
April 8, 1998

Official contribution of the National Institute of Standards and Technology; not subject to copyright in the
United States.

Abstract
Several digital signature algorithms are coming
into general use. A certificate containing a key
for one algorithm can be signed with a different
algorithm. This paper discusses the interoper-
ability issues where different digital signature
algorithms are used in one Public Key Infra-
structure. The key to interoperability is client
software that can validate signatures for all the
algorithms used. Some rules that will simplify
certification path processing are proposed.

Introduction
NIST has recently proposed [FR 97] to increase
the scope of the Digital Signature Standard
[FIPS 186] to allow US Federal Government use
of the present Federal standard Digital Signature
Algorithm (DSA) [FIPS 186], the Rivest-
Shamir-Adelman (RSA) algorithm [X9.31], or
the Elliptic Curve Digital Signature Algorithm
(ECDSA) [X9.62] for digital signatures. How-
ever, the question then arises, can Federal users
of different digital signature algorithms interop-
erate with each other, or will a kind of Tower of
Babel situation result, where users of different
algorithms are unable to validate each other’s
signatures? Can the emerging Federal Public
Key Infrastructure (PKI) be leveraged to pro-
mote interoperability for users of different digi-
tal signature algorithms? This paper examines
several possible multi-algorithm interoperability
solutions and proposes a specific approach for
the Federal PKI.

The three algorithms proposed for Federal use
are all used in commercial products. It is likely
that there will be several digital signature algo-
rithms in common use. If public key certificates
are used mainly by closed communities (as is
largely the case now), then the use of different
algorithms by different communities hardly
matters. But that implies that individual users
may have several, perhaps dozens, of certificates
and public key pairs to keep and manage, hardly
a desirable state of affairs, since it limits the
usefulness of digital signatures. If there is to be

a broad national and international PKI that citi-
zens and businesses can use to establish their
identities, sign binding documents, and conduct
business with parties they have no previous re-
lationships with, then there should also be a
systematic PKI organization to accommodate
several algorithms. We believe the solutions
proposed for the Federal PKI could reasonably
be applied in an international PKI for citizens
and businesses.

Definitions
In this paper we use the following terms:

• certificate: A digitally signed document
that binds two or more attributes together.
In this paper we are only concerned with
digital signature certificates that bind a
subject’s digital signature public key (as op-
posed to his key management or encryption
key) to his name.

• Certificate Revocation List (CRL): A signed
list of certificates that have been revoked;

• Certification Authority (CA): A trusted en-
tity that issues (i.e., signs and publishes)
certificates and/or CRLs;

• certification path: a sequence of certificates
beginning with a self-signed signature cer-
tificate issued by a CA trusted by a relying
party and ending with an end-entity’s sig-
nature certificate, where the issuer of any
certificate in the sequence is the subject of
the preceding certificate;

• consistent certificate: a certificate is consid-
ered to be consistent when the same algo-
rithm is used for the public key certified in
the certificate and to sign the certificate;

• end-entity: a certificate holder that is not
acting as a CA. In most cases an end user
with a certificate.

• inconsistent certificate: A certificate where
the subject’s algorithm for the certified key

A Federal PKI with Multiple Digital Signature Algorithms

W. E. Burr, NIST
W. Timothy Polk, NIST

April 8, 1997

-2-

is different than the algo-
rithm used by the issuing
CA to sign the certificate.

• relying party: An entity that
validates a digital signature;

• self-signed certificate: A
certificate signed with the
key it certifies. It is used by
a CA to state (but not
authenticate) its public key;

Assumptions
We assume that several digital
signature algorithms will be used
in the government and elsewhere and expect
that different communities will standardize on
different algorithms. We believe that it is rela-
tively simple to implement signature validation
for several algorithms, but more burdensome to
sign with different algorithms, since this implies
more keys and certificates for users to manage.
Moreover, the secrecy of private keys must be
strictly maintained. Most end-entities will pre-
fer to use as few signature keys as possible and
to sign with a single algorithm. Two end-entities
with consistent certificates that use the same
algorithm, should not ordinarily have to use any
other algorithm to validate each other’s certifi-
cates.

Finally, while we accept that the Federal PKI
must support several digital signature algo-
rithms, we do not believe that the same principle
necessarily applies to hashing algorithms. The
only standardized hashing algorithm that is now
generally accepted as secure is the SHA-1 algo-
rithm [FIPS 180]. Therefore there is no need for
Federal users to use clients that support other
algorithms or for the Federal PKI to issue cer-
tificates signed using other hashing algorithms.

Background
The generally accepted standard for public key
certificates is the X.509 standard [X.509 97],
which seems to have been embraced by most
vendors of commercial products that use certifi-
cates. The most current version of the standard,
which specifies the version 3 certificate and
version 2 certificate revocation list (CRL) for-
mat, is apparently being widely implemented.
Each certificate includes a subject public key

and is signed with the Certification Authority’s
private key. Figure 1 illustrates how the certifi-
cate is used to obtain the subject’s public key to
validate his signature.

A key concept of a PKI is a certification path, a
chain of certificates, starting from one that is
trusted by the relying party, leading to the cer-
tificate of the signer. This is illustrated in
Figure 2. Starting with the certificate issued by
CA1, which she trusts, Alice, the relying party,
can successively validate a chain of certificates
leading to Bob’s certificate, and then use Bob’s
certificate to validate his signature.

Both the subject public key field and the signa-
ture field of the certificate contain an algorithm
identifier that identifies the algorithm for the
subject’s public key and the algorithm used to
sign the certificate, respectively. The two algo-
rithms need not be the same. Therefore a valid
certification path can include “inconsistent”
certificates signed using different algorithms, or
certifying keys for different algorithms.

The validity of a certification path may also re-
flect certificate status information. A CA may
choose to revoke a certificate. This information
may be provided to the relying party through an
on-line status check or a CRL.

A CRL is normally signed by the CA that issued
the revoked certificates. The CA can sign the
CRL with a different key or algorithm than used

Figure 1 - Certificate and signed document

Figure 2 - Certification Path

April 8, 1997

-3-

to sign the certificates. So, determining the va-
lidity of a particular certificate could require use
of multiple algorithms.

Some algorithms (DSA and ECDSA) require
that parameters be specified. Parameters can be
common to all the certificates issued by a CA, to
a group of certificates, or to the entire PKI. The
algorithm identifier field can (optionally) state
the parameters used. Parameters are often large
numbers. In the case of the DSA, two of the
parameters, p and g, are the same size as the
public key, between 512 and 1024 bits. If a set
of parameters is shared by a community of users,
it is desirable to omit parameters to reduce the
size of the certificates. Therefore, the US Fed-
eral PKI Technical Working Group (TWG) has
proposed a set of “parameter inheritance” rules
that allows parameters to be inherited from pre-
ceding certificates in a certification path. Those
rules have been incorporated in some draft stan-
dards [ISO], and are summarized as follows:

• parameters should be obtained from the
same authenticated source as the public key,
the subject public key field of the signer’s
certificate;

• if the parameters in the subject key field of
the signer’s certificate are null (for those
algorithms requiring parameters), then the
parameters are “inherited” from the pre-
ceding certificate in the certification path;

• parameter inheritance does not apply to
inconsistent certificates, that is an incon-
sistent certificate must contain the parame-

ters in the subject public key field, if pa-
rameters are used for the subject algorithm.

Parameter inheritance is illustrated in Figure 3.
In this case CA2 inherits its parameters from the
certificate of CA1, but Bob has different pa-
rameters which must be stated explicitly in his
certificate.

Parallel PKI versus End-Entity Solu-
tions
The most basic interoperability decision is, do
we use inconsistent certificates at all? If not,
then the only interoperability approach is paral-
lel, independent PKIs, one for each algorithm.
In this case an end-entity would need either one
client that could both sign and validate every
algorithm, or a separate client for each algo-
rithm. Then the end-entity selects the appropri-
ate algorithm, certificate, and client needed for
interoperability in each case.

In this approach one party assumes the entire
burden for interoperability and can sign with or
validate any algorithm required. That party can,
in principle, interoperate with any other party
who can sign and validate signatures using any
one of the algorithms for which he has a certifi-
cate.

But then which algorithm would a user use to
sign any document not intended for a single
specific user, whose preferred algorithm is
known? Would the signer sign every document
with every algorithm? Users would have multi-
ple private keys to manage and protect. And
parallel, duplicative, certification paths would be

Figure 3 - Parameter Inheritance in Certification Path

April 8, 1997

-4-

required in the PKI itself. There may be special
cases where this approach is warranted, but this
solution is surely not the best general approach.
It may minimize the expense for someone who
never needs to interoperate with users of another
algorithm, but it otherwise maximizes costs and
aggravation for both the PKI and end-entity,
wherever interoperation is necessary. For this
reason we reject this approach.

End-Entity Solution Scenarios
For the reasons stated above, rather than a par-
allel-PKI approach, we recommend an “end-
entity” solution where a burden is placed on all
end-entities: for interoperability we must use
certification path processing software that is
capable of validating all the algorithms we need
to use. However, there are simplifications for
end-entities as well, because end-entities nor-
mally need use only one signing algorithm, and
manage fewer private keys. Moreover, it allows
considerable simplification of the PKI. At a
minimum, users who wish to be broadly interop-
erable should use clients that can validate both
RSA and DSS, and, before long, ECDSA.

Given that we adopt an end-entity solution, and
will therefore have inconsistent certifications,
there still remains the question of where it is
best to put the inconsistent certificates needed
for interoperation. There are several plausible
multi-algorithm interoperability scenarios.

1. A CA signs with one algorithm, but issues
end-entity certificates with subject keys for
other algorithms. In our terminology, the
CA issues inconsistent end-entity certifi-
cates. There might possibly be performance
arguments for such a solution if we envision
a CA signing algorithm that is costly to sign
but inexpensive to validate, and an end-
entity algorithm that is inexpensive to sign,
but more expensive to validate. Since cer-
tificates are signed once, but validated many
times, the cost of signing them hardly mat-
ters, but the cost of validating them may
matter much more. In certain applications,
end-entity signing capability may rest in
devices with little computational power, so
it may be important to also minimize end-
entity signing computational costs. But that
sort of asymmetry is hardly typical of a gen-
eral purpose PKI where most end-entities

have reasonably powerful PCs, worksta-
tions, and servers.

It is, however, clear that, in a world where
several signature algorithms are used, in-
consistent end-entity certificates are unde-
sirable from an interoperability point of
view. Every validation of a signature
signed under that inconsistent end-entity
certificate will require that the relying party
be able to validate signatures created using
both algorithms. And the certification path
created by the inconsistent end-entity is no
more secure than a consistent end-entity
certificate that uses the weaker of the two
algorithms. Any relying party who would
validate and accept the inconsistent end-
entity certificate should also be able to vali-
date and accept a consistent certificate with
either of the two algorithms.

Moreover, even a relying party who uses the
same signature algorithm must be able to
validate two algorithms. Something clearly
is wrong when two users with certificates
issued by the same CA, who use the same
signature algorithm, must also validate sig-
natures created using another algorithm to
validate each other’s signatures. Finally, if
the end-entity algorithm uses parameters,
then the parameters must be stated in the
end-entity certificates, possibly making
them much larger. Therefore we conclude
that issuing inconsistent end-entity certifi-
cates is usually a bad idea for interoperabil-
ity reasons, although there may be certain
specialized applications where it is war-
ranted for performance reasons.

2. A single CA issues consistent end-entity
certificates for several algorithms, that is
signs certificates with different algorithms
as required to generate consistent end-entity
certificates. Thus, needlessly inconsistent
certification paths are avoided. The CA
certifies each of its keys, with each of its
other keys, with inconsistent certificates, so
that certification paths exist between end-
entities holding certificates with different
algorithms. End-entities are typically is-
sued a single consistent certificate and en-
couraged to be able to validate all the algo-
rithms supported by the CA. This avoids
inconsistent end-entity certificates, but in-
troduces complications of its own. The

April 8, 1997

-5-

principle objection has to do with CRLs.
With what algorithm does the CA sign its
CRLs? Presumably it must issue separate
versions of the same CRLs, signed with
each of the algorithms it supports, or some
relying parties may not be able to validate
the signature on a CRL.

3. A single CA always signs with the same
algorithm, and issues consistent end-entity
certificates. The CA may, however issue
inconsistent CA certificates when it certifies
or cross-certifies other CAs, as needed for
interoperability. If there is a need to issue
end-entity certificates with different algo-
rithms, separate CA’s are created. In this
case, a separate CA simply implies a differ-
ent name for the CA for each algorithm, not
necessarily a separate CA workstation. The
consequence of this is that there is a sepa-
rate CRL for each algorithm.

Proposed solution
Inconsistent end-entity certificates are generally
a bad idea. Therefore we seek a solution that
does not use inconsistent end-entity certificates.
Parallel, entirely consistent PKI’s are too expen-
sive, and require too many end-entity certifi-
cates, leaving users with the problem of deciding
which key to use to sign which documents. So-
lutions where a single CA signs certificates with
different algorithms leads to complications with
CRLs.

For the proposed solution we introduce the con-
cept of a “logical CA.” A logical CA is distinct
from the hardware that implements it and the
management entity that operates it. A single
hardware platform could support several logical
CAs, that is the platform would issue certificates
with different algorithms under distinct issuer
names. And a single management entity could
operate any number of logical CAs.

We propose the following rules:

• End-entity certificates will be consistent;

• A logical CA will sign certificates with only
one algorithm;

• Where an organization needs to issue cer-
tificates with different algorithms to its cer-
tificate holders, it will use different logical
CAs to issue those certificates. This will

allow CRL to be confined to certificates
with a single algorithm;

• Where one management entity operates
more than one logical CA for different algo-
rithms, it will cross-certify those CAs with
inconsistent certificates;

• Independent CAs will attempt to certify
each other consistently, but may issue in-
consistent certificates to each other as re-
quired to support the needs of their certifi-
cate holders.

• All self-signed certificates for algorithms
that use parameters will include the pa-
rameters in the subject public key field;

• Other certificates will include parameters
only if:

◊ the certificate is an inconsistent certifi-
cate, or;

◊ the parameters are different from the
parameters of the issuing CA.

• Federal users will be encouraged to use cli-
ent systems that can validate all Federally
approved digital signature algorithms.

A Federal PKI that follows these rules will have
certain desirable properties. Two end-entities
certified by the same CA who use the same sig-
nature algorithm will not need to use additional
algorithms to validate certification paths. In
most cases, two end entities certified by different
CAs who use the same signature algorithm will
not need to use other algorithms to validate cer-
tification paths.1 Each certificate will be consis-
tent with its CRL. Finally, the number of incon-
sistent certificates, which may require that pa-
rameters be included in the certificates, will be
minimized.

Conclusion
The use of several different digital signature
algorithms appears to be a fact of life for the
Federal PKI. The key to interoperability is cli-
ents that support signature validation for all the

1 There is a special case where certification
paths involving CA1 and CA3 “go through”
CA2, and CA2 does not support the algorithm
used by CA1 and CA3. In this case, validation
of the certification path will require use of two
algorithms.

April 8, 1997

-6-

Federally approved digital signature algorithms.
Assuming that clients can validate all Federally
approved algorithms, this paper proposes rela-
tively simple rules for inconsistent cross-
certificates between Federal CAs that will allow
users who sign with one algorithm to validate
signatures with other algorithms.

This paper has discussed only signature certifi-
cates. Note that other classes of end-entity cer-
tificates (e.g., key management certificates) may
be inconsistent certificates. The ability to proc-
ess certification paths with multiple algorithms
may still be required, but other conclusions re-
garding the end-entity’s signature certificates
cannot be applied to other types of certificates.

References
[FIPS180] FIPS PUB 180-1, Secure Hash

Standard, NIST, April 1995.

[FIPS186] FIPS PUB 186, Digital Signature
Standard, NIST, May 1994.

[FR 97] NIST, “Announcing Plans to Revise
Federal Information Processing
Standard 186, Digital Signature
Standard,” Federal Register, May
13, 1997 pp. 26293-26294.

 [X.509 97] ITU-T Recommendation X.509, The
Directory: Authentication Frame-
work, June 1997.

[X9.31] Working Draft American National
Standard X9.31-199x, Public Key
Cryptography for the Financial
Services Industry: The Reversible
Digital Signature Algorithm,

[X9.62] Working Draft American National
Standard X9.62-199x, Public Key
Cryptography for the Financial
Services Industry: The Elliptic
Curve Digital Signature Algorithm,
June 21, 1996

