
Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - i

Specification: Certificate Management Services
Application Programming Interface

Issue 2.0

Abstract

The Certificate Management Services Application Programming Interface specification
defines the interface between a client-end Security Application and a certificate
management infrastructure for management and distribution of public key certificates and
public/private key pairs.

Comments

Please provide any comments or suggestions for this specification to Tim Moses at Nortel
Technologies, PO Box 3511, Station C, Ottawa, Ontario, Canada, K1Y 4H7. Tel (613)
763 2694, Fax: (613) 765 3520, Internet: timmoses@bnr.ca.

Copyright © 1996 Northern Telecom. License to copy this document is granted for
research purposes.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - ii

Revision History

Issue Date Parameters of changes in this issue

0.1 11 Aug 1995 First draft issue

0.2 18 Aug 1995 A set of search directory functions were added. Update key
calls were reduced to a single step. Functions were grouped
into functional categories. Changes were made to allow users to
supply encryption keys for certification and to request that the
CA provide a signature key.

0.3 25 Aug 1995 A set of functions were added to allow path processing
functions to be linked into the CMS at some future time. An
introduction was added. Status codes were added.

0.4 1 Sep 1995 Added “oldCertificate” to the update key calls

0.5 22 Sep 1995 Revised Introductory Material. Added the
CMSEraseKeyHistory, CMSGetCertificate and the
CMSKeyStatus calls. Deleted the Path Processor functions.
Grouped function parameters into a smaller number of
structured parameters. Added return codes to support a
Cryptoki crypto library.

1.0 6 Oct 1995 Introduced a ‘quality of certificate’ parameter. Provided a
mechanism for environments in which the CA is not available
‘on-line’. Modified the initialization function to initialize a
single key pair. Introduced a new name list, called
‘ValidNameList’, to contain just those names whose certificates
have been validated. Added functions to return individual fields
from a certificate. Modified the certificate path list to contain
just the subject DN and the serial number (as opposed to the
whole certificate). In the case of failure to verify, the list will
only contain details of those certificates that failed.

2.0 2 Aug 1996 Moved C language bindings to an appendix. Modified the
certificate verification model and the associated calls. Added
name conversion functions to allow applications to deal in
application-specific name forms. Add more detail

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - iii

Table Of Contents

1. INTRODUCTION --1

1.1 Abbreviations --1

1.2 Purpose--1

1.3 Field of Application ---2

1.4 Infrastructure Architecture ---2

1.5 Keys and Certificates ---3
1.5.1 Types of Key --3
1.5.2 Key Life-cycle --4

1.6 List Objects---7
1.6.1 SearchResultsNameList --7
1.6.2 RecoveredKeyList --8

1.7 Memory Ownership---8

1.8 Name Conversion Functions --9

1.9 CMS Utilities ---9

1.10 Requirements ---9

2. INTERFACE SPECIFICATION--10

2.1 Structured Parameters --- 10
2.1.1 Key Flow--- 10
2.1.2 Certificate Attributes --- 10
2.1.3 Registration Form--- 10
2.1.4 Key Pair -- 10

2.2 Context-Related Functions -- 11
2.2.1 CMSLogin --- 11
2.2.2 CMSLogout-- 13

2.3 Registration Authority Functions -- 14
2.3.1 CMSCertificationRequest-- 14
2.3.2 CMSCertificationResponse-- 15
2.3.3 CMSRevokeACertificate -- 16

2.4 End-user Registration Functions--- 17
2.4.1 CMSRequestRegistrationForm-- 17
2.4.2 CMSRetrieveRegistrationForm --- 18
2.4.3 CMSRegistrationRequest -- 19
2.4.4 CMSRegistrationResponse -- 20

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - iv

2.5 Certification Functions--- 21
2.5.1 CMSRequestMyCertificate -- 21
2.5.2 CMSRetrieveMyCertificate --- 23

2.6 Key Update Functions-- 25
2.6.1 CMSKeyStatus -- 25
2.6.2 CMSRequestKeyUpdate --- 26
2.6.3 CMSRetrieveUpdatedKey --- 28

2.7 Key Recovery Functions --- 30
2.7.1 CMSRequestKeyRecovery -- 30
2.7.2 CMSRetrieveRecoveredKeys --- 32
2.7.3 CMSNumberOfRecoveredKeys -- 34
2.7.4 CMSGetRecoveredCertificate--- 35
2.7.5 CMSGetRecoveredKey -- 36
2.7.6 CMSEraseKeyHistory-- 37

2.8 End-user Self-Revocation Functions -- 38
2.8.1 CMSRevokeMyCertificate -- 38

2.9 Name Resolution Functions --- 39
2.9.1 CMSSearchDirectory--- 39
2.9.2 CMSNumberOfNames --- 41
2.9.3 CMSGetUniqueName -- 42
2.9.4 CMSNumberOfAttributes --- 43
2.9.5 CMSGetAttribute --- 44
2.9.6 CMSNumberOfAttributeValues -- 45
2.9.7 CMSGetAttributeValue -- 46
2.9.8 CMSResetNameList -- 47

2.10 Certificate Verification Functions -- 48
2.10.1 CMSValidateCertificate -- 48
2.10.2 CMSValidateNextLink --- 51
2.10.3 CMSGetCertificateAttribute --- 52

2.11 Utility Functions --- 54
2.11.1 CMSReleaseBuffer-- 54
2.11.2 CMSReleaseName -- 55
2.11.3 CMSReleaseKey -- 56
2.11.4 CMSGetLogString -- 57
2.11.5 CMSLogToString --- 58
2.11.6 CMSQueryLogWarning -- 59
2.11.7 CMSQueryVersionNumber -- 60
2.11.8 Name Conversion Functions--- 61

3. STATUS CODES--62

3.1 Error Codes -- 62

3.2 Warning Codes -- 64

3.3 Normal Operation Codes -- 64

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - v

4. CERTIFICATE ATTRIBUTE OBJECT IDENTIFIERS-------------------------------65

5. REFERENCES---70

 ANNEX A - API PROFILE FOR ENTRUST/CMS V1.0-----------------68

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 1

1. Introduction

1.1 Abbreviations

API Application Programming Interface

ARL Authority Revocation List

BER Basic Encoding Rules for the ASN.1 syntax

CA Certification Authority

CRL Certificate Revocation List

CMS Certificate Management Services

DIT Directory Information Tree

DSA Directory System Agent

I&A Identification and Authentication

KRC Key Recovery Centre

OID Object Identifier

PIN Personal Identification Number

RA Registration Authority

RSA Rivest Shamir and Adelman

1.2 Purpose

There is a growing need to secure information flows which span organizational
boundaries. In addition, there is a large installed base of information technology with no
significant degree of uniformity: components of the systems are supplied by a wide range
of vendors and applications exhibit a wide range of security sensitivity. Furthermore,
security and infrastructure requirements are complex and rapidly evolving. Therefore, the
implementation of suitable security infrastructures for the installed base of information
systems and existing applications may lead to high capital and operating costs.

The standardization of an interface between Security Applications and a security
infrastructure will lead to greater choice and less duplication in the implementation of
security infrastructures, which will, in turn, translate into lower end-user costs. The API
defined in this specification provides an interface to a security infrastructure which is

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 2

capable of satisfying the requirements of heterogeneous distributed systems operating
across multiple policy domains with platforms supplied by different vendors.

1.3 Field of Application

The infrastructure addressed by this API is based upon the X.500 distributed directory
(see Ref. 3). It satisfies the requirements of all end-user and Certification Authority
public/private key life cycle phases. It uses the X.509 standard for public key certificates.
However, for simpler applications the semantics of the certificate may be opaque to the
Security Application. Compliant infrastructures may use any of the available versions of
the X.509 certificate, but the features offered will be dependent upon the chosen version.

1.4 Infrastructure Architecture

The operating context of the CMS-API is shown in Figure 1. This context has five main
components: the Security Application, the Certificate Management Services Client, the
Crypto Library, the Certification Authority and the Certificate and CRL Repository. The
RA must be added to the diagram.

User

Client Platform

Infrastructure

Server Platform

Certification
Authority

Certificate
Management

Services
Client

Security
Application

Secure
Storage

Unsecured
Communications

Channel

“Out-of-Band”
Authentication

Server Platform

Certificate
and CRL

Repository

CMS-API

Crypto
Library

Figure 1 - CMS-API Operating Context

The function of the Security Application is to deliver security services to human users or
information processes. These services may include: confidentiality, integrity,
authenticity and non-repudiation services, such as Proof of Origin, Proof of Delivery and
Proof of Transport. In order to do this in a widely distributed information system, the
Security Application needs access to certificate management services. These are

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 3

delivered through the CMS-API by the Certificate Management Services (CMS) Client.
The CMS can be viewed as the extension of the infrastructure on the client platform.

The transport of cryptographic keys, in the form of certificates, is achieved by means of
the repository. And the authenticity and integrity of those keys is assured by the
Certification Authority (CA). The CMS Client, CA and Repository communicate over an
unsecured communication channel, such as an on-line TCP/IP network.

The Security Application and the CMS Client run on the same platform, so there are no
requirements for confidentiality, integrity or authenticity mechanisms in the
communications between them. Looked at another way, the Security Application trusts
the CMS Client to act on its behalf with respect to key and certificate management
functions.

The CMS Client uses cryptographic mechanisms, such as encryption and digital
signature, in the performance of its functions. These are provided by the Crypto Library
which may be a software process built into the CMS Client, or it may be a software
library or token provided by the Security Application.

1.5 Keys and Certificates

The function of the CMS is to manage and deliver end-user cryptographic keys in a
secure manner.

1.5.1 Types of Key

All the keys managed by the CMS are public (or asymmetric) key pairs. Any symmetric
keys used by the Security Application in the encryption of user data fall outside the scope
of the infrastructure.

All certificates are produced from their public key by the infrastructure. However, the
key pairs may either be supplied by the infrastructure or by the Security Application.
When the key pairs are supplied by the infrastructure, it is its responsibility to ensure the
soundness of the key pair for the algorithm in which it is to be used. But when keys are
supplied by the Security Application, it is the responsibility of the Security Application to
ensure the soundness of the key pairs.

Either the infrastructure or the Security Application may post the end-user’s certificates
to the repository. But the repository access schema must have been set to allow the
appropriate entity write privilege for the end-user’s certificate attribute, and the necessary
authentication information must have been established between the repository and that
entity. Interfaces that allow posting of the certificate by the Security Application are
outside the scope of this specification.

The user may have certificates issued by more than one CA. Therefore, the directory
must be capable of accommodating multi-valued attributes and managing those values
separately.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 4

1.5.2 Key Life-cycle

The infrastructure provides support for all phases of the key life-cycle, including
Registration, Certification, Recovery, Update and the Active phase. Registration and
Deregistration exchanges between a Registration Authority and the Certification
Authority are included in the scope of this specification. Consider whether interfaces
between the RA and end-user at the RA end should be included.

1.5.2.1 Registration Phase

The Registration Phase establishes a shared secret between the end-user and the CA as a
precursor to the certification phase. It involves exchanges between the end-user and the
Registration Authority (RA). The responsibility of the RA is to qualify the end-user as a
certificate owner, including (potentially) establishing its identity. The Security
Application uses CMSRequestRegistrationForm and CMSRetrieveRegistrationForm
to obtain a registration form from the Registration Authority. Communication with the
RA may be ‘on-line’, in which case the retrieve call may immediately follow the request
call. If the communication with the CA is via a ‘store-and-forward’ network, then the
request call will provide an estimate of the time until the retrieve call can be successfully
completed.

1.5.2.2 Certification Phase

The certification phase establishes a certificate for the end-user. Authentication
information may be established ‘out-of-band’ or as a result of the registration phase. The
semantics of the authentication information are opaque to the Security Application, which
simply includes it in the appropriate function call parameter. The user must ensure that
this information is communicated and destroyed in a confidential manner. In the case of
CAs that support multiple policies, the Security Application has the ability to select a
certificate in conformance with any one of the available policies. The CA may reject the
request if it does not conform with applicable details of the policy.

The security application uses the CMS functions CMSRequestMyCertificate and
CMSRetrieveMyCertificate to obtain initial certificates from the infrastructure and
(optionally) to have them posted to the repository.

1.5.2.3 Update Phase

Periodically, keys and their certificates have to be replaced. This has the effect of
restricting the amount of information protected by any one key, thereby preventing
certain forms of cryptanalytic attack which are based upon the analysis of many
encrypted or signed information objects. Replacement of a key pair must be initiated by
the Security Application, and the API provides the CMSKeyStatus function to help the
Security Application determine when a certificate should be replaced.

The Security Application uses the CMS functions CMSRequestKeyUpdate and
CMSRetrieveUpdatedKey to replace a certificate for any one of its key pairs.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 5

Identification and Authentication (I&A) of the user is required for the purpose of key
update. Identification relies upon the user’s unique name, as encoded in its certificate. If
the CMS Client uses the crypto library which is built into the CMS Client, then
authentication relies upon an authentication token supplied to the Security Application
during the most recent CMSRetrieveMyCertificate, CMSRetrieveRecoveredKeys or
CMSRetrieveUpdatedKey call. The semantics of the authentication token are opaque to
the Security Application, which merely has to afford it confidential storage. If the CMS
Client uses the Crypto Library contained in a token, then the authentication information
may be used as the token PIN. Currently the interface only supports the update of the
‘key’. i.e. if a new certificate is requested, it must contain a new key. Consideration
should be given to supporting update of a certificate only, keeping the key the same.

1.5.2.4 Recovery Phase

In the event that the Security Application cannot access its private key, perhaps due to a
disk failure, it will be necessary to obtain new private key pairs and their associated
certificates, and to recover the history of its private keys. The CMS-API includes a call
that allows the Security Application to recover any previous private key held by the CA,
in an authentic and confidential manner, placing them in a local list. This is achieved
through use of the functions CMSRequestKeyRecovery and
CMSRetrieveRecoveredKeys. Section 1.6.2 describes calls used to process the list of
recovered keys. CMSEraseKeyHistory should be used to erase the CMS memory image
of the list of keys recovered by the CMSRetrieveRecoveredKeys function call.

1.5.2.5 Active Phase

In the active phase of the key life-cycle, the CMS provides support for the retrieval and
verification of public keys, by means of certificates issued and distributed by the
infrastructure. There are two stages in the process of delivering verified public keys (see
Figure 2). These stages are:

�� Name Resolution (which may include Certificate Retrieval), and
�� Certificate Verification (which may also include Certificate Retrieval).

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 6

Name Resolution

Directory Search Criteria

SearchResultsNameList

Unique Name

Certificate

CMSResetNameList
CMSSearchDirectory

CMSValidateCertificate
CMSValidateNextLink

Certificate Attributes

CMSNumberOfNames
CMSNumberOfAttributes
CMSGetAttribute
CMSNumberOfAttributeValues
CMSGetAttributeValue
CMSGetUniqueName

CMSGetCertificateAttribute

 Certificate attribute (eg Public Key)

Certificate attribute list

Certificate

Attribute type
(eg publicKey)

Repository

Unique Name

Certificate

Certificate Verification

Additional
Certificate
Attributes

Figure 2 - The Active Phase of the Key Life-Cycle

There are three possible cases that must be considered:

1. The user knows something about the entities for which it requires verified public
keys, but not their Unique Names (this situation may arise when a user needs to send
an encrypted message to entities with which it has had no previous contact);

2. The user knows the Unique Names of the entities for which it requires verified public
keys (this situation may arise when a user needs to send an encrypted message to
entities with which it has previously exchanged encrypted messages);

3. The user has a certificate from which it must obtain the verified public key (this
situation may arise when the user receives a signed message, including a certificate,
from another user).

In the first case, both stages of the public key delivery process must be executed
sequentially. In the other two cases, only the second stage of the process must be
executed.

The main data objects involved in the public key delivery process are the repository,
UsersNameList and the CertificateAttributes list. Upon completion of the Name
Resolution stage of the process, the UsersNameList contains the Unique Names and

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 7

(optionally) the certificates of the intended recipients. Upon completion of the Certificate
Verification stage, the CertificateAttributes list contains verified attributes from the
certificate. These attributes include the public key.

One other data object is important to the Certificate Verification process. The
SearchResultsNameList is used in the Name Resolution stage and it contains the Unique
Names and selected attributes retrieved from the directory. The Security Application
may use this data object to retrieve user attributes other than those contained in the
certificate.

The functions CMSSearchDirectory, CMSResetNameList,
CMSNumberOfAttributes, CMSGetAttribute, CMSNumberOfAttributeValues and
CMSGetUniqueName can be used to resolve Unique Names and build the
UsersNameList with resolved names and (optionally) certificates.

The functions CMSValidateCertificate and CMSValidateNextLink can be used to
verify a certificate. Certificate criteria, including the Unique Name may be supplied by
the application. The certificate may be supplied by the application or it may be obtained
from the UserNameList or from the repository.

The function CMSGetCertificateAttribute can be used to extract selected attributes
(such as the public key) from the verified certificate.

1.6 List Objects

There are two lists maintained by the CMS which are visible to the Security Application.
These are:

The SearchResultsNameList,

The RecoveredKeyList and

These are described in the following sections.

1.6.1 SearchResultsNameList

The SearchResultsNameList contains the results of the most recent
CMSSearchDirectory operation. Its structure is as follows1:

SearchResultsNameList ::= SEQUENCE OF { SearchResultsNameListEntry }

SearchResultsNameListEntry ::= SEQUENCE {

uniqueName Name,
attributes Attributes }

1 ASN.1 syntax is used to define the list structure, but the actual encodings of the lists in the
implementation is at the discretion of the implementor.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 8

Attributes ::= SEQUENCE OF {Attribute }

Attribute ::= SEQUENCE {

attributeType printableString,
values Values }

Values ::= SEQUENCE OF { Value }

Value ::= OCTET STRING;

The following functions are used to maintain this list.

CMSResetNameList removes all entries from the list.

1.6.2 RecoveredKeyList

The RecoveredKeyList contains the result of the most recent
CMSRetrieveRecoveredKeys operation. Its structure is as follows:

RecoveredKeyList ::= SEQUENCE OF { RecoveredKey }

RecoveredKey ::= SEQUENCE {

certificate Certificate,
privateKey OCTET STRING }

It is valid following a call to CMSRetrieveRecoveredKeys.

There are four function calls available to maintain the RecoveredKeyList.

CMSGetNumberOfRecoveredKeys returns the number of entries in the list.

CMSGetRecoveredKey returns the private key associated with an index in the list.

CMSGetRecoveredCertificate returns the certificate associated with an index in the list.

The Security Application should make a call to CMSEraseKeyHistory as soon as it has
completed the key recovery process, in order to ensure that the memory image of the
decryption keys is not maintained any longer than is absolutely necessary.

1.7 Memory Ownership

The sizes of some information objects returned by the CMS Client functions are not
known, a priori, by the Security Application. Therefore, the CMS Client deals with their
retrieval and storage. The Security Application can examine their size and decide
whether or not to copy them into memory that it controls. This raises the requirement to
form a context for the CMS services.

There are two function calls which deal with the establishment and release of a context:

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 9

CMSLogin establishes a context, returning a context handle which the Security
Application uses in subsequent CMS calls.

CMSLogout releases the context and de-allocates any memory allocated by the context.

1.8 Name Conversion Functions

Name conversion functions from the GSS-API are included to permit applications to
operate in their natural name space.

1.9 CMS Utilities

The CMS-API supports seven utility function calls.

CMSReleaseBuffer releases memory allocated to a buffer.

CMSReleaseName releases memory allocated to a name.

CMSReleaseKey releases memory allocated to a key pair.

CMSQueryVersionNumber returns the version number of the CMS.

CMSGetLogString returns a string explaining a specified CMSLog code in its argument
list.

CMSLogToString returns a string explaining a CMSLog code as its return value.

CMSQueryLogWarning indicates whether the supplied CMSLog code represents a
warning or an error.

1.10 Requirements

The CMS-API has been defined on the assumption that the following requirements are
satisfied by other components of the architecture.

A network time service is available to the Security Application or to the CMS
Client.

A repository which can hold multiple certificates for each directory entry.

The repository access control schema must be set so that the CA and/or the end-
user can write the certificate attribute.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 10

2. Interface Specification

2.1 Structured Parameters

2.1.1 Key Flow

The key flow parameter indicates where keys should be generated and which entity is
responsible for publishing them in the repository.

2.1.2 Certificate Attributes

The certificateAttributes parameter contains a list of attributes for a certificate. This
structure is used in a number of ways. It is used in the CMSRequestMyCertificate
function to specify attribtues of the certificate requested by the end-entity from the CA. It
is used in the CMSValidateCertificate function to specify required attributes of the
certificates in the certificate chain that must be verified by the implementation. And it is
used in the CMSValidateCertificate function to return verified attributes of the validated
certificate.

2.1.3 Registration Form

The registrationForm parameter is used to convey the titles of the fields of the registration
form from the RA to the end-entity, and to convey the completed entries from the end-
entity to the RA.

2.1.4 Key Pair

The key pair parameter contains all information relevant to a key pair, including the
corresponding certificate.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 11

2.2 Context-Related Functions

This section contains functions related to maintaining a context for CMS operations.

2.2.1 CMSLogin

This function creates a context associated with a user. Memory required by the CMS
Client will be associated with the context and de-allocated as a result of a subsequent call
to CMSLogout.

2.2.1.1 Parameters

cMSVersionNumber (Security Application -> CMS)

cMSVersionNumber shall have the value “2.0”. Any other value will cause the function
to return an error status code.

cryptoLibrary (Security Application -> CMS)

Indicates which crypto library to use for protecting the confidentiality, integrity and
authenticity of the communications with the CA.

cryptoLibraryPIN (Security Application -> CMS)

The PIN used to access the cryptoLibrary.

initializationFile (Security Application -> CMS)

The path to the file used for initialization. This may contain information required by the
implementation to perform its function, such as the IP address of the RA, CA, KRC and
the directory server.

userId (Security Application -> CMS)

The identity of the user. The implementation may use this to identify credentials
maintained by the crypto library.

context (CMS -> Security Application)

The CMS will return a context handle for the CMS session. This will be empty if
cMSVersionNumber is not “2.0”.

2.2.1.2 Returned Values

CMS_CryptoLibraryNotAvailable

CMS_CryptoLibraryNotSupported

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 12

CMS_CryptoLibraryPINIncorrect

CMS_MaximumNumberOfOpenContextsExceeded

CMS_OK

CMS_VersionNumberNotSupported

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 13

2.2.2 CMSLogout

The CMS de-allocates all memory objects associated with the context.

2.2.2.1 Parameters

context (Security Application -> CMS)

The context handle for the CMS session which is to be closed. See Section 2.2.1.1 above.

2.2.2.2 Returned Values

CMS_ContextNotRecognized

CMS_OK

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 14

2.3 Registration Authority Functions

This set of functions may be used by an application acting as a Registration Authority.

2.3.1 CMSCertificationRequest

CMSCertificationRequest is used by a Registration Authority to prepare a Certification
Authority to issue a certificate for an end-entity. The CA response can be obtained by
making a call to CMSCertificationResponse. The actual issuance of the corresponding
certificate takes place as a result of a call to CMSRequestMyCertificate by the end-entity.
The CA plays no part in the assessment of the end-entity’s qualifications: it relies entirely
upon the RA for this.

2.3.1.1 Parameters

context

See Section 2.2.2.1 above.

certificateAttributes (Security Application -> CMS)

A list of attributes for the approved certificate. The ‘privileges’ that will be encoded in
the certificate by the CA should not exceed those authorized by the RA which are
encoded in this list.

requestHandle (CMS -> Security Application)

The handle to be used by the application in the CMSCertificationResponse function call
to identify the results of this request, as multiple requests may be outstanding at any
time.

responseTime (CMS -> Security Application)

The estimated number of seconds until the response will be ready. Security Applications
may use this estimate to determine when to perform the corresponding
CMSCertificationResponse operation.

2.3.1.2 Returned Values

CMS_ContextNotRecognized

CMS_OK

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 15

2.3.2 CMSCertificationResponse

CMSCertificationResponse is used by a Registration Authority to obtain the Certification
Authority response to a CMSCertificationRequest call. The response contains the
authentication information that must be supplied to the end-user in order to authenticate
itself to the CA in the CMSRequestMyCertificate call.

2.3.2.1 Parameters

context

See Section 2.2.2.1 above.

requestHandle (Security Application -> CMS)

See Section 2.3.1.1, above.

userReference (CMS -> Security Application)

The user reference to be used by the end-entity in its CMSRequestMyCertificate call.

authenticationToken (CMS -> Security Application)

The authentication token to be used by the end-entity in its CMSRequestMyCertificate
call.

2.3.2.2 Returned Values

CMS_ContextNotRecognized

CMS_InvalidIndex

CMS_OK

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 16

2.3.3 CMSRevokeACertificate

CMSRevokeACertificate is used by a Registration Authority to revoke an end-user
certificate. DECIDE WHETHER AN ACKNOWLEDGE CALL IS REQUIRED .

2.3.3.1 Parameters

context

See Section 2.2.2.1 above.

certificateAttributes (Security Application -> CMS)

A list of attributes that define the certificate(s) that are to be revoked..

2.3.3.2 Returned Values

CMS_ContextNotRecognized

CMS_OK

CMS_UnexpectedNullPointer

Need to add calls to support the approval by the RA of key recovery

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 17

2.4 End-user Registration Functions

These functions provide facilities whereby an end-user can register with an RA.

2.4.1 CMSRequestRegistrationForm

CMSRequestRegistrationForm requests the Registration Authority to supply a blank form
for user registration.

2.4.1.1 Parameters

context

See Section 2.2.2.1 above.

responseTime

See Section 2.3.1.1 above.

2.4.1.2 Returned Values

CMS_CannotConnect

CMS_ContextNotRecognized

CMS_OK

CMS_Timeout

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 18

2.4.2 CMSRetrieveRegistrationForm

CMSRetrieveRegistrationForm returns the blank registration form. It assumes that
multiple requests to registration authorities will not be interleaved.

2.4.2.1 Parameters

context

See Section 2.2.2.1 above.

registrationForm (CMS -> Security Application)

A list of field titles for the registration form.

2.4.2.2 Returned Values

CMS_CannotConnect

CMS_ContextNotRecognized

CMS_OK

CMS_ResponseNotReady

CMS_Timeout

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 19

2.4.3 CMSRegistrationRequest

CMSRegistrationRequest supplies the completed registration form. It assumes that
multiple requests to registration authorities will not be interleaved.

2.4.3.1 Parameters

context

See Section 2.2.2.1 above.

registrationForm (Security Application -> CMS)

A list of field values for the registration form.

responseTime

See Section 2.3.1.1 above.

2.4.3.2 Returned Values

CMS_CannotConnect

CMS_ContextNotRecognized

CMS_OK

CMS_ResponseNotReady

CMS_Timeout

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 20

2.4.4 CMSRegistrationResponse

CMSRegistrationResponse obtains the authentication information from a successful
registration attempt for use in the CMSCertificationRequest call.

2.4.4.1 Parameters

context

See Section 2.2.2.1 above.

userReference (CMS -> Security Application)

The user reference by which the CA will recognize the end-user in its request for
certification..

authenticationToken (CMS -> Security Application)

The authentication information which will be used to protect the authenticity, integrity
and (potentially) the confidentiality of information exhcnaged by the end-user and CA in
the certification process.

2.4.4.2 Returned Values

CMS_CannotConnect

CMS_ContextNotRecognized

CMS_OK

CMS_ResponseNotReady

CMS_Timeout

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 21

2.5 Certification Functions

These functions provide facilities whereby an end-entity can obtain an initial certificate.

2.5.1 CMSRequestMyCertificate

The CMSRequestMyCertificate function is used to request a certificate, and (optionally)
post it to the directory. The CMS performs no checks on user supplied keys. The
operation of obtaining certificates must be completed by a call to
CMSRetrieveMyCertificate.

2.5.1.1 Parameters

context

See Section 2.2.2.1 above.

userReference

See Section 2.4.4.1 above.

authenticationToken

See Section 2.4.4.1 above.

certificateAttributes (Security Application -> CMS)

A list of attributes requested for the certificate. These may be over-ridden by the
attributes specified by the RA (see Section 2.3.1.1, above) or by the CA.

requestHandle

See Section 2.3.1.1 above.

responseTime

See Section 2.3.1.1 above.

2.5.1.2 Returned Values

CMS_ContextNotRecognized

CMS_IncorrectAuthenticationToken

CMS_OK

CMS_RequiredDataMissing

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 22

CMS_UnexpectedNullPointer

CMS_UserReferenceNotRecognized

CMS_CryptoLibraryNotAvailable

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 23

2.5.2 CMSRetrieveMyCertificate

CMSRetrieveMyCertificate retrieves the certificate requested by the
CMSRequestMyCertificate call.

2.5.2.1 Parameters

context

See Section 2.2.2.1 above.

requestHandle (Security Application -> CMS)

The certificate handle returned by the CMSRequestMyCertificate call. See Section
2.5.1.1 above.

keyPair (CMS -> Security Application)

The certificate (path) and its component public and private keys requested by the
CMSRequestMyCertificate function.

cATime

The time according to the CA. In the case of on-line commtion with the CA, this may be
used to calculate the offset between the time according to the CA and that according to
the user’s platform.

cACertificate

An authentic CA verification certificate that can be trusted by the end-entity for use in
validating certificate chains.

2.5.2.2 Returned Values

CMS_CannotAcceptUserGeneratedPrivateKey

CMS_CannotConnect

CMS_CannotGeneratePublicKey

CMS_ContextNotRecognized

CMS_DirectoryAccessDenied

CMS_IncorrectAuthenticationToken

CMS_OK

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 24

CMS_RequiredDataMissing

CMS_ResponseNotReady

CMS_SecurityProtocolFailure

CMS_Timeout

CMS_UnexpectedNullPointer

CMS_UserReferenceNotRecognized

CMS_CryptoLibraryNotAvailable

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 25

2.6 Key Update Functions

These functions provide facilities for updating a user’s keys and certificates.

2.6.1 CMSKeyStatus

CMSKeyStatus returns the status of the public key contained in the certificate supplied by
the Security Application. The status relates to the time validity and revocation status of
the certificate and its corresponding private key. This function call may be used by the
Security Application in deciding whether or not to request a key update.

2.6.1.1 Parameters

certificate (Security Application -> CMS)

The public key certificate for which the status is requested.

2.6.1.2 Returned Values

See Annex A.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 26

2.6.2 CMSRequestKeyUpdate

The CMSRequestKeyUpdate function is used to request a new key and certificate,
optionally replacing the corresponding repository entry. This function can be used by
Security Applications when they have detected that their certificate must be replaced,
possibly by making a call to CMSKeyStatus.

2.6.2.1 Parameters

context

See Section 2.2.2.1 above.

authenticationToken (Security Application -> CMS)

The authenticationToken supplied by the CMS in response to the most recent
CMSRetrieveMyCertificate, CMSRetrieveRecoveredKeys or CMSRetrieveUpdatedKey
call. If the Cryptoki library was selected in the CMSLogin function call, then this shall
contain the Cryptoki PIN.

certificateAttributes (Security Application -> CMS)

A list of attributes requested for the new certificate. It must contain (as a minimum) a
certificate attribute whose value is the certificate for which an update is requested.

requestHandle

See Section 2.3.1.1 above.

responseTime

See Section 2.3.1.1 above.

2.6.2.2 Returned Values

CMS_CannotAcceptUserGeneratedPrivateKey

CMS_CannotConnect

CMS_CannotGeneratePublicKey

CMS_ContextNotRecognized

CMS_DirectoryAccessDenied

CMS_OK

CMS_RequiredDataMissing

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 27

CMS_SecurityProtocolFailure

CMS_Timeout

CMS_UnexpectedNullPointer

CMS_UserUniqueNameNotRecognized

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 28

2.6.3 CMSRetrieveUpdatedKey

The CMSRetrieveUpdatedKey function is used to retrieve a new certificate, optionally
replacing the existing entry in the directory. This function can be used by Security
Applications following a call to CMSRequestKeyUpdate.

2.6.3.1 Parameters

context

See Section 2.2.2.1 above.

authenticationToken (Security Application -> CMS)

A new authentication token for use in subsequent update exchanges.

requestHandle (Security Application -> CMS)

See Section 2.3.1.1 above.

keyPair

The certificate (path) and its component public and private components of the keys for
which a new certificate was requested.

cATime

See Section 2.5.2.1 above.

cACertificate

See Section 2.5.2.1 above.

2.6.3.2 Returned Values

CMS_CannotAcceptUserGeneratedPrivateKey

CMS_CannotConnect

CMS_CannotGeneratePublicKey

CMS_ContextNotRecognized

CMS_DirectoryAccessDenied

CMS_OK

CMS_RequiredDataMissing

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 29

CMS_ResponseNotReady

CMS_SecurityProtocolFailure

CMS_Timeout

CMS_UnexpectedNullPointer

CMS_UserUniqueNameNotRecognized

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 30

2.7 Key Recovery Functions

These functions provide facilities for recovering private keys from a Key Recovery
Centre in the event that a user’s record of its private key becomes lost or corrupted.

2.7.1 CMSRequestKeyRecovery

The CMSRequestKeyRecovery function is used to request the recovery of a history of
keys from the KRC.

2.7.1.1 Parameters

context

See Section 2.2.2.1 above.

userReference (Security Application -> CMS)

The identifier by which the KRC identifies the user. This information is obtained by
‘out-of-band’ means from the KRC. The semantics of the user identifier are opaque to
the Security Application.

authenticationToken (Security Application -> CMS)

A secret authentication token which is shared between the KRC and the user, and which
can be used for the purpose of authenticating the user and/or confidentiality protecting
private keying material exchanged between the CMS Client and the KRC. This
information is obtained by ‘out-of-band’ means from the KRC. The semantics of the
authenticationToken are opaque to the Security Application.

keyFlow (Security Application -> CMS)

Indicates whether or not the Security Application requests the CMS to generate the
private key and whether or not it requests the CMS to post the certificate to the directory.
If the security policy enforced by the CMS conflicts with the request, then an error code
will be returned. See Section 2.1.1, above.

certificateAttributes (Security Application -> CMS)

The list of attributes describing the certificate for which recovery is requested. This
should include a certificate or keyUsage attribute.

requestHandle (CMS -> Security Application)

The handle to be used by the application in the CMSRetrieveRecoveredKeys function
call to obtain the results of this request.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 31

responseTime (CMS -> Security Application)

The estimated number of seconds until the response will be ready. Security Applications
may use this estimate to determine when to perform a CMSRetrieveRecoveredKeys
operation to obtain the key history requested by this call.

2.7.1.2 Returned Values

CMS_ContextNotRecognized

CMS_IncorrectAuthenticationToken

CMS_OK

CMS_RequiredDataMissing

CMS_ResponseNotReady

CMS_UnexpectedNullPointer

CMS_CryptoLibraryNotAvailable

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 32

2.7.2 CMSRetrieveRecoveredKeys

The CMSRetrieveRecoveredKeys call is used to retrieve keys recovered in response to
the CMSRequestKeyRecovery function call for the user identified by userReference and
authenticated by authenticationToken and the key identified by keyUsage and policyId.
The results are placed in the RecoveredKeyList. This list contains highly sensitive data.
Therefore, it should be deleted as soon as possible following its use, by making a call to
CMSEraseKeyHistory.

2.7.2.1 Parameters

context

See Section 2.2.2.1 above.

userReference

See Section above.

authenticationToken

See Section 2.7.1.1 above.

requestHandle (Security Application -> CMS)

The handle provided in the CMSRequestKeyRecovery function call.

kRCTime (CMS -> Security Application)

The time at which the response was generated by the KRC. The time shall be encoded as
the number of seconds that have elapsed since midnight on the 1st of January 1970
Universal Coordinated Time. In the case of on-line retrieval, this can be used by the
application to calculate the offset between the KRC’s time and the application platform’s
time.

cACertificate

See Section 2.5.2.1 above.

2.7.2.2 Returned Values

CMS_CannotAcceptUserGeneratedPrivateKey

CMS_CannotConnect

CMS_CannotGeneratePublicKey

CMS_ContextNotRecognized

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 33

CMS_DirectoryAccessDenied

CMS_IncorrectAuthenticationToken

CMS_NoKeyHistoryAvailable

CMS_OK

CMS_RequiredDataMissing

CMS_ResponseNotReady

CMS_SecurityProtocolFailure

CMS_Timeout

CMS_UnexpectedNullPointer

CMS_UserReferenceNotRecognized

CMS_CryptoLibraryNotAvailable

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 34

2.7.3 CMSNumberOfRecoveredKeys

CMSNumberOfRecoveredKeys returns the number of keys recovered by the most recent
CMSRetrieveRecoveredKeys function.

2.7.3.1 Parameters

context

See Section 2.2.2.1 above.

2.7.3.2 Returned Values

<= 0 Indicates that CMSRetrieveRecoveredKeys has not been called or did not execute
correctly, or (if = 0) that it executed correctly and no keys were recovered.

> 0 Indicates the number of keys recovered.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 35

2.7.4 CMSGetRecoveredCertificate

CMSGetRecoveredCertificate returns the certificate for the given index from
RecoveredKeyList obtained by the CMSRetrieveRecoveredKeys function.

2.7.4.1 Parameters

context

See Section 2.2.2.1 above.

index (Security Application -> CMS)

The index in the RecoveredKeyList of the certificate requested by the Security
Application. The value shall be between 0 and one less than the number of keys in the
list (returned by CMSNumberOfRecoveredKeys) .

certificate (CMS -> Security Application)

A certificate recovered from the infrastructure by a call to CMSRetrieveRecoveredKeys.

2.7.4.2 Returned Values

CMS_ContextNotRecognized

CMS_InvalidIndex

CMS_OK

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 36

2.7.5 CMSGetRecoveredKey

CMSGetRecoveredKey returns the private key for the given index from the
RecoveredKeyList obtained by the CMSRetrieveRecoveredKeys function. Consider
combining this with CMSGetRecoveredCertificate to return a keyPair.

2.7.5.1 Parameters

context

See Section 2.2.2.1 above.

index (Security Application -> CMS)

See Section 2.7.4.1 above.

privateKey (CMS -> Security Application)

The private key recovered from the infrastructure by a call to
CMSRetrieveRecoveredKeys. The internal image will be erased by a call to
CMSEraseKeyHistory and CMSLogout for this context.

2.7.5.2 Returned Values

CMS_ContextNotRecognized

CMS_InvalidIndex

CMS_OK

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 37

2.7.6 CMSEraseKeyHistory

CMSEraseKeyHistory erases the key history created as a result of a call to
CMSRetrieveRecoveredKeys. This function should be called as soon as possible after
the Security Application has finished with the data in the RecoveredKeyList.

2.7.6.1 Parameters

context

See Section 2.2.2.1 above.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 38

2.8 End-user Self-Revocation Functions

This function enables a user to request revocation of its own certificate.

2.8.1 CMSRevokeMyCertificate

The CMSRevokeMyCertificate function is used to request the revocation of the user’s
own certificate. Verification that the certificate has been revoked can be obtained by
calling CMSKeyStatus.

2.8.1.1 Parameters

context

See Section 2.2.2.1 above.

authenticationToken (Security Application -> CMS)

See Section 2.7.1.1 above.

certificateAttributes (Security Application -> CMS)

Certificate attributes which uniquely define the certificate for which revocation is
requested.

responseTime

See Section 2.7.1.1 above.

2.8.1.2 Returned Values

CMS_CannotConnect

CMS_ContextNotRecognized

CMS_OK

CMS_RequiredDataMissing

CMS_SecurityProtocolFailure

CMS_Timeout

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 39

2.9 Name Resolution Functions

These functions are used to resolve unique names.

2.9.1 CMSSearchDirectory

CMSSearchDirectory searches the directory in order to build a list of directory entries
which satisfy the search criteria. The results of the search are placed in the
SearchResultsNameList.

2.9.1.1 Parameters

context

See Section 2.2.2.1 above.

searchExpr (Security Application -> CMS)

A pointer to a buffer containing a string expression comprising attribute type mnemonic
and value pairs and logical operators, see Ref. 2, defining the search criteria. For
example, the expression “sn=Baxter” would cause the CMS to search for all entries with
a surname Baxter and the expression “(&(ou=D100)(sn=Baxter))” would cause the CMS
to build a name list of all the users with the surname Baxter in the organizational unit
D100.

searchBase (Security Application -> CMS)

A pointer to a buffer containing a string expression defining a portion of the DIT. For
example, the expression “c=US, o=ACME” would limit the search to entries of the
ACME organization of the US.

attribsToReturn (Security Application -> CMS)

A pointer to a buffer containing a list of X.500 attributes whose values are to be returned.
For example, “gn\tsn\tou” (where \t represents the tab character) would return the given
name, surname and organizational unit (a department name for example) of the items in
the name list. The value “certificate “ would cause the user certificates to be returned.

searchDepth (Security Application -> CMS)

Specifies the extent of the search in the X.500 directory.

SD_ObjectSearchDepth The search is performed on only the single item
specified by the search base.

SD_OneLevelSearchDepth The search includes only the search base and one
level below.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 40

SD_SubtreeSearchDepth The search includes the search base and all levels
under it down to the leaf level.

2.9.1.2 Returned Values

CMS_AttributesNotPresent

CMS_CannotConnect

CMS_ContextNotRecognized

CMS_DirectoryAccessDenied

CMS_EntryNotFound

CMS_ImproperSearchBase

CMS_ImproperSearchExpr

CMS_OK

CMS_SearchSizeLimit

CMS_Timeout

CMS_UnexpectedNullPointer

CMS_UnrecognizedAttributes

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 41

2.9.2 CMSNumberOfNames

CMSNumberOfNames returns the number of names in a SearchResultsList.

2.9.2.1 Parameters

context

See Section 2.2.2.1 above.

2.9.2.2 Returned Values

< 0 Function could not complete.

>= 0 Number of names in the list.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 42

2.9.3 CMSGetUniqueName

CMSGetUniqueName returns the unique name associated with an entry in the
SearchResultsList.

2.9.3.1 Parameters

context

See Section 2.2.2.1 above.

nameIndex (Security Application -> CMS)

The index of the entry within the list. The index must be between 0 and one less than the
number of names in the list.

uniqueName (CMS -> Security Application)

The unique name of the entry in the list.

2.9.3.2 Returned Values

CMS_ContextNotRecognized

CMS_InvalidIndex

CMS_OK

CMS_StringTruncated

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 43

2.9.4 CMSNumberOfAttributes

CMSNumberOfAttributes returns the number of attributes associated with a given name
in the SearchResultsList.

2.9.4.1 Parameters

context

See Section 2.2.2.1 above.

nameIndex (Security Application -> CMS)

See Section 2.9.3.1 above.

2.9.4.2 Returned Values

< 0 Failed to complete.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 44

2.9.5 CMSGetAttribute

CMSGetAttribute returns the mnemonic of an attribute stored within the
SearchResultsList

2.9.5.1 Parameters

context

See Section 2.2.2.1 above.

nameIndex (Security Application -> CMS)

See Section 2.9.3.1 above.

attributeIndex (Security Application -> CMS)

The index of the attribute for the selected name. The index must be between 0 and one
less than the number of attributes in the list. The number of attributes can be obtained by
a call to CMSNumberOfAttributes. See Section 2.9.4.1, above.

attribute (CMS -> Security Application)

The mnemonic of the attribute.

2.9.5.2 Returned Values

CMS_ContextNotRecognized

CMS_InvalidAttributeIndex

CMS_InvalidListId

CMS_InvalidNameIndex

CMS_OK

CMS_StringTruncated

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 45

2.9.6 CMSNumberOfAttributeValues

CMSNumberOfAttributeValues returns the number of values associated with an attribute
in the UserName List.

2.9.6.1 Parameters

context

See Section 2.2.2.1 above.

nameIndex (Security Application -> CMS)

See Section 2.9.5.1, above.

attributeIndex (Security Application -> CMS)

See Section 2.9.5.1, above.

2.9.6.2 Returned Values

< 0 Failed to complete.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 46

2.9.7 CMSGetAttributeValue

CMSGetAttributeValue returns the value of an attribute stored within the
SearchResultsList

2.9.7.1 Parameters

context

See Section 2.2.2.1 above.

nameIndex (Security Application -> CMS)

See Section 2.9.3.1 above.

attributeIndex (Security Application -> CMS)

See Section 2.9.5.1, above.

valueIndex (Security Application -> CMS)

The index of the value for the selected attribute. The index must be between 0 and one
less than the number of attribute values in the list. The number of values can be obtained
by a call to CMSNumberOfAttributeValues.

attribute (CMS -> Security Application)

The value of the attribute.

2.9.7.2 Returned Values

CMS_ContextNotRecognized

CMS_InvalidAttributeIndex

CMS_InvalidNameIndex

CMS_OK

CMS_StringTruncated

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 47

2.9.8 CMSResetNameList

CSMResetNameList removes all names from the SearchResultsList.

2.9.8.1 Parameters

context

See Section 2.2.2.1 above.

2.9.8.2 Returned Values

CMS_ContextNotRecognized

CMS_InvalidListId

CMS_OK

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 48

2.10 Certificate Verification Functions

These functions provide facilities for verifying another end-entity’s certificate. In order
to validate a certificate, a valid chain of certificates must be found linking the certificate
which is to be validated to a trusted CA certificate. A suitable trusted CA certificate will
have been supplied in the most recent call to CMSRetrieveMyCertificate,
CMSRetrieveUpdatedKey or CMSRetrieveRecoveredKey. In the general case, this may
involve the verification of some intermediate certificates. The security application may
need to perform additional checks on these intermediate certificates, or it may need to
record them for adjudication purposes or for diagnosing the reason for the failure of a
chain validation. In the simpler case, it may be sufficient simply to indicate whether a
valid certificate chain exists or not, using the checks performed by the CMS
implementation. In the latter case, the CMSValidateCertificate function is used, with the
parameter ‘firstLink’ set FALSE. Then no subsequent calls to CMSValidateNextLink are
required.

In the former case, the CMSValidateCertificate function is used, with the parameter
‘firstLink’ set TRUE. Subsequent calls to CMSValidateNextLink are then required to
complete the chain validation. This gives the security application the opportunity to
record the certificates that form the certificate validation chain. This may be required in
order to provide the user with diagnostic information in the event that a certificate fails to
verify. In addition, if the security application wishes to apply additional checks, perhaps
involving non-standard certificate extensions, then it is able to do so.

The certificate which is to be verified is specified by certificateAttributes. If the security
application has the certificate then it is supplied in the ‘certificate’ attribute. If it does
not, then the Unique Name is supplied in the ‘subject’ attribute or an alternative subject
name is supplied in the subjectAltName attribute. The implementation will then retrieve
the certificate from the SearchResultsList or the repository.

Other attributes may be supplied, in which case, it will be verified that all certificates on
the chain (including the subject’s) are consistent with these attributes. Upon completion,
all attributes in the subject’s certificate will be returned in this parameter.

2.10.1 CMSValidateCertificate

Checks that the certificate identified by certificateAttributes is valid. If the certificate
attributes list include a certificate, then this will be verified. If it does not, then it must
contain a Unique Name and the corresponding certificate will be obtained, either from the
SearchResultsList or from the repository, for verification.

2.10.1.1 Parameters

context

See Section 2.2.2.1 above.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 49

certificateAttributes (Security Application <-> CMS)

The list of certificate attributes which are to be verified against the contents of the
certificate. Upon return, it contains the list of attributes of the verified certificate. By
including reasonCodes, the security application can indicate which revocation reasons
should be considered cause to reject a certificate.

cACertificate (Security Application -> CMS)

A trusted CA certificate. This forms the end of the certificate chain to be validated.

useCMSTime (Security Application -> CMS)

Indicates that the time according to the CMS shall be used to verify certificates.

userTime (Security Application -> CMS)

If useCMSTime is FALSE, then this parameter shall be used to supply the time according
to the Security Application. The time shall be encoded as described in 2.7.2.1.

firstLink (Security Application -> CMS)

Indicates whether the entire certificate chain is to be validated, or just the first link in the
chain. The default value is FALSE. If TRUE, then this call may be followed by one or
more calls to CMSValidateNextLink.

allowPolicyMapping (Security Application -> CMS)

Indicates that policy mapping may be used in forming the certificate verification path.

revalidateAt (CMS -> Security Application)

The time at which the certificate should be revalidated. Need to think about this some
more. Two cases must be considered. 1. The validAt parameter, specified by the
application, is prior to the thisUpdate field of the current CRL. Then the validity of
the certificate can be determined with certainty. 2. The validAt parameter is
between the current CRL’s thisUpdate and nextUpdate times. In this case, the
validity is conditional upon revalidating the certificate after the current CRL’s
nextUpdate time. The validAt parameter should never be greater than the present
time.

2.10.1.2 Returned Values

CMS_CannotConnect

CMS_ContextNotRecognized

CMS_DirectoryAccessDenied

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 50

CMS_InvalidCertificateSyntax

CMS_OK

CMS_RequiredDataMissing

CMS_Timeout

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 51

2.10.2 CMSValidateNextLink

Returns the next valid certificate in the certificate chain. There may be multiple
consecutive calls to this function: one for each certificate in the chain. Such a sequence
must be preceded by a call to CMSValidateCertificate. This function should be called
repeatedly until the value CMS_OK is returned. Upon return, the certificateAttributes
parameter contains attributes of the next certificate in the chain. The security application
may perform additional checks on non-standard extensions and indicate whether or not
the certificate is acceptable by means of the ‘continue’ parameter. If the CMS
implementation runs into a dead-end, then it must back-track to an earlier acceptable
certificate which has at least one unexplored branch. When this happens, it returns a
positive integer value in the ‘backtrack’ parameter. An application should respond by
removing that number of good certificates from its list, in a last-in-first-out manner.

2.10.2.1 Parameters

context

See Section 2.2.2.1 above.

continue (Security Application -> CMS)

Indicates whether the last certificate was valid or not according to additional checks that
may be performed by the security application. Default TRUE.

certificate (CMS -> Security Application)

The next certificate in the chain.

backTrack (CMS -> Security Application)

Indicates the number of certificates in the path which should be discarded. If the value is
non-zero, then the implementation has explored a branch in the CA network which is a
dead-end.

2.10.2.2 Returned Values

CMS_CannotConnect

CMS_ContextNotRecognized

CMS_DirectoryAccessDenied

CMS_InvalidCertificateSyntax

CMS_IncompleteChain

CMS_OK

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 52

CMS_RequiredDataMissing

CMS_Timeout

CMS_UnexpectedNullPointer

2.10.3 CMSGetCertificateAttribute

This function returns the value of an attribute of the certificate validated by the most
recent call to CMSValidateCertificate. The type of the required attribute is referenced by
its attribute type object identifier. Some attributes may have multiple values. In this
case, the valueIndex parameter is used to select one value.

2.10.3.1 Parameters

context

See Section 2.2.2.1 above.

certificate (Security Application -> CMS)

The certificate from which an attribute is to be extracted.

attributeType (Security Application -> CMS)

See Section 2.1 above.

valueIndex (Security Application -> CMS)

Indicates the attribute value to be returned in the case where the attribute has multiple
values (for instance certificatePolicy). NULL indicates the first value.

attributeValue (CMS -> Security Application)

The value of the attribute.

lastValue (CMS -> Security Application)

Indicates that the requested value is the last in the list of certificate attribute values.

2.10.3.2 Returned Values

CMS_ContextNotRecognized

CMS_InvalidAttributeType

CMS_InvalidValueIndex

CMS_OK

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 53

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 54

2.11 Utility Functions

This section contains a set of utility functions.

2.11.1 CMSReleaseBuffer

This function releases memory which has been allocated by the implementation.

2.11.1.1 Parameters

buffer (Security Application -> CMS)

The buffer for which the allocated memory is to be released.

2.11.1.2 Returned Values

CMS_OK

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 55

2.11.2 CMSReleaseName

This function releases memory which has been allocated by the implementation.

2.11.2.1 Parameters

name (Security Application -> CMS)

The name for which the allocated memory is to be released.

2.11.2.2 Returned Values

CMS_OK

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 56

2.11.3 CMSReleaseKey

This function releases memory which has been allocated by the implementation.

2.11.3.1 Parameters

keyPair (Security Application -> CMS)

The key pair for which the allocated memory is to be released.

2.11.3.2 Returned Values

CMS_OK

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 57

2.11.4 CMSGetLogString

Returns a textual explanation of a CMSLog code. This function is like
CMSLogToString(), except that the textual explanation is returned through the function’s
second parameter rather than through its return value.

2.11.4.1 Parameters

log (Security Application -> CMS)

The CMSLog code to be described.

explanation (CMS -> Security Application)

A textual description of the CMSLog code.

2.11.4.2 Returned Values

CMS_LogValueNotRecognized

CMS_UnexpectedNullPointer

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 58

2.11.5 CMSLogToString

Returns a textual explanation of a CMSLog code.

2.11.5.1 Parameters

log (Security Application -> CMS)

The CMSLog code to be translated.

2.11.5.2 Returned Values

A string describing the CMSLog code.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 59

2.11.6 CMSQueryLogWarning

Indicates whether a CMSLog is an error or a warning.

2.11.6.1 Parameters

log (Security Application -> CMS)

2.11.6.2 Returned Values

TRUE The CMSLog value is a warning.

FALSE The CMSLog value is an error.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 60

2.11.7 CMSQueryVersionNumber

Returns a string indicating which version of the CMS is running.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 61

2.11.8 Name Conversion Functions

The following functions, as defined in refs 7 and 8, shall be supported.

gss_compare_name

gss_display_name

gss_export_name

gss_import_name

gss_inquire_name_for_mech

gss_release_name

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 62

3. Status Codes

The status codes are values of the enum type CMSLog. ADD GSS STATUS CODES

3.1 Error Codes

CMS_AttributesNotPresent One or more of the requested attributes is not present in
the directory.

CMS_CannotAcceptUserGeneratedPrivateKey The CMS Security Policy does not
permit users to generate key pairs of the requested type.

CMS_CannotConnect The CMS could not establish a connection to the CA or to the
directory.

CMS_CannotGeneratePublicKey The CMS Security Policy does not permit the CA to
generate the user’s key pair of the requested type.

CMS_CannotGetCRL

CMS_ContextNotRecognized The context handle was not recognized.

CMS_CryptoLibraryNotAvailable The library of crypto functions could not be
located.

CMS_CryptoLibraryNotSupported The selected library of crypto functions is not
supported by the CMS.

CMS_CryptoLibraryPINIncorrect The PIN supplied for the crypto library has been
rejected.

CMS_DirectoryAccessDenied Access to the directory was denied.

CMS_EntryNotFound

CMS_FileError

CMS_FormattingError

CMS_IncompleteChain The certificate could not be verified, because no complete
certificate chain could be found.

CMS_IncorrectAuthenticationToken The supplied authentication token is incorrect.

CMS_InvalidAttributeIndex The AttributeIndex is out of range.

CMS_InvalidAttributeMnemonic The name is not a valid attribute mnemonic.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 63

CMS_InvalidCertificateSyntax The syntax of the certificate is not standard compliant.

CMS_InvalidFieldName

CMS_InvalidListId The ListId is not recognized.

CMS_InvalidMode

CMS_InvalidNameIndex The NameIndex is out of range.

CMS_InvalidParm

CMS_InvalidPathEntryIndex The index of the requested path entry is not valid.

CMS_InvalidSearchBase The search base is not properly formed.

CMS_InvalidSearchExpr The search expression is not properly formed.

CMS_InvalidValueIndex The ValueIndex is out of range.

CMS_ManagerClientTimeMismatch

CMS_MaximumNumberOfOpenContextsExceeded The maximum number of open
contexts has been exceeded.

CMS_MemoryError

CMS_NoKeyHistoryAvailable The CA is unable to provide a key history.

CMS_RequiredDataMissing Required data is missing from the function call.

CMS_ResponseNotReady The CMS has not yet responded to a request for a certificate,
key update or key recovery.

CMS_SecurityProtocolFailure The security protocol between the CMS Client and the
CA failed.

CMS_StateError

CMS_Timeout A directory access timed out.

CMS_UnexpectedNullPointer A pointer was found to be null.

CMS_UnknownError

CMS_Unsupported

CMS_UserReferenceNotRecognized The CA does not recognize the supplied
userReference.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 64

CMS_UserUniqueNameNotRecognized The CA does not recognize the supplied User
UniqueName.

CMS_VersionNumberNotSupported The Version number is not supported by the
CMS.

3.2 Warning Codes

CMS_SearchSizeLimit The data retrieved from the directory is incomplete.

CMS_StringTruncated The retrieved data exceeds the buffer size.

3.3 Normal Operation Codes

CMS_OK The function completed successfully.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 65

4. Certificate Attribute Object Identifiers

Certificate attributes are used in a number of different ways. They may be specified by
the end-user at the time of requesting a certificate. They may also be specified by an end-
user as acceptance criteria when verifying a certificate. Finally, they represent the
contents of a verified certificate.

There is broad range of sophistication amongst client applications. Some simply require
to be able to supply a DN and receive a verified public key in return, these do not want to
be burdened by complex options. At the other end of the scale, there are applications
which must impose complex constraints related to policy.

The certificate attributes, in all of these cases, will be dealt with in the same way: as a list
of attribute/value pairs. The attributes are expressed as a CMSBinaryData type whose
contents is the attribute OID (as defined below) in ‘stop-separated’ format, with each
character ASCII-encoded. The attribute values are encoded as CMSBinaryData types,
whose contents is a ‘C’ type equivalent to the ASN.1 type of the corresponding certificate
field. This rule only applies to certificate fields and extension fields which are
‘independent’. In other words, if an extension contains fields which must be interpretted
in conjunction with other fields, then the whole extension is passed in the list. The
structure of such extensions is defined in terms of a ‘C’ structure, below, but only the
extension is assigned an OID (not its individual fields), and the whole extension is passed
in the list.

Object Identifier Usage

certificateAttribute ID ::= TBD

id-ca ID ::= certificateAttribute

Certificate Attributes

certificate

certificate OBJECT IDENTIFIER ::= {id-at
36}
version OBJECT IDENTIFIER ::= {id-ca 1}
serialNumber OBJECT IDENTIFIER ::= {id-ca 2}
signature OBJECT IDENTIFIER ::= {id-ca 3}
issuer OBJECT IDENTIFIER ::= {id-ca 4}
validityNotBefore OBJECT IDENTIFIER ::= {id-ca 5}
validityNotAfter OBJECT IDENTIFIER ::= {id-ca 6}
subject OBJECT IDENTIFIER ::= {id-ca 7}
subjectPublicKeyInfoAlgorithmAlgorithm OBJECT IDENTIFIER ::= {id-ca 8}
subjectPublicKeyInfoAlgorithmParameters OBJECT IDENTIFIER ::= {id-ca 9}
subjectPublicKeyInfoAlgorithmSubjectPublicKey OBJECT IDENTIFIER ::= {id-ca
10}

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 66

issuerUniqueIdentifier OBJECT IDENTIFIER ::= {id-ca
11}
subjectUniqueIdentifier OBJECT IDENTIFIER ::= {id-ca
12}

authorityKeyIdentifier

authorityKeyIdentifier OBJECT IDENTIFIER ::= {id-ca
13}
authorityCertIssuer OBJECT IDENTIFIER ::= {id-ca
14}
authorityCertSerialNumber OBJECT IDENTIFIER ::= {id-ca
15}

subjectKeyIdentifier

subjectKeyIdentifier OBJECT IDENTIFIER ::= {id-ca
16}
subjectCertIssuer OBJECT IDENTIFIER ::= {id-ca
17}
subjectCertSerialNumber OBJECT IDENTIFIER ::= {id-ca
18}

keyUsage

privateKeyUsagePeriodNotBefore OBJECT IDENTIFIER ::= {id-ca
19}
privateKeyUsagePeriodNotAfter OBJECT IDENTIFIER ::= {id-ca
20}

certificatePolicies

certificatePolicies OBJECT IDENTIFIER ::= {id-ca
21}

policyMappings

policyMappings OBJECT IDENTIFIER ::= {id-ca
22}

subjectAltName

subjectAltNameOtherName OBJECT IDENTIFIER ::= {id-ca
23}
subjectAltNameRfc822Name OBJECT IDENTIFIER ::=
{id-ca 24}
subjectAltNameDNSName OBJECT IDENTIFIER ::= {id-ca
25}
subjectAltNameX400Name OBJECT IDENTIFIER ::= {id-ca
26}
subjectAltNameDirectoryName OBJECT IDENTIFIER ::= {id-ca
27}

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 67

subjectAltNameEdiPartyName OBJECT IDENTIFIER ::= {id-ca
28}
subjectAltNameUniformResourceIdentifier OBJECT IDENTIFIER ::= {id-ca
29}
subjectAltNameIPAddress OBJECT IDENTIFIER ::= {id-ca
30}
subjectAltNameRegisteredId OBJECT IDENTIFIER ::= {id-ca
31}

issuerAltName

issuerAltNameOtherName OBJECT IDENTIFIER ::= {id-ca
32}
issuerAltNameRfc822Name OBJECT IDENTIFIER ::= {id-ca
33}
issuerAltNameDNSName OBJECT IDENTIFIER ::= {id-ca
34}
issuerAltNameX400Name OBJECT IDENTIFIER ::= {id-ca
35}
issuerAltNameDirectoryName OBJECT IDENTIFIER ::= {id-ca
36}
issuerAltNameEdiPartyName OBJECT IDENTIFIER ::=
{id-ca 37}
issuerAltNameUniformResourceIdentifier OBJECT IDENTIFIER ::= {id-ca
38}
issuerAltNameIPAddress OBJECT IDENTIFIER ::= {id-ca
39}
issuerAltNameRegisteredId OBJECT IDENTIFIER ::= {id-ca
40}

subjectDirectoryAttribute

subjectDirectoryAttribute OBJECT IDENTIFIER ::= {id-ca
41}

basicConstraints

NOT SUPPORTED - if this extension occurs in an end-user certificate, then its contents
is entirely predictable. If this extension occurs in a CA certificate, then all associated
processing will be performed by the implementation.

nameConstraints

NOT SUPPORTED - if this extension occurs in an end-user certificate, then its contents
is entirely predictable. If this extension occurs in a CA certificate, then all associated
processing will be performed by the implementation.

policyConstraints

policyConstraints OBJECT IDENTIFIER ::= {id-ca
42}

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 68

reasonCode

This certificate attribute may be used by certificate users to indicate which revocation
reasons are grounds for rejecting a certificate.

reasonCodeUnspecified OBJECT IDENTIFIER ::= {id-ca
43}
reasonCodeKeyCompromise OBJECT IDENTIFIER ::= {id-ca
44}
reasonCodeCACompromise OBJECT IDENTIFIER ::= {id-ca
45}
reasonCodeAffiliationChanged OBJECT IDENTIFIER ::= {id-ca
46}
reasonCodeSuperseded OBJECT IDENTIFIER ::= {id-ca
47}
reasonCodeCessationOfOperation OBJECT IDENTIFIER ::= {id-ca
48}
reasonCodeCertificateHold OBJECT IDENTIFIER ::= {id-ca
49}
reasonCodeRemoveFromCRL OBJECT IDENTIFIER ::= {id-ca
50}

holdInstructionCode

holdInstructionCode OBJECT IDENTIFIER ::= {id-ca
51}

invalidityDate

This certificate attribute is returned to certificate user applications to indicate the time at
which a revoked certificate was known to be invalid.

invalidityDate OBJECT IDENTIFIER ::= {id-ca
52}

crlDistributionPoints

NOT SUPPORTED - either this does not occur in end-user certificates, or its value is
predictable

issuingDistributionPoints

NOT SUPPORTED - either this does not occur in end-user certificates, or its value is
predictable

certificateIssuer

NOT SUPPORTED - This does not occur in end-user certificates, or its value is
predictable

deltaCRLIndicator

NOTE: A method is needed to force the implementation to use on-line CRLs.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 69

unspecified non-critical extension

unspecifiedNonCriticalExtension OBJECT IDENTIFIER ::= {id-ca
53}

unspecified critical extension

unspecifiedCriticalExtension OBJECT IDENTIFIER ::= {id-ca
54}

validTime

This certificate attribute is supplied by the certificate user applciation to indicate the time
at which the validity of the certificate is required.

validTime OBJECT IDENTIFIER ::= {id-ca
55}

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 70

5. References

1. PKCS#1, RSA Encryption Standard, v1.5, RSA Laboratories, Nov 93.

2. RFC 1558, A string representation of LDAP search filters, T Howes, Feb 1995.

3. The Directory: Authentication Framework, ITU-T Recommendation X.509, 1993.

4. Draft Amendment 1 to ITU-T Recommendation X.509 (1993 E), Aug 1995.

5. RFC 1779, A string representation of Dictinguished Names, S Kille, Mar 1995.

6. RFC 1778, The string representation of standard attribute syntaxes, T Howes, S Kille,
W Yeong, C Robbins, Mar 1995.

7. RFC 1508, Generic Security Service Application Program Interface, J Linn, Sep
1993.

8. RFC 1509, Generic Security Service API: C-bindings, J Wray, Sep 1993.

9. A text that describes CA networks.

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

A - 1

ANNEX A - SAMPLE SECURITY APPLICATION PSEUDO-CODE

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 1

ANNEX B - C LANGUAGE BINDINGS

/* cmsbdefs.h - header file for the CMS API basic definitions. */

ifndef CMSBDEFS_H
#define CMSBDEFS_H

typedef int BOOL;
typedef short int INT16;
typedef unsigned short int UINT16;
typedef long INT32;
typedef unsigned long UINT32;
typedef unsigned char BYTE;
typedef unsigned int UINT;
typedef int INT;
typedef INT32 CMSLog;

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

#define CMS_MaxStringSize 32767

typedef enum {

CL_Built-in, /* Use the CMS internal library of
crypto functions */

CL_Cryptoki /* Use the Cryptoki library of crypto
functions */

} CryptoLibrary;

typedef enum {

KS_Valid, /* The certificate is valid
KS_NotYetValid, /* The notBefore parameter of the

certificate’s validity is later than the
current time */

KS_KeyUpdateRequired, /* The private key corresponding to
the certificate is still valid, however,
according to the CMS’s security
policy, the Security Application
should attempt to update the key */

KS_PrivateKeyExpired, /* The current time is later than the
notAfter parameter of the
privateKeyValidity in the

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 2

certificate’s keyAttribute extension
*/

KS_PublicKeyExpired /* The current time is later than the
notAfter parameter of the
certificate’s validity */

KS_Revoked /* The certificate has been revoked
*/

} KeyStatus;

typedef enum {

SD_ObjectSearchDepth, /* Search for the specified entry only
*/

SD_OneLevelSearchDepth, /* Search in the sub-tree including
one-level below the specified entry
*/

SD_SubtreeSearchDepth /* Search in the entire sub-tree below
the specified entry */

} SearchDepth;

typedef enum {

VFR_OK, /* The certificate verified
successfully */

VFR_CertificateExpired, /* The certificates has expired */
VFR_CertificateNotFound, /* It was not possible to retrieve a

certificate for the issuer of the
certificate */

VFR_CertificateNotYetValid, /* The certificates is not yet valid */
VFR_CertificateSigningAlgorithmNotRecognized, /* The algorithm used to sign

the certificate was not recognized */
VFR_DirectoryAccessDenied, /* Access to the directory was denied

*/
VFR_EntryNotFound, /* It was not possible to find a

directory entry for the issuer of the
certificate */

VFR_InvalidCertificateSyntax, /* The syntax of the certificate is not
standard compliant */

VFR_SignatureFailure, /* The signature on the certificate
failed to verify */

VFR_UnrecognizedCriticalExtension, /* The certificate contains a critical
certificate extension which was not
recognized */

VFR_UntrustedCA, /* A certificate chain to a trusted CA
could not be found */

VFR_CertificateRevoked, /* The certificate has been revoked
*/

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 3

VFR_CannotGetValidCRL, /* It was not possible to obtain a
valid CRL */

VFR_Unknown /* A failure reason other than those
listed above was encountered */

} VerifyFailureReason;

typedef enum{

DT_ByteString, /* an ASN.1 OCTET STRING */
DT_CharString, /* a null terminated character string

*/
DT_Integer,
DT_Time, /* time_t */
DT_BER /* a BER-encoded ASN.1 structure

*/

} CMSDataType;

typedef void* CMSContext;

typedef struct {

uint32 size; /* The size (in Bytes) of the binary
data */

BYTE* data;
} CMSBinaryData;

typedef struct {

BOOL keyFromCMS; /* If TRUE, then the CMS generates
the user’s private key, otherwise the
Security Application generates it */

BOOL certificateToCMS; /* If TRUE, then the certificate is
posted by the CMS, otherwise the
Security Application must post it */

} KeyFlow;

typedef enum {

UINT32 KeyLength;
PublicKeyType keyType;

} PublicKeyType;

typedef struct {

PKT_RSA = 0,
PKT_DSA,
PKT_DEFAULT

} PublicKeyParameters;

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 4

typedef struct {

CMSBinaryData privateKey;
CMSBinaryData publicKey;
PublicKeyParameters publicKeyParameters;
CMSBinaryData certificate;
} KeyPair;

/* certificate attribute declarations */

CMSBinaryData certificate; /* the contents of the CMSBinaryData type is the
/* certificate

CMSBinaryData version; /* the contents of the CMSBinaryData type is
/* versionContents

int versionContents;

CMSBinaryData serialNumber; /* the contents of the CMSBinaryData type is
/* serialNumberContents

int serialNumberContents;

CMSBinaryData signature Algorithm; /* the contents of theCMSBinaryDatatype is
/* the signature algorithm identifier, in

‘stop-
/* separated’ OID format, with each

character
/* ASCII encoded.

CMSBinaryData signatureParameters; /* the contents of the CMSBinaryDatatype is
/* the DER-encoding of the parameters
/* structure in the certificate.

CMSBinaryData issuer; /* the contents of the CMSBinaryData type
is

/* issuerContents

typedef struct {
CMSBianryData issuerNameType;
CMSBianryData issuerCharSet;
CMSBinaryData issuerName;
} issuerContents;

CMSBinaryData validityNotBefore ; /* the contents of the CMSBinaryData type
is

/* validityNotBeforeContents

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 5

int validityNotBeforeContents; /* the number of seconds from
/* midnight on the 1st of Jan 1970
/* Universal Coordinated Time until
/* the start of the certificate validity
/* period

CMSBinaryData validityNotAfter ; /* the contents of the CMSBinaryData type
is

/* validityNotAfterContents

int validityNotAfterContents; /* the number of seconds from
/* midnight on the 1st of Jan 1970
/* Universal Coordinated Time until
/* the end of the certificate validity
/* period

CMSBinaryData subject: /* the contents of the CMSBinaryData type
is

/* subjectContents

typedef struct {
CMSBianryData subjectNameType;
CMSBianryData subjectCharSet;
CMSBinaryData subjectName;
} subjectContents;

CMSBinaryData subjectPublicKeyInfoAlgorithm ; /* the contents of the
/* CMSBinaryDatatype is

the
/* algorithm identifier of
/* the subject’s algorithm, in
/* ‘stop-separated’ OID
/* format, with each
/* character ASCII encoded

CMSBinaryData subjectPublicKeyInfoParameters ; /* the contents of the
/* CMSBinaryDatatype is the
/* DER-encoding of the
/* parameters structure in the
/* subjectPublicKeyInfo

CMSBinaryData subjectPublicKeyInfoPublicKey ; /* the contents of the
/* CMSBinaryData type is

the
/* DER-encoded ASN.1

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 6

/* SEQUENCE of n and e

CMSBinaryData issuerUniqueIdentifier ; /* the contents of the
/* CMSBinaryData type is

the
/* BER-encoded ASN.1
/* UniqueIdentifier

CMSBinaryData subjectUniqueIdentifier ; /* the contents of the
/* CMSBinaryData type is

the
/* BER-encoded ASN.1
/* UniqueIdentifier

CMSBinaryData authorityKeyIdentifier; /* the contents of the
/* CMSBinaryData type is

the
/* authorityKeyIdentifier
/* Contents

int authorityKeyIdentifierContents;

CMSBinaryData authorityCertIssuer; /* the contents of the
/* CMSBinaryData type is

the
/* authorityCertIssuer
/* Contents

typedef struct {
CMSBianryData authorityNameType;
CMSBianryData authorityCharSet;
CMSBinaryData authorityName;
} authorityCertIssuerContents;

CMSBinaryData authorityCertSerialNumber; /* the contents of the
/* CMSBinaryData type is

the
/* authorityCertIssuerSerial
/* NumberContents

int authorityCertIssuerSerialNumberContents;

CMSBinaryData subjectKeyIdentifier; /* the contents of the
/* CMSBinaryData type is

the
/* subjectKeyIdentifier

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 7

/* Contents

int subjectKeyIdentifierContents ;

CMSBinaryData subjectCertIssuer; /* the contents of the
/* CMSBinaryData type is

the
/* subjectCertIssuer
/* Contents

typedef struct {
CMSBianryData subjectNameType;
CMSBianryData subjectCharSet;
CMSBinaryData subjectName;
} subjectCertIssuerContents;

CMSBinaryData subjectCertSerialNumber; /* the contents of the
/* CMSBinaryData type is

the
/* subjectCertSerialNumber
/* Contents

int subjectCertSerialNumberContents;

CMSBinaryData privateKeyUsagePeriodNotBefore; /* the contents of the
/* CMSBinaryData type is

the
/* privateKeyNotBefore
/* Contents

int privateKeyNotBeforeContents; /* the number of seconds
/* from midnight on the 1st

of
/* Jan 1970
/* Universal Coordinated
/*Time until the start of the
/* private key validity
/* period

CMSBinaryData privateKeyUsagePeriodNotAfter; /* the contents of the
/* CMSBinaryData type is

the
/* privateKeyNotAfter
/* Contents

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 8

int privateKeyNotAfterContents; /* the number of
seconds

/* from midnight on the 1st
of

/* Jan 1970
/* Universal Coordinated
/* Time until the end of the
/* private key
/* validity period

CMSBinaryData certificatePolicies; /* the contents of theCMSBinaryDatatype is
/* one or more certificatePoliciesContents

typedef struct {
CMSBinaryData policyIdentifier ;
PolicyQualifierInfo policyqualifiers;
} certificatePoliciesContents;

typedef struct {
CMSBinaryData policyQualifierId;
CMSBinaryData qualifier; /* one or more QualifierInfo structures
} policyQualifierInfo;

typedef struct {
CMSBinaryData policyQualifierId;
CMSBinaryData qualifier;
} QualifierInfo;

CMSBinaryData policyMappings; /* the contents of the CMSBinaryData type
is

/* policyMappingsContents

typedef struct {
CMSBinaryData issuerPolicy; /* ‘stop-separated’ OID format
CMSBinaryData subjectPolicy; /* ‘stop-separated’ OID format
} policyMappingsContents;

CMSBinaryData subjectAltNameOtherName ; /* the contents of the
CMSBinaryData

/* type is thesubject OtherName
/* Contents

typedef struct {
CMSBinaryData nametype; /* ‘stop-separated’ OID format
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char otherName;

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 9

} subjectOtherNameContents /* the memory is allocated by the
/* implementation, and must be released by

a
/* call to
/* CMSReleaseName

CMSBinaryData subjectAltNameRfc822Name; /* the contents of the
/* CMSBinaryData type is
/* thesubject RfcName
/* Contents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char rfcName;
} subjectRfcNameContents /* the memory is allocated by the implementation,

/* and must be released by a call to
/* CMSReleaseName

CMSBinaryData subjectAltNameDNSName; /* the contents of the
CMSBinaryData

/* type is thesubject DNSName
/* Contents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char dNSName;
} subjectDNSNameContents /* the memory is allocated by the implementation,

/* and must be released by a call to
/* CMSReleaseName

CMSBinaryData subjectAltNameX400Name ; /* the contents of the
CMSBinaryData

/* type is thesubject X400Name
/* Contents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char x400Name;
} subjectX400NameContents /* the memory is allocated by the implementation;

/* and must be released by a call to
/* CMSReleaseName

CMSBinaryData subjectAltNameDirectoryName ; /* the contents of the
/* CMSBinaryData type is
/* thesubject DirectoryName
/* Contents

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 10

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char directoryName;
} subjectDirectoryNameContents /* the memory is allocated by the

/* implementation, and must be released by
a

/* call to
/* CMSReleaseName

CMSBinaryData subjectAltNameEdiPartyName ; /* the contents of the
/* CMSBinaryData type is
/* thesubject EdiName
/* Contents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char ediName;
} subjectEdiNameContents /* the memory is allocated by the implementation,

/* and must be released by a call to
/* CMSReleaseName

CMSBinaryData subjectAltNameUniformResourceIdentifier; /* the contents of the
/* CMSBinaryData
/* type is thesubject
/* UrlName Contents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char urlName;
} subjectUrlNameContents /* the memory is allocated by the implementation,

/* and must be released by a call to
/* CMSReleaseName

CMSBinaryData subjectAltNameIPAddress ; /* the contents of the
CMSBinaryData

/* type is thesubject IPName
/* Contents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char iPName;
} subjectIPNameContents /* the memory is allocated by the

/* implementation, and must be
/* released by a call to CMSReleaseName

CMSBinaryData subjectAltNameRegisteredId; /* the contents of the

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 11

/* CMSBinaryData type is
/* the subjectRegistered
/* IdNameContents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char registeredIdName;
} subjectRegisteredIdNameContents /* the memory is allocated by the

/* implementation, and must be
/* released by a call to CMSReleaseName

CMSBinaryData issuerAltNameOtherName ; /* the contents of the
CMSBinaryData

/* type is theissuer OtherName
/* Contents

typedef struct {
CMSBinaryData nametype; /* ‘stop-separated’ OID format
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char otherName;
} issuerOtherNameContents /* the memory is allocated by the

/* implementation, and must be
/* released by a call to CMSReleaseName

CMSBinaryData issuerAltNameRfc822Name; /* the contents of the
/* CMSBinaryData type is
/* theissuer RfcName
/* Contents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char rfcName;
} issuerRfcNameContents /* the memory is allocated by the

/* implementation, and must be
/* released by a call to CMSReleaseName

CMSBinaryData issuerAltNameDNSName; /* the contents of the
/* CMSBinaryData type is
/* theissuer DNSName
/* Contents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char dNSName;
} issuerDNSNameContents /* the memory is allocated by the

/* implementation, and must be

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 12

/* released by a call to CMSReleaseName

CMSBinaryData issuerAltNameX400Name ; /* the contents of the
/* CMSBinaryData type is
/* theissuer X400Name
/* Contents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char x400Name;
} issuerX400NameContents /* the memory is allocated by the

/* implementation, and must be
/* released by a call to CMSReleaseName

CMSBinaryData issuerAltNameDirectoryName ; /* the contents of the
/* CMSBinaryData type is
/* theissuer DirectoryName
/* Contents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char directoryName;
} issuerDirectoryNameContents /* the memory is allocated by the

/* implementation, and must be
/* released by a call to CMSReleaseName

CMSBinaryData issuerAltNameEdiPartyName ; /* the contents of the
/* CMSBinaryData type is
/* theissuer EdiName
/* Contents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char ediName;
} issuerEdiNameContents /* the memory is allocated by the

/* implementation, and must be
/* released by a call to CMSReleaseName

CMSBinaryData issuerAltNameUniformResourceIdentifier; /* the contents of the
/* CMSBinaryData
/* type is theissuer
/* UrlName
/* Contents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 13

char urlName;
} issuerUrlNameContents /* the memory is allocated by the

/* implementation, and must be
/* released by a call to CMSReleaseName

CMSBinaryData issuerAltNameIPAddress ; /* the contents of the
CMSBinaryData

/* type is theissuer IPName
/* Contents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char iPName;
} issuerIPNameContents /* the memory is allocated by the

/* implementation, and must be
/* released by a call to CMSReleaseName

CMSBinaryData issuerAltNameRegisteredId; /* the contents of the
/* CMSBinaryData type is
/* the issuerRegistered
/* IdNameContents

typedef struct {
CMSBinaryData charSet; /* ‘stop-separated’ OID format
char registeredIdName;
} issuerRegisteredIdNameContents /* the memory is allocated by the

/* implementation, and must be
/* released by a call to CMSReleaseName

CMSBinaryData subjectDirectoryAttribute; /* the contents of the
CMSBinaryData

/* type is the DER-encoded subject
/* DirectoryAttribute, as it is in the
/* certificate

CMSBinaryData policyConstraints; /* the contents of the CMSBinaryData
/* type is policyConstraintsContents

typedef struct {
CMSBinaryData PolicySet; /* ‘stop-separated’ OID format
int RequireExplicitPolicy;
int InhibitPolicyMapping;
} policyConstraintsContents

CMSBinaryData reasonCodeUnspecified; /* the contents of the
CMSBinaryData

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 14

/* type is
unspecifiedReasonContents

BOOL unspecifiedReasonContents;

CMSBinaryData reasonCodeKeyCompromise ; /* the contents of the
/* CMSBinaryData
/* type is keyCompromise
/* ReasonContents

BOOL keyCompromiseReasonContents;

CMSBinaryData reasonCodeCACompromise; /* the contents of the
/* CMSBinaryData
/* type is cACompromise
/* ReasonContents

BOOL cACompromiseReasonContents;

CMSBinaryData reasonCodeAffiliationChanged; /* the contents of the
/* CMSBinaryData
/* type is affiliationChange
/* ReasonContents

BOOL affiliationChangeReasonContents;

CMSBinaryData reasonCodeSuperseded; /* the contents of the
/* CMSBinaryData
/* type is superseded
/* ReasonContents

BOOL supersededReasonContents;

CMSBinaryData reasonCodeCessationOfOperation; /* the contents of the
/* CMSBinaryData
/* type is cessation
/* ReasonContents

BOOL cessationReasonContents;

CMSBinaryData reasonCodeCertificateHold; /* the contents of the
/* CMSBinaryData
/* type is certificateHold
/* ReasonContents

BOOL certificateHoldReasonContents;

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 15

CMSBinaryData reasonCodeRemoveFromCRL; /* the contents of the
/* CMSBinaryData
/* type is removeFromCRL
/* ReasonContents

BOOL removeFromCRLReasonContents;

CMSBinaryData holdInstructionCode; /* the contents of
/* theCMSBinaryDatatype is
/* the hold instruction
/* identifier, in ‘stop-
/* separated’ OID format,
/* with each character
/* ASCII encoded.

CMSBinaryData invalidityDate; /* the contents of the
CMSBinaryData type is

/* invalidityContents

int invalidityContents; /* the number of seconds from
/* midnight on the 1st of Jan 1970
/* Universal Coordinated Time until
/* the time of the certificate invalidity

CMSBinaryData unspecifiedNonCriticalExtension; /* the contents of the
/* CMSBinaryData type is
/* the DER-encoded ASN.1
/* structure of the extension

CMSBinaryData unspecifiedCriticalExtension; /* the contents of the
/* CMSBinaryData type is
/* the DER-encoded ASN.1
/* structure of the extension

CMSBinaryData validTime; /* the contents of the CMSBinaryData type is
/* validTimeContents

int validTimeContents; /* the time in seconds since midnight on 1st
/* of Jan 1970 until the time at which the
/* certificate validity is requested

CMSBinaryData goodBefore; /* the time in seconds since midnight on 1st
/* of Jan 1970 before which the
/* certificate validity is assured

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 16

CMSBinaryData recheckAfter; /* the time in seconds since midnight on 1st
/* of Jan 1970 after which the
/* certificate validity should be reconfirmed

/* export declarations */

#if defined(_WINDOWS) && !defined(_WIN32)
ifndef WIN16
define WIN16
endif
define EXPT _export
define EXPT32
define EXPORT _export _far _pascal
define EXPORT32
#else
if defined(_WIN32) && !defined(_MAC)
include <windef.h>
define EXPT
define EXPT32 _declspec(dllexport)
define EXPORT _stdcall
define EXPORT32 _declspec(dllexport)
else /*not WIN16 or WIN32 */
define EXPT
define EXPT32
define EXPORT
define EXPORT32
endif
#endif

#endif

/* cmsapi.h - header file for the Certificate Mangement Services Application
Programming Interface */

#ifndef CMSAPI_H
#define CMSAPI_H
#if !defined(CMSAPI)
#include <cmsbdefs.h>
#else
#include <tkbdefs.h>
#endif
#ifdef _cplusplus
extern “C” {
#endif

EXPORT32 CMSLog EXPORT CMSLog CMSLogin (

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 17

const char* cMSVersionNumber,
const CryptoLibrary cryptoLibrary,
CMSBinaryData* cryptoLibraryPIN,
const char* InitializationFile,
const char* userID,
CMSContext* context);

EXPORT32 CMSLog EXPORT CMSLogout (

const CMSContext context);

EXPORT32 void EXPORT CMSEraseKeyHistory (

const CMSContext context);

EXPORT 32CMSLog EXPORT CMSGetRecoveredCertificate (

const CMSContext context,
const INT32 index,
CMSBinaryData* certificate);

EXPORT 32CMSLog EXPORT CMSGetRecoveredKey (

const CMSContext context,
const INT32 index,
CMSBinaryData* privateKey);

EXPORT32 KeyStatus EXPORT CMSKeyStatus (

const CMSBinaryData* certificate);

EXPORT32 INT32 EXPORT CMSNumberOfRecoveredKeys (

const CMSContext context);

EXPORT 32CMSLog EXPORT CMSRequestKeyRecovery (

const CMSContext context,
const char* userReference,
const CMSBinaryData* authenticationToken,
const KeyFlow keyFlow,
CMSBinaryData* certificateAttributes,
void* keyHistory,
INT32* responseTime);

EXPORT 32CMSLog EXPORT CMSRequestKeyUpdate (

const CMSContext context,
const CMSBinaryData* authenticationToken,
const CMSBinaryData* certificateAttributes,
INT32* responseTime);

EXPORT 32CMSLog EXPORT CMSRequestMyCertificate (

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 18

const CMSContext context,
const char* userReference,
const CMSBinaryData* authenticationToken,
const CMSBinaryData* registrationForm,
const CMSBinaryData* certificateAttributes,
INT32* responseTime);

EXPORT 32CMSLog EXPORT CMSRequestRegistrationForm (

const CMSContext context,
INT32* responseTime);

EXPORT 32CMSLog EXPORT CMSRetrieveMyCertificate (

const CMSContext context,
const char* userReference,
CMSBinaryData* authenticationToken,
const KeyUsage keyUsage,
const CMSBinaryData* policyId,
KeyPair* keyPair,
INT32* cATime,
CMSBinaryData* cACertificate);

EXPORT 32CMSLog EXPORT CMSRetrieveRecoveredKeys (

const CMSContext context,
const char* userReference,
const CMSBinaryData* authenticationToken,
const void keyHistory,
INT32* cATime,
CMSBinaryData* cACertificate);

EXPORT 32CMSLog EXPORT CMSRetrieveRegistrationForm (

const CMSContext context,
CMSBinaryData* registrationForm);

EXPORT 32CMSLog EXPORT CMSRetrieveUpdatedKey (

const CMSContext context,
const CMSBinaryData* authenticationToken,
const CMSBinaryData* oldCertificate
KeyPair* keyPair,
INT32* cATime,
CMSBinaryData* cACertificate);

EXPORT 32CMSLog EXPORT CMSRevokeMyCertificate (

const CMSContext context,
const CMSBinaryData certificate,
INT32* responseTime);

EXPORT32 INT32 EXPORT CMSAddName (

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 19

const CMSContext context,
const char* uniqueName);

EXPORT 32CMSLog EXPORT CMSGetUniqueName (

const CMSContext context,
const INT32 nameIndex,
char* uniqueName);

EXPORT 32CMSLog EXPORT CMSRemoveName (

const CMSContext context,
const char* uniqueName);

EXPORT32 void EXPORT CMSResetNameList (

const CMSContext context);

EXPORT 32CMSLog EXPORT CMSGetAttribute (

const CMSContext context,
const INT32 nameIndex,
const INT32 attributeIndex,
char* attribute);

EXPORT 32CMSLog EXPORT CMSGetAttributeValue (

const CMSContext context,
const INT32 nameIndex,
const INT32 attributeIndex,
const INT32 valueIndex,
CMSBinaryData* attributeValue);

EXPORT32 INT32 EXPORT CMSNumberOfAttributes (

const CMSContext context,
const INT32 nameIndex);

EXPORT32 INT32 EXPORT CMSNumberOfAttributeValues (

const CMSContext context,
const INT32 nameIndex,
const INT32 attributeIndex);

EXPORT32 INT32 EXPORT CMSNumberOfNames (

const CMSContext context);

EXPORT32 void EXPORT CMSReleaseBuffer (

CMSBinaryData* buffer);

EXPORT32 CMSLog EXPORT CMSReleaseKeyPair (

KeyPair* keyPair);

EXPORT32 CMSLog EXPORT CMSSearchDirectory (

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 20

const CMSContext context,
const char* searchExpr,
const char* searchBase,
const char* attribsToReturn ,
const SearchDepth searchDepth);

EXPORT32 INT32 EXPORT CMSGetCertificateAttribute (

const CMSContext context,
CMSBinaryData* attributeType,
CMSBinaryData* attributeValue);

EXPORT32 CMSLog EXPORT CMSValidateCertificate (

const CMSContext context,
const CMSBinaryData* certificateAttributes,
const CMSBinaryData* cACertificate,
const BOOL useCMSTime,
const INT32* userTime,
const BOOL allowPolicyMapping,
INT32* validUntil);

EXPORT32 void EXPORT CMSGetLogString (

const CMSLog log,
char* explanation);

EXPORT32 const char* EXPORT CMSLogToString (

const CMSLog log);

EXPORT32 BOOL EXPORT CMSQueryLogWarning (

CMSLog log);

EXPORT32 const char* EXPORT CMSQueryVersionNumber (void);

#ifdef _cplusplus

}
#endif

#endif

/* cmserr.h - header fiel for the CMS API CMSLog return codes */

#ifndef CMSERR_H

#define CMSERR_H
#define CMS_OK 0
#define CMS_ERR_START -3299
#define CMS_ERR_END -3100
#define CMS_WARN_START -3099
#define CMS_WARN_END -3000

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 21

/* Error codes */

enum {
CMS_AttributesNotPresent = -3299,
CMS_CannotAcceptUserGeneratedPrivateKey = -3298,
CMS_CannotConnect = -3297,
CMS_CannotGeneratePublicKey = -3296,
CMS_CannotGetCRL = -3295,
CMS_ContextNotRecognized = -3294,
CMS_CryptoLibraryNotAvailable = -3293,
CMS_CryptoLibraryNotSupported = -3292,
CMS_CryptoLibraryPINIncorrect = -3291,
CMS_DirectoryAccessDenied = -3290,
CMS_EntryNotFound = -3289,
CMS_FileError = -3288,
CMS_FormattingError = -3287,
CMS_IncorrectAuthenticationToken = -3286,
CMS_InvalidAttributeIndex = -3285,
CMS_InvalidAttributeMnemonic = -3284,
CMS_InvalidCertificateSyntax = -3283,
CMS_InvalidFieldName = -3282,
CMS_InvalidListId = -3281,
CMS_InvalidMode = -3280,
CMS_InvalidNameIndex = -3279,
CMS_InvalidParm = -3278,
CMS_InvalidPathEntryIndex = -3276,
CMS_InvalidSearchBase = -3275,
CMS_InvalidSearchExpr = -3274,
CMS_InvalidValueIndex = -3273,
CMS_ManagerClientTimeMismatch = -3272,
CMS_MaximumNumberOfOpenContextsExceeded = -3271,
CMS_MemoryError = -3270,
CMS_NoKeyHistoryAvailable = -3269,
CMS_RequiredDataMissing = -3268,
CMS_ResponseNotReady = -3267,
CMS_SecurityProtocolFailure = -3266,
CMS_StateError = -3265,
CMS_Timeout = -3264,
CMS_UnexpectedNullPointer = -3263,
CMS_UnknownError = -3262,
CMS_Unsupported = -3261,
CMS_UserReferenceNotRecognized = -3260,
CMS_UserUniqueNameNotRecognized = -3259,
CMS_VersionNumberNotSupported = -3258,

};

Specification: Certificate Management Services Application Programming Interface, Issue 2.0

Copyright © 1996 Northern Telecom

C - 22

/* Warning codes */

CMS_SearchSizeLim it = -3099,
CMS_StringTruncated = -3098,

};

#endif

