．
Let $K_{r_{1}}, \quad, K_{r_{16}}$ be sixteen 32－bit rotate subkeys（one per round）；only the least significant 5 bits are used in each round．

Let zo．．zF be intermediate（temporary）bytes．
Let $\operatorname{si}[]$ represent s－box i and let＂＾＂represent XOR addition．

The subkeys are formed from the key $\mathrm{x} 0 \times 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times A \times B x C x D x E x F$ as follows．

```
z0z1z2z3 = x0x1x2x3 ^ S5[xD] ^ S6[xF] ^ S7[xC] ^ S8[xE] ^ S7[x8]
```



```
zCzDzEzF = x4x5x6x7 ^ S5[zA] ^ S6[z9] ^ S7[zB] ^ S8[z8] ^ S6[xB]
K1 = S5[z8] ^ S6[z9] ^ S7[z7] ^ S8[z6] ^ S5[z2]
K2 = S5[zA] ^ S6[zB] ^ S7[z5] ^ S8[z4] ^ 人 S6[z6]
K3 = S5[zC]^ ^S6[zD]^ S7[z3]^^S8[z2]^^ S7[z9]
K4 = S5[zE] ^ S6[zF] ^ S7[z1] ^ S8[z0] ^ S8[zC]
x0x1x2x3 = z8z9zAzB ^ S5[z5] ^ S6[z7] ^ S7[z4] ^ S8[z6] ^ S7[z0]
x4x5x6x7= z0z1z2z3^NS[x0] ^ S6[x2] ^ S7[x1] ^ S8[x3] ^ S8[z2]
x8x9xAxB = z4z5z6z7 ^ S5[x7] ^ S6[x6] ^ S7[x5] ^ S8[x4] ^ S5[z1]
xCxDxExF = zCzDzEzF ^ S5[xA] ^ S6[x9] ^ S7[xB] ^ S8[x8] ^ S6[z3]
K5 = S5[x3] ^ S6[x2] ^ S7[xC] ^ S8[xD] ^ S5[x8]
K6 = S5[x1] ^ S6[x0] ^ S7[xE] ^ S8[xF] ^ S6[xD]
K7 = S5[x7] ^ S6[x6] ^ S7[x8] ^ S8[x9] ^ S7[x3]
K8 = S5[x5] ^ S6[x4] ^ S7[xA] ^ S8[xB] ^ S8[x7]
z0z1z2z3 = x0x1x2x3 ^ S5[xD] ^ S6[xF] ^ S7[xC] ^ S S [xE] ^ S7[x8]
```



```
zCzDzEzF=x4x5x6x7 ^ S5[zA] ^ S6[z9] ^ S7[zB]^^ S8[z8] ^ S6[xB]
K9 = S5[z3] ^ S6[z2] ^ S7[zC] ^ S8[zD] ^ S5[z9]
K10 = S5[z1] ^ S6[z0] ^ S7[zE] ^ S8[zF] ^ 人 S6[zC]
K11 = S5[z7] ^ S6[z6] ^ S7[z8] ^ S8[z9] ^ S7[z2]
K12 = S5[z5] ^ S6[z4] ^ S7[zA] ^ S8[zB] ^ S8[z6]
x0x1x2x3 = z8z9zAzB ^ S5[z5] ^ S6[z7] ^ S7[z4]^^S8[z6] ^ S7[z0]
x4x5x6x7 = z0z1z2z3 ^ S5[x0] ^ S6[x2] ^ S7[x1] ^ S8[x3] ^ S8[z2]
x8x9xAxB = z4z5z6z7 ^ S5[x7] ^ S6[x6] ^人 S7[x5] ^人S8[x4] ^人 S5[z1]
xCxDxExF = zCzDzEzF ^ S5[xA] ^ S6[x9] ^ S7[xB] ^ S8[x8] ^ S6[z3]
K13 = S5[x8] ^ S6[x9] ^ S7[x7] ^ S8[x6] ^ S5[x3]
K14 =S5[xA] ^ S6[xB] ^ S7[x5] ^ S S[x4] ^ ^S6[x7]
K15 = S5[xC] ^ S6[xD] ^ \ S7[x3] ^ S8[x2] ^ S & S7[x8]
```

［The remaining half is identical to what is given above，carrying on from the last created $x 0 \ldots \mathrm{xF}$ to generate keys $\mathrm{K}_{17}-\mathrm{K}_{32}$ ．］

```
z0z1z2z3 = x0x1x2x3 ^ S5[xD] ^ S6[xF] ^ S7[xC] ^ S8[xE] ^ S7[x8]
z4z5z6z7 = x8x9xAxB ^ S5[z0] ^ S6[z2] ^ S7[z1] ^ S8[z3] ^ S8[xA]
z8z9zAzB = xCxDxExF ^ S5[z7] ^ S6[z6] ^ S7[z5]^^S8[z4]^^S5[x9]
zCzDzEzF= x4x5x6x7 ^ S5[zA] ^ S6[z9] ^ S7[zB] ^ S8[z8] ^ S6[xB]
K17 = S5[z8] ^ S6[z9] ^ S7[z7] ^ S8[z6] ^ S5[z2]
K18 = S5[zA] ^ S6[zB] ^ S7[z5] ^ S8[z4] ^ S6[z6]
K19 = S5[zC] ^ S6[zD] ^ S7[z3] ^ S8[z2] ^ S7[z9]
K20 = S5[zE] ^ S6[zF] ^ S7[z1] ^ S8[z0] ^ S8[zC]
```

$\mathrm{x} 0 \mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 3=\mathrm{z} 8 \mathrm{z} 9 \mathrm{zAzB}$	S5 [z5]	S6 [z7]	S7 [44$]$	S8 [z 6$]$		S7 [z0]
$\mathrm{x} 4 \mathrm{x} 5 \mathrm{x} 6 \mathrm{x} 7=\mathrm{z} 0 \mathrm{z1z2z3}$	S5 [x0]	S6[x2]	S7 [x1]	S8[x3]		S8[z2]
$x 8 x 9 x A x B=z 4 z 5 z 6 z 7$	S5 [x7]	S6[x6]	S7 [x5]	S8 [x4]		S5[z1]
$x C x D x E x F=z C z D z E z F$	S5 [xA]	S6[x9]	S7 [xB]	S8[x8]		S6[z3]
$\mathrm{K} 21=\mathrm{S} 5[\mathrm{x} 3] \wedge \mathrm{S} 6[\mathrm{x} 2]$	^ S 7 [xC$]$	^ $\mathrm{S} 8[\mathrm{xD}]$	^ S5 [x8]			
$\mathrm{K} 22=\mathrm{S} 5[\mathrm{x} 1]$ ^ $\mathrm{S} 6[\mathrm{x} 0]$	^ S7[xE]	^ $\mathrm{S} 8[\mathrm{xF}]$	^ S6[xD]			
$\mathrm{K} 23=\mathrm{S} 5[\mathrm{x} 7] \wedge$ S6[x6]	^ S7[x8]	\wedge ¢ ${ }^{\text {¢ }}$ [x9]	\wedge S7[x3]			
$\mathrm{K} 24=\mathrm{S} 5[\mathrm{x} 5] \wedge \mathrm{S} 6[\mathrm{x} 4]$	^ S7[xA]	\wedge S8[xB]	\wedge S8[x7]			
$\mathrm{z0} 1 \mathrm{z} 2 \mathrm{z} 3=\mathrm{x} 0 \times 1 \mathrm{x} 2 \mathrm{x} 3$	S5 [xD]	S6[xF]	S7 [xC]	S8 [XE]		S7 [x8]
$z 4 z 5 z 6 z 7=x 8 x 9 x A x B$	S5 [z0]	S6[z2]	S7[z1]	S8[z3]		S 8 [xA]
z8z9zAzB $=x$ cxDxExF	S5[z7]	S6[z6]	S7[z5]	S8 [z4]		S5[x9]
zCzDzEzF $=x 4 \times 5 \times 6 \times 7$	S5 [zA]	S6[z9]	S7[zB]	S8[z8]		S6[xB]
$\mathrm{K} 25=\mathrm{S} 5[\mathrm{z} 3] \wedge$ S6[z2]	^ S7[zC]	^ S8[zD]	^ S5[z9]			
$\mathrm{K} 26=\mathrm{S} 5[\mathrm{z} 1]$ ^ $\mathrm{S} 6[\mathrm{z} 0]$	^ S7[zE]	^ $\mathrm{S} 8[\mathrm{zF}]$	^ S6[zC]			
$\mathrm{K} 27=\mathrm{S} 5[\mathrm{z7}] \wedge$ S6[z6]	^ S7[z8]	^ S8 [z9]	^ S7[z2]			
$\mathrm{K} 28=\mathrm{S} 5[\mathrm{z} 5] \wedge \mathrm{S} 6[\mathrm{z4}]$	^ S7[zA]	^ S8[zB]	^ S8[z6]			
$\mathrm{x} 0 \mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 3=\mathrm{z} 8 \mathrm{z} 9 \mathrm{zAzB}$	S5 [z5]	S6[z7]	S7 [z4]	S8[z6]		S7[z0]
$\mathrm{x} 4 \mathrm{x} 5 \mathrm{x} 6 \mathrm{x} 7=\mathrm{z} 0 \mathrm{z1z2z} 3$	S5 [x0]	S6[x2]	S7[x1]	S8[x3]		S8[z2]
$x 8 x 9 x A x B=z 4 z 5 z 6 z 7$	S5[x7]	S $6[x 6]$	S7[x5]	S8[x4]		S5[z1]
$x C x D x E x F=z C z D z E z F$	S5 [xA]	S6[x9]	S7 [xB]	S8[x8]		S6[z3]
K 29 = S5 [x8] ${ }^{\text {a }}$ S6[x9]	^ S7[x7]	ค $\mathrm{S} 8[\mathrm{x} 6]$	ค S5 [x3]			
$\mathrm{K} 30=\mathrm{S} 5[\mathrm{xA}] \wedge$ S6[xB]	ค $57[\mathrm{x} 5]$	^ $58[\mathrm{x} 4]$	ค S6[x7]			
$\mathrm{K} 31=\mathrm{S} 5[\mathrm{xC}] \wedge$ S6[xD]	ค S7[x3]	^ $\mathrm{S} 8[\mathrm{x} 2]$	^ S7[x8]			
$\mathrm{K} 32=\mathrm{S} 5[\mathrm{xE}]$ ^ $\mathrm{S} 6[\mathrm{xF}]$	^ S7[x1]	^ $\mathrm{S} 8[\mathrm{x} 0]$	^ $\mathrm{S} 8[\mathrm{xD}]$			

A.2. Masking Subkeys And Rotate Subkeys

Let $K_{m 1}, \ldots, K_{m 16}$ be 32-bit masking subkeys (one per round).
Let $\mathrm{K}_{\mathrm{r}_{1}}, \quad, \mathrm{~K}_{\mathrm{r}_{16}}$ be 32-bit rotate subkeys (one per round); only the least significant 5
bits are used in each round.

```
for (i=1; i<=16; i++) { Kmi = Ki; K Kri = K16+i; }
```


Appendix B.

This appendix provides the contents of the CAST-128 s-boxes (see Section 5).

S-Box S1							
30 fb 40 d 4	9fa0ff0b 6beccd2f	3f258c7a	1e213f2f	9c004dd3	6003e540	cf9fc949	bfd4af27
88 bbbdb 5	e2034090 98d09675	6e63a0e0	15c361d2	c2e7661d	22d4ff8e	28683b6f	c07fd059
ff2379c8	775 f50e2 43c340d3	df2f8656	887ca41a	a2d2bd2d	a1c9e0d6	346 c 4819	61b76d87
22540 f2f	2abe32e1 aa54166b	22568e3a	a2d341d0	66 db 40 c 8	a784392f	004dff2f	2 db 9 d 2 de
97943 fac	4a97c1d8 527644b7	b5f437a7	b82cbaef	d751d159	6ff7f0ed	5a097a1f	827b68d0
90ecf52e	22b0c054 bc8e5935	4b6d2f7f	50bb64a2	d2664910	bee5812d	b7332290	e93b159f
b48ee411	4bff345d fd45c240	ad31973f	c4f6d02e	55 fc8165	d5b1caad	a1ac2dae	a2d4b76d
c19b0c50	882240f2 0c6e4f38	a4e4bfd7	4 f5ba272	564c1d2f	c59c5319	b949e354	b04669fe
b1b6ab8a	c71358dd 6385c545	110f935d	57538ad5	6a390493	e63d37e0	2a54f6b3	3a787d5f
6276a0b5	19a6fcdf 7a42206a	29f9d4d5	f61b1891	bb72275e	aa508167	38901091	c6b505eb
84 c 7 cb 8 c	2ad75a0f 874a1427	a2d1936b	2ad286af	aa56d291	d7894360	425c750d	93b39e26
187184 c 9	6c00b32d 73e2bb14	a0bebc3c	54623779	64459 eab	3f328b82	7718 cf 82	59a2cea6
04 ee 002 e	89fe78e6 3fab0950	325 ff6c2	81383f05	6963c5c8	76cb5ad6	d49974c9	ca180dcf
380782d5	c7fa5cf6 8ac31511	35e79e13	47da91d0	f40f9086	a7e2419e	31366241	051ef495
aa573b04	4a805d8d 548300d0	00322a3c	bf64cddf	ba57a68e	75c6372b	50afd341	a7c13275
915a0bf5	6b54bfab 2b0b1426	ab4cc9d7	449 ccd 82	f7fbf265	ab85c5f3	1b55db 94	aad4e324
cfa4bd3f	2deaa3e2 9e204d02	c8bd25ac	eadf55b3	d5bd9e98	e31231b2	2ad5ad6c	954329 de
adbe 4528	d8710f69 aa51c90f	aa786bf6	22513f1e	aa51a79b	2ad344cc	7b5a41f0	d37cfbad
1b069505	41ece491 b4c332e6	032268d4	c9600acc	ce387e6d	bf6bb16c	6a70 fb 78	0d03d9c9
d4df39de	e01063da 4736f464	5ad328d8	b347cc96	75bb0 fc3	98511bfb	4 ffbcc 35	b58bcf6a
e11f0abc	bfc5fe4a a70aec10	ac39570a	3f04442f	6188b153	e0397a2e	5727 cb 79	9ceb418f
1cacd68d	2ad37c96 0175cb9d	c69dff09	c75b65f0	d9db40d8	ec0e7779	4744 ead4	b11c3274
dd24cb9e	7e1c54bd f01144f9	d2240eb1	9675b3fd	a3ac3755	d47c27af	51 c 85 f 4 d	56907596
a5bb15e6	580304f0 ca042cf1	011a37ea	8dbfaadb	35ba3e4a	3526 ffa0	c37b4d09	bc306ed9
98a52666	5648 f 725 ff5e569d	0ced63d0	7c63b2cf	700b45e1	d5ea50f1	85a92872	af1 fbda 7
d4234870	a7870bf3 2d3b4d79	42e04198	$0 \mathrm{cd0ede} 7$	26470 db 8	f881814c	474d6ad7	7c0c5e5c
d1231959	381b7298 f5d2f4db	ab838653	6e2f1e23	83719c9e	bd91e046	9a56456e	dc39200c
20c8c571	962bdalc ele696ff	b141ab08	7cca89b9	$1 a 69 \mathrm{e} 783$	02cc4843	a2f7c579	429 f 47 d
427b169c	5ac9f049 dd8f0f00	5c8165bf					

S－Box S2
1f201094 ef0ba75b 4e1d7235 ee15b094 a5e6cf7b 01420 ddb 98de8b7f 77e83f4e 0d554b63 361e3084 ba6cf38c fc88469 10843094 3e4de8df 844 e8212 77840 b 4 d dadc4755 $33 b 4 a 34 c$ b96726d1 a 4 b 09 f 6 b 9f63293c ee41e729 73土98417 a1269859 cb3f4861 c26bd765 $31 e e f 84 d$ 7e0824e4 30£66£43 99319 ad5 bec0c560 273be 979 8f1c9ba 4 2d6a77ab $2667 a 8 c c$ dcblc647 4 fb0 $89 b d$ 7160a539

S－Box S3 8defc240 eefbcaea b2e3e4d4 $125 e 3$ fbc 3373 f7bf 1 fb 78 dfc c5884a28 $5 a f b 9 a 04$ 8c96fdad a672597d 60270 df 2 e29d840e 224d1e20 3cf8209d $127 d a d a a$ 64380e51 4b39fffa d11e42d1 35c0eaa5 f9ff2889 494a488c 7c34671c a2e53f55 7 b 00 a 6 b 0 6ea22fde b1e583d1 8ab41738 2b6d8da0 dfef4636

25fa5d9f e8cf1950 3d4土285e 21fffcee 8c9f8188 8e6bd2c1 ccc36f71 a747d2d0 5d2c2aae ada840d8 $0276 e 4 b 6$ 842 f 7 d83 8437 aa88 $6094 d 1 e 3$ 438a074e 68 cc 7 bfb ba39aee 9 e805d231 694 bcc11 09b6a80c 02717 ef 6 b9e6d4bc $947 \mathrm{b0001}$ 5 f08ae2b b7dc3e62 20e1be24 642 ble 31 a133c501
eb903dbf 51df07ae b9afa820 825 b 1 bfd a6fc4ee8 437 be 59 b b843c213 $1651192 e$ 8ee99a49 45 ± 54504 94 fd6574 340 ce5c8 7 d29dc 96 cd9ca341 1f97c090 d90f2788 a4ffd30b 127ea392 428929 fb $236 a 5 \mathrm{cae}$ 5c8f82bc 4 feb5536 a2048016 $570075 d 2$ af7a616d $7 \pm 10 b d c e$ af96da0f 9c305a00 e9d3531c

> 393f4380 99 c 430 ef ef944459 25a1ff41 24fa9f7b 3d63cf73 d63acd9c f46f6ffe 3559648d ce280ae1 e0b56714 83ca6b94 5f0e5304 5e552d25 8871df63 50045286 52c877a9 80342676 846a3bae ef8579cc c68e4906 c72feffa 00b24869 9fc393b7 095c6e2e 833860d4 230eabb0 5c038323
fe61cf7a eec5207a 55889c94
fe61cf7a eec5207a 55889c94
$5 f 0 c 0794$ 18dcdb7d a1d6eff ba83ccb3 e0c3cdfb d1da4181 e180f806 e113c85b cee234c0 1bbc4635 a1ff3b1f 8a45388c 27e19ba5 21f043b7 2d6ed23b 81ed6f61 5272d237 b9de2fcb 1e6685f3 cdff33a6 25a75e7b 8ff77888 d152de58 b8da230c 22822e99 b7ffce3f a7136eeb db 92 f 2 fb 0d23e0f9 6438bc87 3e5d3bb9

1fc41080 1fc41080 acc40083 d7503525 d4d87e87 5c672b21 9e81032d 2701f50c 208cfb6a 8f458c74 1d804366 721d9bfd d5a6c252 e49754bd e5d05860 54f03084 eccf01db 20 e 74364 79d2951c 0cc6c9e9 f33401c6 a02b1741 e4e6d1fc ee5d60f6 db2ffd5e 80823028 82c570b4 08dc283b c6bcc63e 5eea29cb 6c387e8a f0b5b1fa 43d79572
$72 f c 0651$ a0b52 f 3b092ab1 d37ac6a9 ac6a9 fe5830a4 f7ea615f 62143154 071 f6181 39f7627f $99847 a b 4$ a0e3df79 d9e0a227 4ec73a34 a58684bb e8256333 c5d655dd eb667064 066 ff472 a31aa153 b6803d5c af77a709 de18639b 881ca122 488 cb 402 1ba4fe5b e3214517 b4542835 $\begin{array}{ll}31 a 70850 & 60930 \pm 13\end{array}$ 2180036f 50d99c08 cdf0b680 17844d3b 2 fdd5cdb a11631c1 306af97a 02f03ef8 d35fb171 088a1bc8 8b1c34bc 301e16e6 f7e19798 $7619 b 72$ f ef6828bc 520365d6 91584 f7f 5483697 b b284600c d835731d fc184642 0a036b7a 6c6cc4ef

810c907 920 e 8806 fade82e0 9255c5ed c982b5a5 99b03dbf 6c0743f1 af70bf3e 50da88b8 fa5d7403 927985b2 96bbb682 2756d3dc 5c76460e 081bdb8a 12490181 faf7933b 10428 db 7 b4fcdf82 12deca4d 89d36b45 a2d02fff 97573833 f9bb88f8 e5c98767 f90a5c38 68458425 52bce688 ee353783

47607fff 369fe44b 8c1fc644 f0ad0548 e13c8d83 a067268b 8272792e 1257a240 a8c01db7 b5dbc $64 b$ 8309893c 58c31380 8427f4a0 e83ec305 8276 dbcb 93b4b148 8b907cee $00 e a 983 b$ 93a07ebe 5de5ffd4 6d498623 8272a972 4 fb $66 a 53$ 2c3f8cc5 3a609437 d2bf60c4 d7207d67 $8942019 e$ cf1febd2 0 ff0443d 99833be5 1b03588a

4e1a8302 579 fc264 $638 d c 0 e 655819 d 99$ 0feddd5f 2f7fe850 5f98302e 727cc3c4 leac5790 796fb449 4f91751a 02778176 ef 303 cab b51fd240 d4d67881 b938ca15 dd7ef86a 193 cbcfa 9270 c 4 a 8 $0 e 7 d c 15 b$ d2d02dfe ec00c9a9 d43f03c0 de0f8f3d 4264a5ff 61efc8c2 606e6dc6 600d457d f7baefd5 ae07土f土 67094f31 925669 c 2 f8af918d 984 faf28 e7c07ce3 fd47572c 97b03cff $76 a 2 e 214$ 27627545 $127 \mathrm{de50b}$ 1 f081fab f8ef5896 44715253 50b4ef6d 72 f87b33 $856302 e 0$ f1ac2571 60543a49 282 ± 9350 4142ed9c a

92
55
b
6
5
2 92701 5 53 fb 2 c 0

S－Box S4

9db30420 1fb6e9de e60fb663 095f35a1 c9430040 0cc32220 2d195ffe 1a05645f d2b8ee5f 06df4261 547 eebe6 $446 \mathrm{~d} 4 \mathrm{ca0}$ 72500 e 03 f80eb2bb ffc304a5 4d351805 a5bf6d8e 1143c44f 8bd78a70 7477e4c1 df871b62 211c40b7 2f91a340 557be8de 99afc8b0 56c8c391 d0ec3b25 b7801ab7 041afa32 1d16625a 56e55a79 026a4ceb
a7be7bef $79 e b f 120$ fdd30b30 $0 c 13 f e f e$ bb9e9b8a 6cf3d6f5 abe0502e

			2 e		e	213d42f6		
6552daf9	d2c231f8	$25130 £ 69$	d8167fa2	0418f2c8	001a96a6	0d1526ab	63315c21	5e0a72ec
49bafefd	187908d9	8d0dbd86	311170a7	3e9b640c	cc3e10d7	d5cad3b6	0 caec388	f73001e1
6c728aff	71eae2a1	1f9af36e	cfcbd12f	c1de8417	ac07be6b	cb44a1d8	8b9b0f56	013988c3
b1c52fca	b4be31cd	d8782806	12a3a4e2	6f7de532	58fd7eb6	d01ee900	24adffc2	f4990f
9711aac5	001d7b95	82e5e7d2	109873f6	00613096	c32d9521	ada121ff	29908415	7 fbb 977 f
99eb3db	29c9ed2a	5ce2a465	a730f32c	d0aa3fe8	8a5cc091	d49e2ce7	0ce454a9	d60acd86
015 f1919	77079103	dea03af6	78a8565e	dee356df	21 f05cbe	8b75e387	b3c50651	b8a5c3ef
d8eeb6d2	e523be77	c2154529	$2 f 69 \mathrm{efdf}$	afe67afb	f470c4b2	f3e0eb5b	d6cc9876	39e4460c
38	1987832 f	ca007367	a99144f8	296b299e	$492 f c 295$	9266beab	b5676e69	9bd
f	db25701c	1b5e51ee	f65324e6	6afce36c	0316 cc 04	8644213 e		
	41823979	932bcdf6		fd				9833557e

S-Box S5

7ec90c04 7f511c4 2c6e74b9 d2051b00 41d0efe2 4e40b48d c106ecd7 97a5980a 8709e6b0 d7e07156 2261be02 d642a0c9 3d959981 5c1ff900 ef55a1ff e59ca2c2 17af8975 32c7911c e53a7426 01b3d82b $04 a 5 c 284$ 636737b6 c7fb7dc9 3063fcdf c1bacb7f e5ff550f 68cb3e47 086c010f b0d70eba 0ab378d5 580a249f 94f74bc0 c0f1648a 697ed5af 28421c9a 44489406 aa90b472 3ca5d717 f3e4f94e 176d486f 6e5dd2f3 5eb.b16e 44094f85 3d38f5f7 0ca81f36 20758184 dOcefa65 6bac307f 376829 d 2 f19f06be f9e0659a 5e76ffa8 b1534546

735aba00 38851640 248 eb 6 fb c539b9aa 4 e29fea 7 df13a280 fe38d399 a 6b62d27 89 f89468 1a9e7449 50 f5b616 b6f589de b6083049 a21de820 d951fb0c e327888e 49 e92土f6 736 e4cb8 7d161bba $097 c 13 e a$ $459 b 80 a 5$ $324 e d 72 f$ 3f481d87 52af4a8a 88f7be58 85360 fa 9 eeb9491d 6d47de08
a6337911 2ab722d8 15b0a848 8dba1cfe 4d79fe6a 6366e52d 74b55bd2 0c4eff0b e66a4263 0d01e980 64ee2d7e f24766e3 ec2941da 5bb5d0e8 d18b69de ded7da56 9f7b5561 309e374f c1092910 9cad9010 631da5c7 be60e2db 4067b7fd fcfeae7b 66d5e7c0 $4 a 046826$ 17e3fe2a 34010718 efe9e7d4
b86a7fff 1dd358f5 386381cb acf6243a e68b18cb acf6243a 41a99b02 1a550a04 f2f3f763 68af8040 02d1c000 c4ac8e05 682199c0 d421e5ec 062407ea aa2f4fb1 df65001f 0ec50966 $524755 f 4$ 03b63cc9 cddbb1da 01c94910 8eca36c1 136e05db 26e46695 b7566419 87d72e5a ab6a6ee1 f3f65777 fa02c3f6 4124bbe4 94ca0b56 c3dc0280 05687715 2cb6356a 85808573 8bc95fc6 7d869cf4 af462ba2 9fe459d2 $445 f 7382175683 f 4$ a9c23101 eba5315c 0523138 e 5ca3bc78 $77 b 5 f f 76$ 8c2302bf df3b0874 95055110 0ff6f8f3 a09c7f70 24b79767 f5a96b20 b.b30cab8 e822fe15

f6fa8f9d

s-Box $\mathbf{s} 6$ dfa1e2ed 83f0579d 63ed86b9 f506c6da eaa01866 d0d51932 2c0e636 dab5d440 1ae2eac8 80226dae 53c0843a fe893655 e967fd78 Oba93563 da5a26c0 e81f994f 4f628daa 57f55ec5 a8dc8af0 7345c106 e9a9d848 f3160289 592af950 36f73523 89dff0bb 5fe2be78 c39a3373 42410005 b353fd00 cbb0e358 $6062 e 397$ 47cf8e7a c10908f0 513021a5 0c5ec241 8809286c bc60b42a 953498da 361400 bc e8816f4a b17f5505 59357cbe 54268d49 51a477ea 97c55b96 eaec991b a0e1d855 d36b4cf1 48392905 a65b1db8

f544edeb b0e93524 $f 544 e d e b ~ b 0 e 93524$
$851 c 97 b d ~ d 675 c f 2 f$
e2337f7c

277c 4 e23e33c a888614a d0a82072 $083919 a 7$ e70bc 762 9334 be53 a694a807 b4628abc e8a11be9 fd339fed d2916ebf 35162386 a787e238 $7 d a 4$ cec 0 754613 c 9 0ef3c8a6 1 f8fb214 3 cc 2 acfb 822f8aa0 08a930f6 2d4bd736 $2 d 4 b d 736$ a3f94043 7 £ 97 c 5 ab d7d25d88

95 db 08 de5ebe 3 5ebe39 f38ff73 $\begin{array}{ll}\text { de5ebe39 } & \text { f38ff732 } \\ 79 \mathrm{cbd} 7 \mathrm{cc} & 48 a 14367\end{array}$ 2900af98 fd41197e 9 fbaeed $35 f 29 \mathrm{adb}$ 3b3a21bf 5b7c5ecc cf222ebf 4980740 b87834bf 4ec75b95 e6ea8926 f3a5f676 6c152daa 2b05d08d 890072d6 d372cf08 3fc06976 3007cd3e 957ef305 $0 f 25$ faab 9c7a54c2 ba5ac7b5 44136c76 088e8dfa bebb8fbd

01665991 9305a6b0 49 dbc fb 0 5 c 4 cdd 8 d 16434 be 3 221db3a6 25ac6£48 c8087dfc 5f04456d $24 f 2 c 3 c 0$ 3333b094 74364853 cb0396a8 48b9d585 28207682 cc3c4a13 4e8f0252 74719 eef b7fbffbd a4f3fceb bc704f57 b6f6deaf 0404a8c8 a2 6762 a2d762cf

NOOON

44dd9d44 173 $69 b e f 17$ 5f480 ba8f65cb 7 9377 f571 53 fb3ce 8 4 fb 96976 dfdd55bc 0 cc 844 b 2 b b868bf80 fef18391 f654efc5 223a66ce $407 e d a c 3$ $0 f 5755 \mathrm{~d} 1$ 646c6bd7 4 $4991 f 840$ 134f616f 45d34559 cdc66a97 dc0fd66 aaf47556 1b5ad7a8 $5346 a b a 0$ d6cd2595 68 88570983 $731167 f$
$08 f b f 1 f a$ 6a2e77f f0c720cd
$412 b 2 a \mathrm{a}$
259814 fc $6 a 2 e 77 f$ f0c720cd
$412 b 2 a a \operatorname{259814fc}$ 251f4e7 95a51725 1b4958b e1eb5a88 0c05372a 578535f2 c8adedb3 28a87fc9 $90 c 79505$ b0a8a774 9de0655 911e739a bcf3f0aa 87ac36e9 0d26f3fd 9342ede7 fb887a37 d6e7f7d4 d08d58b7 48925401 c62bf3cd 9e0885f9 cbb3d550 1793084d e0e1e56e 6184b5be 44904 db 366 b 4 f 0 a 3 76f0ae02 083be84d 2e77118d b31b2be1 d9f2da13 dbc65487 $70 b e 0288$ b3cdcf72 1c5c1572 f6721b2c 75922283 784d6b17 5f46b02a 2b092801 f61ed5ad 6cf6e479 5ce96c28 e176eda3 68fflebf 7555442c 750e6249 da627e55

[^16]
S-Box S7

85e04019 332bf567 662dbfff cfc65693 2a8d7f6f ab9bc912 de6008al 2028dalf 0227bce7 $4 d 64291618 f a c 30050 f 18 \mathrm{~b} 82$ 2cb2cb11 b232e75c 4b3695f2 b28707de a05fbcf6 cd4181e9 e150210c e24ef1bd b168c381 fde4e789 5c79b0d8 1e8bfd43 4d495001 38be4341 913cee1d

Appendix C.

This appendix provides test vectors for the CAST-128 cipher described in Section 5 and in Appendices A and B.

C.1. Single Key-Plaintext-Ciphertext Set

| 128-bit key | $=01$ | 23 | 45 | 67 | 12 | 34 | 56 | 78 | 23 | 45 | 67 | 89 | 34 | 56 | 78 | $9 A$ | (hex) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 64 -bit plaintext | $=$ | 01 | 23 | 45 | 67 | 89 | $A B$ | $C D$ | $E F$ | (hex) | | | | | | | |
| 64 -bit ciphertext $=$ | 23 | $8 B$ | $4 F$ | $E 5$ | 84 | $7 E$ | 44 | $B 2$ | (hex) | | | | | | | | |

C.2. Full Maintenance Test

A maintenance test for CAST-128 has been defined to verify the correctness of implementations. It is defined in pseudo-code as follows, where a and b are 128 -bit vectors, $a L$ and $a R$ are the leftmost and rightmost halves of $a, b L$ and $b R$ are the leftmost and rightmost halves of b, and encrypt (d, k) is the encryption in ECB mode of block d under key k.

```
Initial a = 01 23 45 67 12 34 56 78 23 45 67 89 34 56 78 9A (hex)
Initial b = 01 23 45 67 12 34 56 78 23 45 67 89 34 56 78 9A (hex)
do 1,000,000 times
{
    aL = encrypt (aL,b)
    aR = encrypt (aR,b)
    bL = encrypt (bL,a)
    bR = encrypt(bR,a)
}
Verify a == EE A9 D0 A2 49 FD 3B A6 B3 43 6F B8 9D 6D CA 92 (hex)
Verify b == B2 C9 5E B0 0C 31 AD 71 80 AC 05 B8 E8 3D 69 6E (hex)
```


[^0]: ${ }^{1}$ Note that the use of 8×32 s-boxes was first suggested by Ralph Merkle for the hash function Snefru [36] and for the block ciphers Khufu and Khafre [37].

[^1]: ${ }^{2}$ Completeness states that output bit j can be changed by inverting only input bit i in some input vector, for all i, j [26].

[^2]: ${ }^{3}$ The Strict Avalanche Criterion (SAC) states that s-box output bit j should change with probability $1 / 2$ when any single input bit i is inverted, for all i, j (note that for a given i and j the probability is computed over the set of all pairs of input vectors which differ only in bit i [53,54].
 ${ }^{4}$ The (output) Bit Independence Criterion (BIC) states that s-box output bits j and k should change independently when any single input bit i is inverted, for all i, j, k (note that for a given i, j, and k the independence is computed over the set of all pairs of input vectors which differ only in bit i [53, 54].
 ${ }^{5}$ If keys which are close to each other in Hamming distance result in ciphertexts which are likely also to be close in Hamming distance, then it may be possible to find a key faster than exhaustive search in a known

[^3]: plaintext attack by searching for the correct key cluster and then searching for the correct key within that cluster.

[^4]: ${ }^{6}$ Assuming independent round keys (a reasonable assumption (i.e., a good approximation) for most known ciphers).
 ${ }^{7}$ The number of operations required for the attack, which may or may not be directly related to the number of chosen plaintexts required.

[^5]: ${ }^{8} \mathrm{An} m \times n$ s-box is represented as a $2^{m_{\times n}}$ binary matrix M where each of the n columns is a vector which corresponds to a Boolean function of the m input variables and which defines the response of a single output bit to any given input. Row i of $M, 1 \leq i \leq 2^{m}$, is therefore the n-bit output vector which results from the $i^{t h}$ input vector.
 ${ }^{9}$ Note that this is impossible if $m \geq n$ but is quite feasible if $n=r m$, since then $2^{m} \leq C(n, n / 2)$.

[^6]: ${ }^{10}$ This has independently been called the Propagation Criterion of degree n in [46].
 ${ }^{11}$ Note that highest-order BIC itself (i.e., total independence of output bits over the full set of input changes) cannot be achieved except in Nyberg's "perfect nonlinear" $2 n \times n$ s-boxes [43], where all column sums are bent.

[^7]: ${ }^{12}$ Let $c=c_{1} c_{2} \ldots c_{\mathrm{m}}$ be a fixed m-bit vector of nonzero Hamming weight and let $f(x)=f\left(x_{1} x_{2} \ldots x_{m}\right)$ be a Boolean function of m input variables. Divide the 2^{m} possible inputs of f into 2^{m-1} pairs x and $(x \oplus c)$ and sort the pairs into increasing values of x. Label the $i^{\text {th }}$ pair $[x,(x \oplus c)]_{i}$. Then the 2^{m-1}-bit vector v is called the "avalanche vector" of f with respect to c if the $i^{\text {th }}$ bit of $v=g\left([x,(x \oplus c)]_{i}\right)=f(x) \oplus f(x \oplus c)$ for $i=$ $0 . . .2^{m-1}-1$.

[^8]: ${ }^{13}$ Although it is recognized that multiplying the P_{f} values in an iterated cipher with additive keys (with respect to differential attacks where the difference is addition) is only strictly correct if the round keys are independent and uniformly random, this product appears to be a good approximation of the characteristic probability for most known ciphers.

[^9]: ${ }^{14}$ Like differential cryptanalysis, formal results in this area require round keys which are independent and uniformly random. However, most equations derived using this assumption appear to be good approximations for most known ciphers.

[^10]: ${ }^{15} \mathrm{~A}$ palindromic set of subkeys is one with the property that $K_{i} \oplus K_{N+1-i}=\mathbf{0}$, where N is the number of rounds in the cipher and $\mathbf{0}$ is the all-zero vector.
 ${ }^{16} \mathrm{An}$ anti-palindromic set of subkeys is one with the property that $K_{i} \oplus K_{N+1-i}=\mathbf{1}$, where N is the number of rounds in the cipher and $\mathbf{1}$ is the all-one vector.

[^11]: ${ }^{17}$ Requiring a level of effort for an n-bit block cipher of roughly $2^{n / 2}$ operations rather than 2^{n} operations.

[^12]: ${ }^{18}$ Note that in the DES round function a single bit change in the input can change a maximum of 8 of the 32 output bits. It therefore does not satisfy the avalanche property.

[^13]: ${ }^{19}$ Note that the avalanche property relates to any specific input change; the SAC, on the other hand, is an average calculated over the full input space.

[^14]: ${ }^{20}$ Note that multiplication modulo $2^{32}-1$ was first used in a cryptographic setting by Donald Davies in MAA [15] and that multiplication modulo $2^{16}+1$ was first used in IDEA [29].

[^15]: ${ }^{21}$ Note that if two linear approximations exist involving the same bits and with the same bias, but with opposite sign, no information can be found on the single key bit. The reason this attack works on DES is that one approximation has a higher probability than the others in the DES round function. This situation may or may not exist in other round functions, including the one proposed for CAST ciphers.
 ${ }^{22}$ Note that Harpes, et al, have found that ciphers using modular addition or multiplication (with large moduli) to insert the key into the round function tend to be immune not only to Matsui's linear cryptanalysis, but also to their generalization of linear cryptanalysis using I/O sums [21].

[^16]: eced5cbc 325553ac bf9f0960 8989b138 33f14961 c01937bd a3149619 fec94bd5 a114174a e1992863 c8f30c60 2e78ef3c e86be3da 74bed3cd 372da53c $4 e 670 c 53$ 5c3d9c01 64bdb941 f0d48d8c b88153e2 08a19866 9aea3906 efe8c36e f890cdd9 9a69a02f 68818a54 ceb2296f a9a99387 53bddb65 e76ffbe7 8de4bf99 a11101a0 7fd37975 22258698 c9c4c83b 2dc156be 42d15d99 cd0d7fa0 7b6e27ff 157ec6f2 372b74af 692573e4 $209510634576698 d$ b6fad407 c50dfe5d fcd707ab 0921c42f dc049441 c8098f9b 7dede786 a9a9f7be bf32679d d45b5b75 8cf63166 061c87be 88c98f88 64d8314d da3870e3 1e665459 dc872681 073340d4 7e432fd9 c266e96f 6fe4ac98 b173ecc0 e2969123 257f0c3d 9348af49 da41e7f9 c25ad33a 54f4a084 3a479c3a 5302da25 653d7e6a b8e5a121 b81a928a 60ed5869 $3 b 4 c b f 9 f 4 a 5 d e 3 a b$ e6051d35 49c92f54 38b5f331 7128a454

