mathsplcpeﬂ version 1-0

Apostolos Syropoulos

Richard W. D. Nickalls

The single biggest problem we face is that of visualisation.

Richard P. Feynman (1918-1988)
The Mathematical Gazette (1996); 80, 267

ii

mathSPICPed version 1-0

Apostolos Syropoulos,
Greek TEX Friends,
366, 28th October Street,
GR-671 00 Xanthi, Greece.
apostolo@oceanl.ee.duth.gr
http://obelix.ee.duth.gr/~apostolo

and

Richard W. D. Nickalls,

Department of Anaesthesia,
City Hospital,
Nottingham, UK.
dicknickalls@compuserve.com

s & v din

February 2005

iii

iv

TEX Users Group: http://www.tug.org/
TEX Usenet group: comp.text.tex

TUGboat: http://www.tug.org/TUGboat/
The PracTEX Journal: http://www.tug.org/pracjourn/

CTAN (Comprehensive TEX Archive Network)
ftp://ftp.tex.ac.uk/ http://www.tex.ac.uk/
ftp://ftp.dante.de/ http://www.dante.de/

mathsPIC,,,;;: CTAN: /graphics/pictex/mathspic/perl/

Typeset in
Computer Modern Roman 10-point font

using BTREX 2¢

Cover figure by
Frantisek Chvala

Copyright © A Syropoulos & RWD Nickalls February 2005

mathsPIC is released under the terms of the XTEX Project Public
License. mathsPIC is distributed without any warranty or implied
warranty of merchantability or fitness for a particular purpose.

Contents

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3 The
3.1
3.2
3.3
3.4

3.5

3.6

3.7

Introduction

Installing mathsPIC

Unix/Linux00
MS-Windows
Files
Switches L
Removing comment lines.
Onlinehelp
The mathsPIC package oL
Error-messages o
Log-file

mathsPIC script file

mathsPIC style option Lo
Headers and footers,
Commands e
Macros. e
3.4.1 Macrolibrary Lo
The plotting area L o
3.5.1 Axes
3.5.2 Second y-axis o
3.56.3 Units e
3.5.4 Tick-marks
Points
3.6.1 Point-name
3.6.2 Point-symbol Lo
3.6.3 Line-freezone
3.6.4 Orderofpoints
Lines e e
3.7.1 Line thickness.

vi

CONTENTS

3.7.2 Recommendations 31
3.8 Text 32
3.9 Variables and constants, 33
3.9.1 Scalar variables 33
3.9.2 Scalar constants 34
3.9.3 Mathematics 34
3.9.4 Scientific notation 34
3.10 The LOOP environment 35
mathsPIC commands 37
4.1 Mathematics 37
4.2 Macros. e 38
4.3 Command definitions 40
4.3.1 Backslash 41
4.3.2 ArrowShape 41
4.3.3 beginLoop ... endLoop environment 42
4.3.4 beginSkip ... endSkip environment 42
435 Const 42
4.3.6 DashArray 43
4.3.7 DrawAngleArc o 43
4.3.8 DrawAngleArrow 44
4.3.9 DrawArrow 45
4.3.10 DrawCircle e 45
4.3.11 DrawCircumcircle 46
4.3.12 DrawCurve e 46
4.3.13 DrawExcircle 46
4.3.14 Drawlncircle 47
4.3.15 DrawLine 47
4.3.16 DrawPerpendicular L. 47
4.3.17 DrawPoint 48
4.3.18 DrawRightangle 48
4.3.19 DrawSquare 48
4.3.20 DrawThickArrow 49
4.3.21 DrawThickLine 49
4.3.22 InputFileo 49
4.3.23 LineThickness. 50
4.3.24 Loop environment oL 51
4.3.25 Paper 52
4.3.26 Point 53
4.3.27 PointSymbol 55
4.3.28 Skip environmento 56

4.3.29 SYSLEMo 56

CONTENTS vii

4.3.30 Show... e 57

4.331 Text o o e 58

4.332 Var 59

4.4 Summary of mathsPIC commands 60

5 PICIEX commands 63
5.1 Useful P[CTEX commands 64
5.2 Using the $ symbol with PICTEX 65

6 TEX and BETEX commands 67
6.1 The \typeout{} command 67
6.2 The Color package 67
6.3 Other useful ITEX commands 68

7 Examples 71
7.1 Input- and output-files 71
7.2 Linemodes 76
T3 ATTOWS . . . o oo 79
74 Circles& colour. 82
7.5 Functionally connected diagrams 87
7.6 Inputting the same data-file repeatedly 89
7.7 Plotting graphs Lo 94
7.8 Drawing other curves oL 97
7.9 Using Perl programs & the system() command 101
7.9.1 Example-1. o 101

7.9.2 Example-2. 105

7.9.3 Commands for processing the files 111

8 Accessing TEX parameter values 113
8.1 Useful TEX commands 113
8.2 Outputting datatoafile. 114
83 Thefinalcode 116

9 Installing P[CTEX 119
9.1 The original files (1986) 119
9.2 The new updated files (1994) 120
9.3 Pictex2.sty 121
9.4 Errorbar.tex 122
9.5 DCpic 123

9.6 The PICTEX Manualo, 123

viii

10 Miscellaneous

10.1 Acknowledgements
10.2 Feedback
10.3 Development history

Tables
Arrows

Positioning figures in a document

g a w »

Installing Perl in MS-Windows

D1 Perl
D.2 Texteditors

References

CONTENTS

131

135

139

............ 139
............ 143

145

Introduction

MathsPIC,,,, is an open source Perl program for drawing mathematical diagrams
and figures® (Nickalls, 1999a, 1999b; Syropoulos and Nickalls, 2000). MathsPIC
is a ‘filter’ program which parses a plain text input-file (the mathsPIC file), and
generates a plain text output-file containing commands for drawing a diagram.
The current version of mathsPIC outputs TEX, ETEX and P[CTEX commands in
a .tex file which can then be run through TEX or BTEX in the usual way. It is
anticipated that future versions will be able to generate output files in PostScript
and SVG code.

Spaces and the comment % symbol are used in the same way as TEX, although
unlike TEX, mathsPIC commands are not case-sensitive. P[CIEX, TEX and ITEX
commands can all be freely used in the mathsPIC file. MathsPIC also returns
various parameter values in the output-file, e.g. angles, distances between points,
center and radius of inscribed and exscribed circles, areas of triangles etc., since
such values can be useful when making adjustments to a diagram.

The original motivation for mathsPIC arose from the need for an easy-to-use
filter program for P[CTEX. The advantage of P[CTEX is that it is an extremely
versatile system for drawing figures, and offers the convenience of having the graph-
ics code within the TEX document itself (e.g. printer-independence). However, a
significant disadvantage of P[CTEX is that it does require you to specify the coor-
dinates of all the points. Consequently, this can make P[CTEX extremely awkward
to use with complicated diagrams, particularly if several coordinates have to be
re-calculated manually each time the diagram is adjusted. For example, suppose
it is necessary to draw a triangle ABC with AB 5 cm, AC' 3 cm, and included
angle BAC 40 degrees, together with its incircle. One such triangle is shown in

ImathsPIC was first presented (MS-DOS version) at the EuroTEX’99 conference in Heidelberg,
Germany. The Perl version first was first uploaded to CTAN in 2005. The mathsPICp,,; program
is written in Perl 5.8.2 built for i86pc-Solaris. MathsPICp,,; can be freely downloaded from CTAN
(http://www.tex.ac.uk/tex-archive/graphics/pictex/mathspic/perl/)

2 CHAPTER 1. INTRODUCTION

Figure 1.1 and the P[CTEX commands for drawing it are as follows (point A is at
the origin (0,0) and the units are in cm).

Figure 1.1:

\put {\bullet} at 0 O % point A

\put {\bullet} at 4.924039 0.8682409 ¥ point B

\put {\bullet} at 1.928363 2.298133 ¥ point C

\plot 0 O 4.924039 0.8682409 1.928363 2.298133 0 0 /
\circulararc 360 degrees from 3.0086 1.2452 center at 2.1568 1.2452
\put {A} at -0.5 0

\put {B} at 5.424039 .8682409

\put {C} at 1.428363 2.298133

Although point A can be placed at the origin for convenience it is then necessary
to resort to geometry and a calculator to determine points B and C, since AB,
AC, and the included angle are defined (see above). It is then necessary to recall
the coordinates of all the points in order to write the \plot command. Finally, the
\circulararc command requires even more geometry and calculation to figure out
the radius of the incircle, the coordinates of its center, and the coordinates of the
starting point of the arc-drawing routine. Furthermore, if the initial diagram is not
a suitable shape or size, the calculator has to be used again for any adjustments. In
practice, therefore, PICTEX requires a certain amount of planning and calculation
for all but the simplest of diagrams.

MathsPIC overcomes all these difficulties by providing an environment for ma-
nipulating named points and variables, which has the effect of making even very
complicated mathematical diagrams easy to create. For example, the equivalent
mathsPIC commands for drawing Figure 1.1 are as follows (the units are in cm as
before).

point(A){0,0} % A is at origin
point(B){A,polar(5,10 deg)} % B is 5 cm from A; AB slope 10 deg
point(C){A,polar(3,50 deg)} % C is 3 cm from A; BAC = 40 deg
drawPoint (ABC) % put \bullet at points A B C

drawline (ABCA)

drawIncircle (ABC)

var d = 0.5 % d=0.5cm
text (A){A, polar(-d,-140 deg)} ' label for A
text (B){B, shift(d,0)} % label for B
text (C){C, shift(-d,0)} % label for C

MathsPIC facilitates the drawing of P[CTEX diagrams because not only does it
allow points to be defined in terms of other points (relative addressing), but it
also allows the use of scalar variables which can be manipulated mathematically.
Consequently, diagrams can be constructed in an intuitive way, much as one might
with a compass and ruler; for example, constructing a point at a certain position
in order to allow some other point to be constructed, perhaps to draw a line to. In
other words, mathsPIC offers the freedom to create ‘hidden’ points having a sort of
scaffolding function. In particular, this facility allows diagrams to be constructed
in such a way that they remain functionally connected even when points are moved.

MathsPIC,,,, offers a number of other useful facilities. Not only can files can
be input recursively (using the inputfile command), but there is also a do-loop
facility, and macros can be defined. In fact two sorts of macros can be used in
the mathsPIC file, namely (a) special mathsPIC macros and (b) the familiar TeX
macros. Macros can also be stored in a library file (an ordinary ASCII text file)
and input as and when necessary. Furthermore, the standard INTEX packages can
of course be used; e.g. the Color package and the Rotation package.

A powerful feature of mathsPIC,,,, is its facility for accessing the Perl command-
line. This allows users to write their own dedicated Perl programs for writing
configurable chunks of mathsPIC code on-the-fly to files which are then input to
draw either elements of a diagram or even complete diagrams (see Section 7.9).
The ability to use Perl programs in this way is equivalent to having a powerful
subroutine facility. It follows, therefore, that users can create their own libraries
of useful Perl programs.

Finally, note that mathsPIC can also be viewed as a handy tool for exploring
geometry since its show commands return the values of various parameters; for
example, angles, the distance between points, and areas of triangles.

Full mathsPIC, , file for Figure 1.1

The complete mathsPIC,.,, file for drawing Figure 1.1 is as follows.

%% mpicpmO1-1.m

\documentclass [adpaper]{article}
\usepackage{mathspic,color}
\begin{document}

\beginpicture

\normalcolor
\setdashes
\color{bluel},

CHAPTER 1.

INTRODUCTION

paper{units(lcm) xrange(-0.5,5), yrange(-0.5,2.5) axes(XY)}

\setsolid

point(A){0,0%}

point(B){A, polar(5, 10 deg)}
point(C){A, polar(3, 50 deg)}
\color{black}%

drawpoint (ABC)

drawLine (ABCA)

\color{red}/,

drawIncircle (ABC)
\color{black}%

var d = 0.5

text (A){A, polar(d,-140 deg)}
text (B){B, shift(d,0)}

text (C){C, shift(-d,0)}
\normalcolor

\endpicture

\end{document}

Installing mathsPIC

MathsPIC is a Perl program and will therefore run on any platform on which Perl is
installed. Apart from minor differences regarding filename conventions, commands
for creating, editing and deleting ASCII files and so on, the practicalities of running
and using mathsPIC will be essentially the same whichever platform is being used.
The authors have developed mathsPIC on a Solaris x86 box and with GNU
Linux, and consequently some of the code in this manual may reflect this perspec-
tive. For example, the following mathsPIC command to delete the file temp.txt

system("rm temp.txt")

uses the Unix ‘remove’ command rm. Clearly this particular command will differ
between platforms but we assume that users will be familiar with their own local
system commands. Non-Unix! users should read the Appendix in which we address
installing Perl on a MS-Windows platform. The authors welcome any relevant
platform-related information so we can include it in updates to this manual.

Current version

The latest version of mathsPIC can be downloaded from the following directory in
CTAN.

CTAN: /tex-archive/graphics/pictex/mathspic/perl/

List of files

readme.txt % this file
mathspic.pl % mathsPIC program (perl)

IThe term “Unix” here is used as a synonym for both Unix systems (e.g., Solaris, TrueUnix)
and Unix-like systems (e.g., Linux, FreeBSD).

CHAPTER 2. INSTALLING MATHSPIC

mathspic.sty % style option

mathspic.1 % unix/Linux manpage file

HELP.TXT % text version of the Unix manpage
mathspic.sh % an example BASH file for running the program

MATHSPIC.BAT
mathsPICa4.pdf
mathsPICa4.ps
mathsPICab.pdf
mathsPICab.ps
drawcube.pl
drawcurvedarrow.pl
grabtexdata.tex
mathspic.1lib
sourcecode.pdf/.html
sourcecode.nw
figures.tgz

2.1 Unix/Linux

an example batch file (MS-Windows)

manual (PDF) in A4 size

manual (PostScript) in A4 size

manual (PDF) in A5 size

manual (PostScript) in A5 size

perl program described in the manual

perl program described in the manual

tex file (see manual) for accessing tex data
example library file of macros

perl source code

perl source code (noweb)

compressed file of all figure files in manual

Place the files as follows (and then update your system’s file index so it can locate

the new files).

e Unix man page (mathspic.1)

This file should be placed in the directory where the man pages of your TEX
installation reside. This is either (a) with the distribution man1 pages (typi-
cally: /usr/share/man/man1/)or (b) with other ‘local’ man pages (possibly:
/usr/local/TeX/man/manl/).

BTEX package (mathspic.sty)

This file needs to be placed either (a) with the distribution style options (typ-
ically: /usr/share/texmf/tex/latex/base/) or (b) with other ‘local’ mis-
cellaneous packages (possibly: /usr/local/TeX/share/texmf/tex/latex/
misc).

The mathsPIC program (mathspic.pl)

This file should be placed where your shell can find it (typically in the di-
rectory /usr/local/bin/).

The mathsPIC BASH script (mathspic.sh)

This file should be placed where your shell can find it (typically in the di-
rectory /usr/local/bin/).

2.1. UNIX/LINUX 7

PICTEX

If you already have a recent TEX installation then P[CTEX will be installed. How-
ever if for some reason P[CTEX is not installed then locate the directory contain-
ing all the BTEX packages, and create a P[CTEX subdirectory. Copy into this
new directory all the files in the CTAN directory CTAN: /tex-archive/graphics/
pictex/addon/ (these are listed in Chapter 9).

Running mathsPIC

In Unix/Linux there are at least three ways of running a Perl program from the
command-line, and these are described briefly below. The general command-line
syntax is as follows.

‘$ perl [(perl switches)] mathspic.pl [{(mathspic switches)] (inputfile) [-o {outputfile)] ‘

By default mathsPIC writes the output to a file having the same filename as
the input file, but with the filename extension .mt (see also Chapter 3). If you
forget to type an input filename, then mathsPIC writes the following line to the
screen.

mathspic version 1.00 Feb 14, 2005

Usage: mathspic [-h] [-b] [-c] [-o <outfile>] <infile>
[a}—Invoking the Perl interpreter

The minimum required to process the script file infile is

perl mathspic.pl infile

@Making the mathspic.pl program executable

This is the the most efficient, and is therefore the recommended method. Rename
the mathsPIC program (mathspic.pl) to mathspic; make it executable; and then
copy it to where the shell can find it (typically /usr/local/bin). Now mathsPIC
can be run from any directory by typing

mathspic infile

[c[—Using a batch file

mathsPIC can also be run via a batch file, and an example BASH file (mathspic.sh
is included in the package. Rename the BASH file to mathspic; make it executable;
and then copy it to where the shell can find it (typically /usr/local/bin). Now
mathsPIC can be run from any directory by typing

mathspic infile

8 CHAPTER 2. INSTALLING MATHSPIC

2.2 MS-Windows

Locate the directory containing all the I#TEX packages, and create a mathspic
subdirectory. Copy into this new directory the file mathspic.sty.

Perl

Locate the directory containing all the Perl .pl programs (typically the directory
c:\perl\bin\ for the ActivePerl implementation of Perl) and copy into this di-
rectory the file mathspic.pl (see Appendix for details regarding installing Perl on
MS-Windows platforms).

PICTEX

If you have a recent TEX installation then P[CTEX will be installed. However if for
some reason P[CTEX is not installed then locate the directory containing all the
ITEX packages, and create a PICTEX subdirectory. Copy into this new directory all
the files in the CTAN directory CTAN:/tex-archive/graphics/pictex/addon/
(these are listed in Chapter 9).

Running mathsPIC

In MS-Windows there are two main ways of running mathsPIC, and these are
summarised below. The general command-line syntax is as follows.

‘$ perl [(perl switches)] mathspic.pl [(mathspic switches)] (inputfile) [-o {outputfile)] ‘

By default mathsPIC writes the output to a file having the same filename as
the input file, but with the filename extension .mt (see also Chapter 3). If you
forget to type an input filename, then mathsPIC writes the following line to the
screen.

mathspic version 1.00 Feb 14, 2005
Usage: mathspic [-h] [-b] [-c] [-o <outfile>] <infile>

[a]—Invoking the Perl interpreter

Open a DOS box, and invoke the Perl interpreter at the command-line prompt.
For example, the minimum required to process the script file infile is

perl mathspic.pl infile

Note that there are advantages in accessing the DOS command prompt via the
programs menu (i.e. programs/accessories/command-prompt) as this route al-
lows you to customise the colors and fonts, and also enables the useful DOSKEY
utility.

2.3. FILES 9

@Using a batch file

mathsPIC can also be run via a batch file. Since this is probably the most conve-
nient method on a MS-Windows platform, an example .BAT file (MATHSPIC.BAT)
is included in the package. Place the .BAT file in a suitable directory in the PATH.
Now mathsPIC can be run from any directory by typing

mathspic infile

2.3 Files

The MathsPIC command-line actions one input file and (optionally) one output
filename (prefixed by the -o switch). Each command or switch must be separated
by at least one space, as in the following example.

$ mathspic inputfile -o outputfile

If the outputfile is not specified then mathsPIC will create an output-file having
the same filename as the inputfile but with the filename extension .mt. For
example, if you want an input-file called myinfile.abc to generate an output-file
called myoutfile.xyz then use the following command.

$ mathspic myinfile.abc -o myoutfile.xyz

mathsPIC also writes to a log file (the .mlg file). This has the same filename as
the input filename.

In practice, the authors find it convenient to use the filename extension .m
for mathsPIC files (input-files), as this helps distinguish them from the other files
which are generated. Thus .m files are mathsPIC files (input-files), while .mt files
are output TEX files containing P[CITEX commands ready for TEXing, and .mlg
files are mathsPIC log-files.

2.4 Switches

There are four switches (-h -c¢ -b -o0) which are case-sensitive. If more than one
switch is used then they must be separated by at least one space. The switches
are as follows.

-h Help—gives basic information

-b Beep—a beep is sounded if mathsPIC detects an error. If an audible beep
does not sound in the presence of an error, then check the PC configuration
to see if the PC beep is disabled.

10 CHAPTER 2. INSTALLING MATHSPIC

-¢ Disables comment line generation in the output file.

-0 Output file name

2.5 Removing comment lines

Once a diagram has been finalised, it is sometimes convenient to remove all the
various commented lines from the final output-file, particularly if the file is a large
one. This can be easily done using the -c¢ switch, which will stop mathsPIC writing
any comments to the output .mt file. For example, the following command invokes
disables the writing of comment lines to the output .mt file.

mathspic -c inputfile

2.6 Online help

In Unix systems typing the command
man mathspic

will open the manpage help file. If this fails, then check that the man page file
(mathspic.1) has been placed in the correct directory. MS-DOS users can load
the equivalent file HELP.TXT into their text editor.

2.7 The mathsPIC package

Since some P[CTEX commands are redefined by mathsPIC it is necessary

to use the mathsPIC package by using the following command in the preamble of
the I TEX document.

\usepackage{mathspic}

2.8 Error-messages

A certain amount of syntax checking is performed by mathsPIC, and error-messages
are written to the output-file (.mt file) and also to the log-file (.mlg file).

A line containing an error is prefixed by %% ***; the associated error-message
appears on the next line and is prefixed by dots (%% ...). If the -b switch is used
then a beep is sounded if an error occurs during processing.

Runtime errors most commonly arise when an argument has been omitted, or
division by zero has been attempted. Syntax errors arise when mathsPIC com-
mands are written incorrectly (e.g. missing bracket, or a command being spelled

2.9. LOG-FILE 11

incorrectly). A typical example with respect to a draw command would be if a
point has not been previously defined resulting in a ‘point-name’ error as follows.

%% drawline (AB)

%% **x Line 15: drawline (AB
YAAET TS)

%% ... Error: Undefined point B

Some other examples of error-messages are as follows.

%% drawline()
%% *%* Line 22: drawline(
YAAET TS)

%% ... Error: Wrong number of points

%k *** Line 49:
Dot Hxk pointt (K2){4,6}
%% ... Error: command not recognized

%% drawline (PQ)
%% *** Line 52 : drawline(PQ
YA/)

%% ... Error: points P and Q are the same

Since an error usually has an effect on the processing of later commands in the
script (mathsPIC file), a single error can result in a cascade of error messages. In
other words, the number of error messages is not a good guide to the number of
errors—there may only be one small typo causing all the error messages.

2.9 Log-file

mathsPIC outputs a log-file (.mlg file) which contains details of all errors, relevant
line numbers and file names (e.g. <myfile.m>). The format was designed to match
that of a standard TEX log-file in order to be compatible with commonly used
error-checking utilities.

For example, in the following code the errors in the 2nd, 3rd and 4th lines
(combined with the fact that point B has not been defined) generate the error
messages found in the associated log file (.mlg file) below.

point (A){5,5}

var d=

drawline (AB

var j=

text (B){B, shift(d,0)}

12 CHAPTER 2. INSTALLING MATHSPIC

The log file (.mlg file) shows the following:

2005/02/15 14:02:28

mathsPIC (Perl version 1.00 Feb 14, 2005)
Copyright (c) 2004 A Syropoulos & RWD Nickalls
Input file = test.m

Output file = test.mt

Log file = test.mlg

Line 14: var d=
**x*xError: Unexpected token
Line 15: drawline(AB
**xxError: Undefined point B
Line 15: drawline(AB
*xxError: Wrong number of points
Line 15: drawline(AB
xx*Error: Missing) after arguments of
Line 16: var j=
**xxError: Unexpected token
Line 17: text(B){B
, shift(d,0)}
*x*Error: undefined point/var

The mathsPIC script file

All commands for generating a diagram (the script) are written to a plain ASCII
file, known as the mathsPIC file, using a text editor in the usual way. This file
is then processed by the mathsPIC program (mathspic.pl) as described in the
previous chapter. While the mathsPIC file can of course have any filename and
extension, in this manual all mathsPIC files have the filename extension of .m in
order to distinguish them from the various derived files.

We distinguish three types of command, namely (a) mathsPIC commands,
(b) PICTEX commands, and (c) TEX or BTEX commands. All these commands are
detailed in the subsequent three chapters. Since mathsPIC currently only outputs
a TEX file then the mathsPIC file can also contain appropriate P[CTEX, TEX and
IXTEX commands®.

3.1 mathsPIC style option

Since some P[CTEX commands are redefined by mathsPIC it is necessary to use the
mathsPIC style option (mathspic.sty) by using the command

\usepackage{mathspic}

The file mathspic.sty inputs a number of P[CIEX files and also redefines some
commands. The full listing of mathspic.sty is as follows.

%% This is file ‘mathspic.sty’,

%% February 10, 2005

%% (c) copyright 2005 RWD Nickalls & A Syropoulos

\wlog{Package ‘mathspic’ A Syropoulo & RWD Nickalls (08/08/2004)1}%

1However, it is anticipated that future versions of mathsPIC will be able output PostScript
and SVG files, in which case only mathsPIC commands will be allowed.

13

14 CHAPTER 3. THE MATHSPIC SCRIPT FILE

\typeout{Loading mathsPIC package (c) RWD Nickalls & A Syropoulos
08/08/20041}%
\ProvidesFile{mathspic.sty}/
[2004/08/08 v1.0 Package ‘mathspic.sty’l%
\def\fileversion{1.0}
\def\filedate{2004/08/08%}
\ifx\fiverm\undefined
\newfont\fiverm{cmr5}
\fi

\newcommand{\mathsPIC}{\textsf{mathsPIC}}
\newcommand{\MathsPIC}{\textsf{MathsPIC}}
\newcommand{\mathsPICp}{\textsf{mathsPIC}%
\kern-0.08em\raisebox{-0.156em}{\textit{\tiny P}}}
\newcommand{\MathsPICp}{\textsf{MathsPIC}%
\kern-0.08em\raisebox{-0.15em}{\textit{\tiny P}}}
\newcommand{\mathsPICperl}{\textsf{mathsPIC}/
\kern-0.08em\raisebox{-0.16em}{\textit{\tiny Perl}}}
\newcommand{\MathsPICperl}{\textsf{MathsPIC}/
\kern-0.08em\raisebox{-0.16em}{\textit{\tiny Perl}}}

Ypm———————e redefine \linethickness———------
\let\Linethickness\linethicknessY
hh————————- load PiCTeX files for LaTeX----——----—-

\input prepictex

\input pictexwd

\input postpictex

\endinput

%% End of file ‘mathspic.sty’.

Note that the line \let\Linethickness\linethickness? is placed before in-
putting pictexwd.tex since both P[CIEX and the ITEX picture environment use
the same command name, i.e. \linethickness

3.2 Headers and footers

It is particularly useful to include in the mathsPIC file any TEX or I4TEX headers
and footers which would otherwise have to be added manually to the output-file
before I4¢TEXing the file. For example, a typical format which allows for both
IXTREX 2¢ and pdfIATEX processing?, might be as follows (this works nicely with
KTEX 2¢, dvips, ps2pdf, and pdfATEX in Linux). Note that it is important to
load the color package (see Section 6.2) after mathspic.

2The \ifx...\else...\fi sequence is from science.sty (available on CTAN).

3.2. HEADERS AND FOOTERS 15

\documentclass [adpaper]{article}
\usepackage{mathspic}
\ifx\pdfoutput\undefined
\usepackage [dvips]{color,graphicx}
\else
\usepackage [pdftex]{color,graphicx}
\usepackage{times,mathptmx}
\pdfpagewidth=\paperwidth
\pdfpageheight=\paperheight
\fi
\begin{document}

\beginpicture

\endpicture
\end{document}

For users of plain TEX a typical format might be as follows. Note the need
in this case to include the line redefining the \linethickness command (in
mathspic.sty)

\input latexpic.tex

\let\Linethickness\linethickness’% %/ redefinition for mathsPIC
\input pictexwd.tex

\font\tiny=cmr5 %% used for drawing lines
\font\large=cmr12 %% used for drawing thicklines
\beginpicture

\endpicture
\bye

If it is necessary (or just simply convenient) to extend a TEX or BTEX com-
mand across several lines, then each additional line must be protected within the
mathsPIC file using a leading _... sequence unless a line actually starts with a
TEX command. A typical example is the following macro (used in Figure 7.6)
which defines a ‘display’ maths formula. The macro is split across several lines, as
follows.

\newcommand{\formulal}{’

\ $\displaystyle \sum_{p\geO} \Delta_{jp} z~{(p+1)}$%
\ Y

text (\formula){B1}

16 CHAPTER 3. THE MATHSPIC SCRIPT FILE

Note that when using TEX or BTEX commands within the P[CTEX picture
environment, it is very important to include the comment % symbol at the end of
such lines, to prevent P[CTEX accumulating additional <space> characters from
the ends of non-P[CTEX commands, since otherwise P[CTEX incorporates such
space characters into the horizontal distance used for representing x-coordinates,
with the effect that all subsequent picture elements may be displaced slightly to
the right.

3.3 Commands

The idea underlying the mathsPIC file (input-file) is that it should be able to
contain everything required to generate the proposed figure (i.e. all mathsPIC
commands, comments, TEX and I#TEX commands including headers and footers,
PICTEX commands, as well as lines to be copied verbatim) so that the output-file
can be immediately TpXed to generate the graphic. Some general points relating
to the mathsPIC file are as follows.

e mathsPIC commands are not prefixed by backslashes. They are therefore
easily distinguished from TgX, BTEX and P[CTEX commands.

e Fach mathsPIC command must be on a separate line. This is because
mathsPIC frequently adds data to the end of a line in the output-file (see
below).

e As with TgX, spaces can be used to enhance readability. This is par-
ticularly useful when writing lists of points. For example the command
drawpoint (PQR1R2) can be made easier to read by writing it as
drawpoint (P Q R1 R2).

e mathsPIC commands and point-names are not case sensitive. This allows the
user to customise the commands to enhance readability. Thus the command
drawpoint can be written as drawPoint or DrawPoint etc.

e Delimiters have a hierarchical structure as follows:
Curved brackets contain the primary argument; e.g. drawline (AB)
Braces contain required supporting arguments; e.g. point (A){5,6}
Square brackets contain optional arguments;
e.g. point (D) {midpoint (PQ) } [symbol=\odot]

e Logically distinct groups within brackets must be separated by commas.
e.g. point (B2) {A,polar(3,40deg)} [symbol=\odot, radius=2]

e Comments are prefixed by the % symbol in the usual way. Lines having a
leading % symbol are copied verbatim through to the output-file.

3.4. MACROS 17

e Lines having a leading backslash command (i.e. where there is no inter-word
space immediately following the backslash, e.g. \setdashes or
\begin{document}) are copied verbatim through to the output-file. Conse-
quently, all TEX, WTEX and P[CTEX commands can be used in the normal
way providing the command is restricted to a single line. However, if such
commands do run on to the subsequent lines, these lines will need to be pre-
vented from being processed as mathsPIC commands, by prefixing them with
\u (see below)—unless of course they also start with a backslash command.

e Lines having a leading \, (i.e. where the \ is followed immediately by one or
more inter-word spaces |, e.g. \ 25.3 16.8) are copied verbatim through
to the output-file without the leading backslash.

e Data-files containing mathsPIC commands can be input using the inputfile ()
command. Files can also be input verbatim using the inputfile*() com-
mand (useful for inputting files containing only P[CTEX commands and/or
coordinate data; for example, a list of data points as part of a PICTEX \plot
command).

e The system() command gives access to the command-line.

3.4 Macros

mathsPIC currently allows macros consisting of a single command, either with or
without parameters. (see Section 4.2). MathsPIC macros are subject to a number
of rules as follows:-

e Macros are created using the %def command, and destroyed using the %undef
command.

e When a macro is used in a command then the macro-name must have a &
prefix (to distinguish it as a macro).

e Macro names are case-sensitive (unlike all other mathsPIC command-names
which are not case sensitive)

e Macros must evaluate to a ‘numerical expression’ (see Section 4.3) (i.e. not
to strings).

It is strongly recommended that a % is placed at the end of the macro definition
(as is done with IWTEX commands) in order to prevent P[CTEX from including
additional horizontal whitespace.

18 CHAPTER 3. THE MATHSPIC SCRIPT FILE

No parameters

Examples of macros which do not take any parameters are the following two com-
mands which create the two macros fancydashes and plaindashes.

%def fancydashes() dasharray(ipt,2pt,3pt,4pt)%
%def plaindashes() dasharray(ipt,ipt)%

Note that in the macro-definition command the curved bracket (the parameter
bracket) at the end of the word fancydashes() remains empty if there are no
parameters. This pair of curved brackets marks the end of the command-name
and the beginning of the macro definition (i.e. some mathsPIC commands).

To use the macro (as a command) it is necessary to use the & prefix. The ()
brackets are only necessary if the macro takes parameter(s), as follows.

&fancydashes
drawline (AB)
&plaindashes
drawline(PQ)

The macro fancydashes () is deleted using the following command.

%undef fancydashes()

Single parameter
An example of a macro taking a single parameter is as follows:
%def thick(t) linethickness(t pt)%

Here the command &thick(2) is equivalent to the command linethickness (2pt).

Multiple parameters
An example of a macro taking multiple parameters is as follows:
%def mypoint(P,x,y) point(P){x,y}%

Now, if we write the command &mypoint(Q7,3,5) this is processed to generate
the point Q7 as shown in the following comment in the output file.

hh point(Q7){3,5} Q7 = (3, 5)

It is anticipated that the macro facility will be upgraded in subsequent versions
of mathsPIC to allow a multi-line macros facility.

3.5. THE PLOTTING AREA 19

3.4.1 Macro library

It may be useful to create a file for storing frequently used mathsPIC macros, say,
the text file mathspic.1lib (see also Section 4.1). For example, we could put
together the various macros described so far into one file as follows:

%%-—- mathspic.lib---

%def fancydashes() dasharray(lpt,2pt,3pt,4pt)’
%def plaindashes() dasharray(lpt,ipt)%

%def logl0(a) log(a)/log(10)%

%hdef loge(a) log(a)’

%def mod(a) rem(a)y

%def d2r() _pi_/180%

hdef r2d () 180/_pi_%

%%—-—- end of library ---

and input the file at the start (for processing by mathsPIC) by placing the command
inputfile(mathspic.lib) in the mathsPIC file just after \begin{document}.

3.5 The plotting area

3.5.1 Axes

When drawing a new figure it is often useful to have a graduated ruled frame
to guide placement of picture elements. This task is greatly simplified by using
mathsPIC’s one-line paper command, which has optional axes and ticks param-
eters®. The axes-codes used in the axes () option are L (Left), R (Right), T (Top),
B (Bottom), X (X-axis), Y (Y-axis). For example, the following paper command
generates a drawing area 5 cm X 5 cm with a ruled frame on four sides as shown
in Figure 3.1a.

paper{units(1mm) ,xrange(0,50),yrange(0,50) ,axes (LRTB) ,ticks(10,10)}

This particular paper command is converted by mathsPIC into the following PICTEX
code in the output-file (.mt file).

\setcoordinatesystem units <lmm,lmm>

\setplotarea x from 0 to 50 , y from O to 50
\axis left ticks numbered from O to 50 by 10 /
\axis right ticks numbered from O to 50 by 10 /
\axis top ticks numbered from O to 50 by 10 /
\axis bottom ticks numbered from O to 50 by 10 /

3Since PICTEX uses the name ‘axis’, mathsPIC recognises both spellings (‘axis’ and ‘axes’).

20 CHAPTER 3. THE MATHSPIC SCRIPT FILE

For graphs it is more usual for the axes to be centered on the origin (0,0), and
this is provided for by the XY options. For example, Figure 3.1b was generated
using the following paper command,

paper{units(lcm),xrange(-2,3) ,yrange(-2,3),axes(XY),ticks(1,1)}
which is converted by mathsPIC into the following P[CTEX code in the output-file.

\setcoordinatesystem units <lcm, lcm>

\setplotarea x from -2 to 3, y from -2 to 3

\axis left shiftedto x=0 ticks numbered from -2 to -1 by 1
from 1 to 3 by 1 /

\axis bottom shiftedto y=0 ticks numbered from -2 to -1 by 1
from 1 to 3 by 1 /

The tick-marks associated with an axis can be prevented by using a * after the
axes-code (e.g. axis(LBT*R*) gives four axes but generates tick-marks only on
the Left and Bottom axes). Note that any combination of axes-codes can be
used. For example, the options ...axes (LRTBX*Y*), ticks(10,10) will generate
a rectangular axes frame (with ticks) containing the XY axes (without ticks). The
line-thickness of axes and tick-marks is controlled by the P[CTEX \linethickness
command.

Once the figure is finished, then the frame or axes can be easily adjusted or
even removed. The figure can also be scaled in size simply by altering the units
parameters. For example, the option units(3cm,1lcm) will generate an X-axis
having three times the scale as the Y-axis (see Figure 7.11). If complicated or
more demanding axis configurations are required, then the P[CTEX Manual (see
Section 9.5) will need to be consulted. See also Section 8 for details on positioning
figures within B TEX documents.

3.5.2 Second y-axis

Sometimes a second (different) y-axis is needed (on the right). An example of how
this can be achieved is as follows.

paper{units(lcm),xrange(0,6) ,yrange(72,77) ,axes(LBT*) ,ticks(1,1)}
\axis right

\ label {\lines {weight\cr (1bs)\cr {\ Fecr {\ } }}

\ ticks withvalues 0 1 2 3 4 5 /

\ at 72 73 74 75 716 17/ /

3.5. THE PLOTTING AREA

0 10 20 30 40 50
50 | | | |
40 -
30 -
20 -
10 -
0 T T T T
0 10 20 30 40 50
a. Using . ..axes(LRTB)
3 -
2 —
1 —
| T T T |
-2 -1 1 2 3
—14
—9

b. Using ...axes(XY)

Figure 3.1:

50

40

30

20

10

21

22 CHAPTER 3. THE MATHSPIC SCRIPT FILE
Table 3.1: Conversion factors for the units used by ITEX.
From: Beccari 1991 (with permission).
mm cm pt bp pc in dd cc sp

lmm | 1,000 0,100 | 2,845 | 2,835 | 0,2371 | 0,03937 | 2,659 | 0,2216 | 186467,98
lcm 10,00 1,000 | 28,45 28,35 2,371 0,3937 26,59 2,216 | 1864679,8
1pt 0,3515 | 0,03515 | 1,000 | 0,9963 | 0,08333 | 0,01384 | 0,9346 | 0,07788 65 536
1bp | 0,3528 | 0,03528 | 1,004 | 1,000 | 0,08365 | 0,01389 | 0,9381 | 0,07817 65 781,76
1pc 4,218 0,4218 | 12,00 11,96 1,000 0,1660 11,21 0,9346 786 432
lin 25,40 2,540 | 72,27 | 72,00 6,023 1,000 | 67,54 5,628 | 4736286,7
1dd 0,3760 | 0,03760 | 1,070 1,066 | 0,08917 | 0,01481 1,000 | 0,08333 70 124,086
lce 4,513 | 04513 | 12,84 | 12,79 1,070 | 0,1777 | 12,00 1,000 | 841489,04

3.5.3 Units

In addition to the usual units mm, cm, and pt, P[CTEX accommodates all the other
units used by TEX (see Knuth (1990), Chapter 10), and also uses the same two-
letter codes, namely pc (pica), in (inch), bp (big point), dd (didot), cc (cicero), sp
(scaled point). The available units thus embrace the Metric system (mm, cm), the
Didot system (didot, cicero), and the UK system (point, big point, pica, inch)—see
Table A.3.

Note that if only one unit is indicated in the units option, then mathsPIC
uses the same unit for both the z and y axes. Thus the option units(1mm) in the
paper command is translated by mathsPIC into the following P[CITEX command
in the output-file. Note that it is very important to include a numeric value with
the units, or alternatively a variable with the units.

\setcoordinatesystem units <imm,imm>

If different scales are required (most commonly when drawing curves and equa-
tions) then both need to be specified in the mathsPIC units option. For example,
if units of 1 cm and 2 mm are required for the x and y axes respectively, then this
will be implemented by the mathsPIC command units(1cm,2mm). However, when
the = and y scales are different strange effects can occasionally occur, particularly
if drawing ellipses or circular arcs. In view of this mathsPIC writes a warning note
to the output-file and log-file when different units are being used. The drawing of
complete circles will only be affected if the z-units is changed, since the mathsPIC
starts the arc at a location having the same y-coordinate as that of the center. In
general users are therefore recommended to avoid using different x and y units in
the paper command if at all possible.

Note that variables can also be used to control the z and y units, as shown
in the following example, where the radius (r) and the distance (s) between the
label A and its point-location are fixed irrespective of scaling (i.e. with changes in
the value of u) by dividing the relevant variables by the scaling value u.

3.6. POINTS 23

var u = 1.5 %% units
paper{units(u mm), xrange(0,100), yrange(0,100)}

var r =2/u, s =4/u
point (A){30,20} [symbol=circle(r)]
text (A){A, shift(-s,s)}

3.5.4 Tick-marks

It is recommended that integers are used with the ticks option, since P[CTEX
sometimes gives unpredictable results if decimals are used with the xrange and
yrange options in conjunction with the ticks option. In general P[CTEX gives
more pleasing axes if integers are used throughout the paper command.

3.6 Points

Each point is associated with a point-name which is defined using the point com-
mand. For example, the following command allocates the point-name A to the
coordinates (5,7).

point(A){5,7}

Once defined, points can be referred to by name. Consequently, points can be
defined in relation to other points or lines simply by using point-names, as shown
by the following commands.

point (C){midpoint (AB)}
point (E){intersection(AB,CD)}
point(J){Q, rotate(P, 25 deg)} %% J = Q rotated about P by 25 deg

Points are interpreted according to their grouping and context. Thus two points
represent either a line or its Pythagorean length. For example, the command
drawCircle(P,AB) means draw a circle, center P with radius equal to the length
of the line AB. A group of three points represents either a triangle, an angle, or
two contiguous line-segments, depending on the circumstances.

3.6.1 Point-name

A point-name must begin with a single letter, and may have up to a mazimum of
three following digits. The following are valid point-names: A, B, C3,d185. Since
mathsPIC is not case sensitive the points d45 and D45 are regarded as being the
same point.

24 CHAPTER 3. THE MATHSPIC SCRIPT FILE

Sometimes it is necessary to re-allocate new coordinates to an existing point-
name, in which case the point* command is used. This is often used during recur-
sive operations whereby the mathsPIC file inputs another file (using the inputfile
command) containing commands which alter the value of pre-existing points. For
example, the following command increments the x-coordinate of point A by 5 units.

point*(A) {xcoord(A)+5, ycoord(A)}
point (P){Q} %% make P the same as Q

3.6.2 Point-symbol

The default point-symbol is @ (\bullet). However, mathsPIC allows the optional
use of any TEX character or string of characters to represent a particular point,
by defining it in a following square bracket. For example, the point A(5,10) can
be represented by the A symbol by defining it as follows.

point (A){5,10} [symbol=\triangle]
Other examples using the circle() and square() options are:

point(B){A, shift(2,6)}[symbol=circle(2)]
point (C){A, polar(3,26}[symbol=square(3)]

The argument for the circle is the radius, while the argument for the square is the
side length.

The default point-symbol can also be changed to a circle, square, or any TEX
character or string of characters by using the mathsPIC PointSymbol command.
Note that the PointSymbol command only influences subsequent point com-
mands. For example, the character ® (\odot) can be made the new global
point-symbol by using the command PointSymbol (\odot). The original default
point-symbol () can be reinstituted (reset) using the command PointSymbol (default).
The point-symbol is drawn at the point-location using the drawPoint command;
for example, drawPoint (A), or drawPoint (ABCD).

Since most TEX characters and symbols are typeset asymmetrically in rela-
tion to the baseline, they will not, in general, be positioned symmetrically over a
point-location. Most characters are therefore not ideal for use as point-symbols,
as they generally require some slight vertical adjustment in order to position them
symmetrically. In view of this Table A.2 lists those TEX characters which are par-
ticularly suitable, since they are automatically positioned by TEX symmetrically
with respect to a point-location (for example the ® character \odot), and are
therefore ideal for use in this setting.

3.6.3 Line-free zone

When lines are drawn to a point, the line will (unless otherwise instructed) extend
to the point-location. However, this can be prevented by allocating an optional

3.6. POINTS 25

circular line-free zone to a point by specifying the line-free radius in a following
square bracket. For example, lines to a /A symbol at point A can be prevented
from being drawn through the triangle to its center by allocating a 5 unit line-free
zone to the point, as follows.

point (A){3,10} [symbol=\triangle,radius=5]

If only the line-free radius is to be specified for the default point-symbol then we
can use the command pointsymbol (default,5). To change the line-free radius
of an existing point then use the following command.

point*(A) {A} [radius=10]
which is equivalent to

point*(A){xcoord(A), ycoord(A)}[radius=10]

26

CHAPTER 3. THE MATHSPIC SCRIPT FILE

Table 3.2: Useful point-symbols and their radii for 10-12pt fonts.

radius mm
symbol symbol package
10pt / 11pt / 12pt
\circ o | 0.70 / 0.75 / 0.80 standard
\odot ® | 1.20 /1.35/ 1.50 standard
\oplus ® | 1.20/1.35/1.50 standard
\ominus © | 1.20 /135 /150 standard
\oslash @ | 1.20/1.35/1.50 standard
\otimes ® | 1.20/1.35/1.50 standard
\bigcirc O | 1.70 / 1.85 / 2.05 standard
\bigodot O | 1.70/1.85/2.05 standard
\bigoplus @ | 1.70/1.85/ 2.05 standard
\bigotimes &® | 1.70 /1.85 / 2.05 standard
\star * — standard
\triangle A — standard
\square | — amssymb.sty
\blacksquare | — amssymb.sty
\lozenge O — amssymb.sty
\blacklozenge ¢ — amssymb.sty
\bigstar * — amssymb.sty
\boxdot Gl — amssymb.sty
\boxtimes X — amssymb.sty
\boxminus = — amssymb.sty
\boxplus H — amssymb.sty
\divideontimes | x — amssymb.sty

3.6. POINTS 27

Table A.2 gives a list of useful point-symbols which TEX places symmetrically
over a point-location (note that \Box and \Diamond are not placed symmet-
rically over a point location, but \square and \lozenge are). Other useful
symbols are available from the textcomp fonts* (see also the ‘symbol list’ compiled
by Pakin which shows virtually all the available symbols®).

For example, the following commands will draw lines between points ABC,
such that the lines just touch the edge of the ® point-symbol (line-free radius 1.2
mm; 10pt font).

pointSymbol (\odot, 1.2)
point (A){1,1}
point(B){2,2}
point(C){1,3}
drawline (ABC)

It is often useful to adjust the line-free radius associated with a particular point
before drawing lines or arrows to it, in order to optimise the distance between an
object centered at the point and the line or arrow. For example, one can use the
point* command to set a line-free radius of 2 units for a pre-existing point (P),
as follows.

point*(P){P} [radius=2]

By way of illustration, this command is used in drawing Figure 3.2 where arrows
are being drawn from various directions (B, S) to a text box centered on point
P © (the code is shown below as mpicpm03-2.m). By setting the line-free radius
(dashed circles) associated with point P before drawing each particular arrow, one
can easily adjust and optimise the distance between the arrowhead and the text
box. The arrowshape used here is the default shape which is defined as follows
(see Section 7.3 for details).

arrowshape (2mm, 30,40)

%% mpicpm03-2.m (Figure 3.2)

\usepackage{mathspic}

\beginpicture
paper{units(lcm),xrange(0,6) ,yrange(0,3) ,axes(LBT*R*) ,ticks(1,1)}
point (P){4,2} [symbol=\odot]

point(B){2,0.5}

point(S){1,2}

drawPoint (PBS)

4See Harold Harders’ useful file (textcomp.tex) which shows the characters of the textcomp
font together with their names. It can be found at CTAN:/tex-archive/info/texcomp-info/.
5CTAN:/info/symbols/

28 CHAPTER 3. THE MATHSPIC SCRIPT FILE

\ \ /’ /
\ Se_ 7 /
1 / - ,
B e
0 T T R —
0 1 2 3 4 5 6
Figure 3.2:
\setdashes
\inboundscheckon %% restrict circles to drawing area

drawcircle(P,1)

drawcircle(P,2)

\setsolid

%% change line-free radius of P to lcm
point*(P){P}[radius=1]

drawArrow (BP) %% draw arrow from B (below)
%% change line-free radius of P to 2cm

point*(P){P} [radius=2]

drawArrow (SP) %% draw arrow from S (side)
text (3){S, shift(-0.4,0)}

text (B){B, shift(-0.4,0)}

text (\textsc{p}){P, shift(0.3,0)}
\newcommand{\textbox}{\fbox{text\hspace{17mm}box}}%
text (\textbox){P}

\endpicture

Of course, sometimes it is convenient just to draw the arrows a certain length from
one point towards another point. For example, in order to draw an arrow 1 unit
long from point A towards point B we could use the following two commands

point(Z){pointonline(AB,1)} % Z is point 1 unit from A towards B
drawArrow (AZ)

3.6.4 Order of points

The order of points in mathsPIC commands is sometimes significant. For exam-
ple, the command point (D) {PointOnLine (AB,23)} defines the point D as being
23 units from A in the direction of B.

3.7. LINES 29

3.7 Lines

mathsPIC draws lines using its drawLine and drawThickline commands. For
example, a line from P; to P, is drawn with the command drawLine (P1P2). If a
line is to be drawn through several points (say, J1, J2, J3, Jua, J5) and can be drawn
without ‘lifting the pen’, then this can be achieved using the single mathsPIC
command drawLine (J1J2J3J4J5). Several unconnected lines can also be drawn
using one command by separating each line sequence with a comma; for example,
drawLine(J1J2,J3J4J5,J1J3).

A line can also be drawn a specified distance from one point towards (or away
from) another point, using the following two-step approach. For example, the
following commands draws a line a distance d units from point A towards point B.

point(Z){pointonline (AB,d)}
drawline (AZ)

Note that the order of the points AB and the sign of the distance d are important.
For example, the following commands will draw a line a distance d units from
point B away from point A.

point(Z){pointonline(BA,-d)}
drawline (BZ)

Since the P[CTEX \putrule command for drawing horizontal or vertical lines is
much more memory efficient than the \plot command, mathsPIC automatically
invokes the \putrule command for horizontal and vertical lines.

3.7.1 Line thickness
mathsPIC

mathsPIC uses the linethickness() command. For example, to switch to a
linethickness of 2pt we would use the mathsPIC command

linethickness(2pt)

The default value is 0-4pt, and resetting to this value is achieved by the following
command

linethickness(default)

Sometimes when drawing thick lines it is useful to be able to manipulate the line
ends (e.g. when drawing shapes with horizontal and vertical lines). Consequently
it is useful to be able to access the numeric value of the current linethickness (in
the units defined by the paper command), and this can be done using the var
command as follows.

30 CHAPTER 3. THE MATHSPIC SCRIPT FILE

var t = _linethickness_

The mathsPIC drawLine () command uses the current dot size. However, the
mathsPIC drawThickline() command uses the \large dot size, but then resets
the dot size to the default \tiny. For example, the commands

point(A){5,5%}
point (B){10,10}
drawThickline (AB)

will result in the following code in the output-file.

%% point (A){5,5} (5,5)

%% point(B){10,10} (10, 10)

%% drawThickline (AB)

\setplotsymbol ({\usefont{0T1}{cmr}{m}{nF\large .})%
{\setbox1=\hbox{\usefont{0T1}{cmr}{m}{n}\large .1}%
\global\linethickness=0.31\wd1}/,

\plot 5.00000 5.00000 10.00000 10.00000 / %% PQ
\setlength{\linethickness}{0.4pt}%

\setplotsymbol ({\usefont{0T1}{cmr}{m}{n}\tiny .})%

PICTEX

PICTEX draws lines using two different methods depending on whether the lines
are (a) horizontal or vertical, (b) any other orientation. Furthermore these two
groups use different commands for controlling line-thickness, as follows.
Horizontal and vertical lines (rules): Horizontal and vertical lines are
drawn using the P[CTEX \putrule command® and consequently the thickness of
such lines is controlled by the PICTEX
\linethickness command (the default line-thickness is 0-4pt). For example, the
following P[CTEX command changes the thickness to 1pt.

\linethickness=1pt

Note also that the P[CIEX \linethickness command can also be reset to its
default value (0-4pt) by the P[CTEX \normalgraphs command (see chapter on
PICTEX commands), which resets all PICTEX graph-drawing parameters to their
default values, including \linethickness.

Since the graph axes are drawn using horizontal and vertical lines P[CTEX draws
them using the \putrule command, i.e. using the \1inethickness command. For
example, the following commands can be used to draw thick axes.

6Note that the PICTEX \putrule command employs the TEX and IATEX \rule command, and
so is only used for horizontal and vertical lines.

3.7. LINES 31

\linethickness=2pt
paper{units(1mm) ,xrange(0,50),yrange(0,50) ,axes (XY)}
\linethickness=0.4pt %% reset to default

Other lines and curves: P[CIEX draws all other lines (non-horizontal non-
vertical) and curves are drawn using the P[CTEX \plot command which draws a
continuous line of dots. Consequently the thickness of these lines is controlled by
the size of the dot, which is defined using the PICTEX \setplotsymbol command,
the default size of dot being {\tiny .}. Larger dots therefore generate thicker
lines. For example, the following PI[CTEX command sets the dot to a larger size.

\setplotsymbol({\Large .})

3.7.2 Recommendations

In general it is recommended that the mathsPIC linethickness() command is
used as this automatically sets both the P[CTEX \putrule and \setplotsymbol ()
commands. However, under certain circumstances it may be convenient to set the
PICTEX commands directly, as described below.

If you do use P[CTEX commands for drawing lines you need to remember that
since P[CTEX uses two groups of commands for controlling the thickness of lines
(i.e. \linethickness and \setplotsymbol) it is important to use pairs of equiv-
alent commands for ‘rules’ (horizontal and vertical lines) and dots (all other lines)
when changing line-thickness. These are shown in Table A.1 for a 10-point font
(note that the default sizes are 0-4-point and \tiny).

Table 3.3: Equivalent PICTEX commands for a 10-point font

rules (horizontal/vertical) all other lines

\linethickness=1.35pt | \setplotsymbol({\Large .})
\linethickness=1.1pt \setplotsymbol({\large .3})
\linethickness=0.9pt \setplotsymbol ({\normalsize .})

\linethickness=0.4pt \setplotsymbol ({\tiny .3})

If macros are required, then this can be done easily with a TEX macro using
the PICTEX commands directly. For example, the following code draws a medium-
thick line AB by invoking the command \mediumthickline.

\newcommand{\mediumthickline}{%
\linethickness=1.1pt%
\setplotsymbol ({\large .})}%

32 CHAPTER 3. THE MATHSPIC SCRIPT FILE

\mediumthickline}
drawline (AB)

3.8 Text

Text is typeset using the text command and, by default, is centered both hori-
zontally and vertically at a defined point. For example, the words ‘point Z’ would
be placed at the point Z using the command text (point Z){Z}.

Text can be located relative to a point-location using the shift (dz,dy) or
polar(r,f) commands. For example, points P; P, P could have their labels lo-
cated 4 units from each point as follows.

var d = 4

text (P_1){P1,shift(-d,0)}

text (P_2) {P2,polar(d,10 deg)?}

text (P_3){P3,polar(d,0.29088 rad)}

Optionally, text can be positioned relative to a given point using appropriate
combinations of the case sensitive PICTEX options 1 t r B b to align the left
edge, right edge, top edge, Baseline, bottom edge of the text respectively, as
described in the P[CTEX manual. For example in the diagram below (Figure 3.3)

the text box is aligned such that the right edge of the text box is

centered vertically at the point P using the [r] option as follows.

point(P){25,5}
text (\fbox{a nice box}){P}I[r]

\

this is point P

Figure 3.3:

The mathsPIC code for Figure 3.3 is as follows.

%% mpicpm03-3.m (Figure 3.3)
\usepackage{mathspic}

\framebox{\vbox{

\beginpicture

paper{units(1mm) ,xrange(0,28) ,yrange(0,10)}
point (P){25,53} [symbol=\bullet,radius=2]

3.9. VARIABLES AND CONSTANTS 33

text (\fbox{a nice box}){P}[r]
drawpoint (P)

point (J){P,polar(15,-20deg) } [radius=2]
text (this is point P){J}[1]

drawarrow (JP)

\endpicture

\ }} %% end of framebox

Text can also be placed at a point-location (using a DrawPoint command), if the
text is defined as the optional point-symbol (in square brackets) associated with
a point command. Although this is useful in certain circumstances, this method
is somewhat less flexible than the text command, since the drawPoint command
centers the point-symbol vertically and horizontally over the point-location.

3.9 Variables and constants

3.9.1 Scalar variables

Numeric scalar variables are defined using the var name = value command as for
example

var r=6

The name requirement is the same as that for points; an initial (single) letter
optionally followed by a maximum of 3 digits. Sometimes the var command too
restrictive as regards the variable-name, in which case a more intuitive variable-
name can be allocated by using a mathsPIC macro (see Section 3.4). For example,
we can allocate the name WeightInKg to some value, say 22-6 Kg, using the
following macro definition (see also Section 4.1 for other examples).

%def WeightInKg()22.6

However, you have to then remember to use the macro with the & prefix (see
Section 3.4).

The value can be either a number (e.g. 4-32 or 63), an existing variable name
(e.g. r3), a pair of point names e.g. AB (i.e. representing the Pythagorean distance
between the two points), or a numerical expression(e.g. 3*k/2). Thus the com-
mand var r3=20 allocates 20 to the variable name r3, which could then be used,
for example, as the radius in the circle command drawcircle(C3,r3).

New values can be re-allocated to existing variable-names using the same var
command.

If it is necessary to use the same letter for a point and a variable (or constant),
then a convenient strategy to to consider using upper case for points and lower
case for variables and constants.

Note that several variables can be allocated in a single statement, as follows:

34 CHAPTER 3. THE MATHSPIC SCRIPT FILE

var r=6, j22=r*6/5, d=180

3.9.2 Scalar constants

Constants can be allocated using the const command as follows. A constant can
be any numerical expression.

const j26=23.653

If you subsequently try and change the value of a constant, then mathsPIC will
issue an appropriate error message.

3.9.3 Mathematics

All the usual mathematical operations can used with variables (see Section 4.1),
both when defining a variable, and in places where variables can be used as param-
eters. When using ‘scientific’ notation mathsPIC allows either e or E; for example,
var j25=7E-2 and point(P){3, 2.34e2}. The constants 7 and e are available
as _Pi_ and _e_. The following are examples of valid commands.

var r = 6, j = r*xtan(0.34)/27, d3=AB
point(C){5,5%}

drawCircle(C,xr/3)

var e=_e_, pl=_Pi_

var j25=7E-2

var t = _linethickness_

text (P) {P, shift(-5.564e-1,0)}

3.9.4 Scientific notation

While mathsPIC does allow the use of the ‘E’ or ‘e’ format of so-called ‘scientific’
notation (see above) it is important to remember that TEX does not, and conse-
quently this influences how mathsPIC displays small numbers when they appear
in the output file.

One of the curious anomalies of TEX is that it cannot manipulate numeric
values in scientific notation, and will generate an error message whenever it finds
the letter E or e as part of a number. Consequently mathsPIC automatically
converts all numbers destined to appear within a P[CTEX command in the output-
file into ‘true’ decimal format (i.e. not E notation). mathsPIC also reduces such
numbers to only five decimal places, and consequently quantities with an absolute
value less than 0-00001 are therefore effectively reduced to zero (0-00000).

This is demonstrated in the following example, where the coordinates s; ap-
pear in the output file in scientific notation when in commented lines, but in

3.10. THE LOOP ENVIRONMENT 35

decimal notation in the P[CIEX \put... commands. Note also that in this ex-
ample the y-coordinate of Jy5 appears as zero in the \put... command but as
2.32857142857143e-06 when shown as the value s5.

var r = 163/7, s1=r/1E3, s2=r/1E4, s3=r/1E5, s4=r/1E6, sb=r/1E7
point(J12){s1,s2}

point (J23){s2,s3}

point (J34){s3,s4}

point (J45){s4,s5}

drawpoint (J12 J23 J34 J45)

appears in the output file as

%% var r=163/7, si=r/1E3,s2=r/1FE4,s3=r/1E5,s4=r/1E6,s5=r/1E7
%% r = 23.2857142857143

%h s1 = 0.0232857142857143

%h s2 = 0.00232857142857143
%% 83 = 0.000232857142857143
%% s4 = 2.32857142857143e-05

%% 85 = 2.32857142857143e-06

%% point (J12){s1,s2} J12 = (0.02329, 0.00233)
%% point (J23){s2,s3} J23 = (0.00233, 0.00023)
%% point (J34){s3,s4} J34 = (0.00023, 0.00002)
%% point (J45){s4,s5} J45 = (0.00002, 0.00000)
%% drawpoint (J12 J23 J34 J45)

\put {\bullet} at 0.02329 0.00233 %% J12
\put {\bullet} at 0.00233 0.00023 %% J23
\put {\bullet} at 0.00023 0.00002 %% J34
\put {\bullet} at 0.00002 0.00000 %% J45

3.10 The LOOP environment

This operates as a simple ‘DO...LOOP’ allowing a chunk of code to be input multiple
times. It takes a single argument, namely the loop number. The commands for
this environment are as follows.

beginloop (expr)
endloop

When using a ‘DO-LOOP’ one usually has to initialise some parameters, and
then increment the parameters with each passage of the loop. In particular, it
is often convenient to use a loop counter so that one can see in the output file

which particular loop is being processed at any stage. It is also useful to include
an obvious marker at the begining and end of the repeated section. All these are

36 CHAPTER 3. THE MATHSPIC SCRIPT FILE

included in the following code which produces Figure 3.4 by inputting a section of
the code 40 times.

%% mpicpm03-4.m (Figure 3.4)
\usepackage{mathspic}
\beginpicture
paper{units(imm), xrange(0,60), yrange(0,60) axes(LB), ticks(10,10)}
point(S){7,55} 7% Start position
drawpoint (8)
%% initialise parameters
var n=0 % initialise mathspic counter
var a=-180 Y% start angle degrees
var d=50 % start length
beginLOOP 40 % loop 40 times
var n=n+1, a = a+90, d = d-1 %/ increment counter, angle, length
point*(P){S,polar(d,a deg)} ' generate new point P
drawline(SP) % draw line from OLD S to NEW P
point*(S){P} %) reallocate S <-- P
endLOOP
drawpoint (P)
\endpicture

60

50

40

30

20

10 1

0 | | | | | |
0 10 20 30 40 50 60

Figure 3.4:

mathsPIC commands

All mathsPIC commands (except macros) are case-insensitive. This is a design
feature which allows the user to customise the commands and make them easier
to read. mathsPIC macros, however, are case-sensitive, but since macro-names are
created by the user they are customised from the outset by definition.

The arguments of mathsPIC commands are either strings (any legitimate TEX
or IATEX commands or characters which can be put into an \hbox), point-names
(e.g. A, B2, C345), or numerical expressions. Where appropriate, mathsPIC al-
lows scalar quantities in commands to be represented by either a numeric value
(e.g. 0-432), a variable name (e.g. r2), two point names representing the Pythagorean
distance between two points (e.g. AB), or even a mathematical expression®. For
example, the structure of the command DrawCircle({centre),(radius)) is quite
flexible, as follows.

point(C){5,5%}
drawCircle(C,4.32)
drawCircle(C,r2)
drawcircle(C,AB)
drawCircle(C, r3*tan(0.6)/4)

4.1 Mathematics

A leading zero must always be used for decimals whose absolute value is < 1. The
argument of trigonometric functions is in radians. Inverse trigonometric functions
return a value in radians.

ISee the definition of ‘numerical expression’ in Section 4.3.

37

38 CHAPTER 4. MATHSPIC COMMANDS

e Constants:
for 7 (3-14159...) use _Pi_or _pi_;
for ‘e’ (2-718281...) use _E_ or _e_

e Trigonometric functions: (arguments must be in radians)
sin(), cos(), tan(), asin(), acos(), atan()

e Remainder: rem(); e.g. var r = 12 rem(5) — 2

e Square root: sqrt(); e.g. var s = sqrt(14)

e Exponentiation: **; e.g. var j = r**2

e Integer: int(); e.g. var s = int(3.867) — 3

e Sign: sgn() (returns-1, 0, or +1); e.g. var s = sgn(-2.987) — —1

e Line thickness: _linethickness_ (returns current value of the linethick-
ness in current units); e.g. var t = _linethickness_

e Area of triangle: area(ABC) e.g. var t = area(ABC)

4.2 Macros

mathsPIC allows the definition of one-line macros with or without arguments,
which evaluate to a ‘numerical expression’ (see Section 4.3) (i.e. not strings).
Macro definition has the following syntax:

%def (macro-name) ([(parameters) |) (macro-code)

where (parameters) is a list of comma separated strings (e.g. x,y,z). Always place
a % symbol at the end of the (macro-code) to limit additonal white space. The
(macro-code) can be delimited using round brackets is necessary. Examples of
valid macros are as follows:

%def two()2% % a macro called two
%def two() (2)%

Once a macro is defined it can be used or it can be undefined. A macro is removed
(undefined) using the %undef command as follows.

%undef (macro-name)

Macros (see Section 3.4) are very useful in mathematics. Remember (a) that
if a macro does not use parameters then the () are not required as part of the
command when it is used as a variable, (b) that the macro-name must have the
& prefix when it is used in a mathsPIC command, and (c¢) it is very important to

4.2. MACROS 39

place a % symbol at the end of the macro command in order to stop P[CTEX from
collecting any following white space and distorting the diagram.

Macros without a parameter can be very useful since they can be used to
allocate a meaningful variable-name (or constant-name). For example, we can
allocate the variable name Speed0fLight to the value 2:9979 x 10® metres per
second? and then manipulate it as follows.

%def Speed0fLight()2.9979e8 metres/sec
var m=1000, E = m*(&Speed0fLight**2)

Note the use of the & symbol in the var command above. After running the
above commands through mathsPIC the output file would show the allocation of
the variable E as follows.

%def Speed0fLight()2.9979e8), metres/sec
%% var m=1000, E = m*(2.9979e8%*2)

%% m = 1000

%% E = 8.98740441e+19

By way of another example, it is often useful to have meaningful names for the
factors used for converting degrees to radians and wvice versa (e.g. d2r, r2d), as
provided by the following two macros (without parameters).

hdef d2r () _pi_/180% % degrees to radians
%hdef r2d()180/_pi_% % radians to degrees

For example, a variable of 30 degrees (say, d30) could be converted to radians (say,
r30) in a var command using the new d2r command as follows (remembering to
include the & prefix for the macro),

var d30=30, r30=d30%*&d2r
which is processed via mathsPIC to

%% var d30=30, r30=d30*_pi_/180
%% d30 = 30
%% r30 = 0.523598775598299

Macros which take a parameter can be useful in a slightly different way. For
example, since Perl does not have separate commands for logio() and log.()—it
only has one log command, namely log() for log.()—you may wish to define
separate commands to make it easy to distinguish between the two. This is easily
done with macros taking a single parameter as follows.

2Lloyd S (2000). Ultimate physical limits to computation. Nature; 406, 1047-1054 (August
31, 2000).

40 CHAPTER 4. MATHSPIC COMMANDS

%def loge(a) 1log(ali
%def logl0(a) log(a)/log(10)%

Now if you type the command &loge (5) in the mathsPIC file you will generate the
value log.(5). Similarly, the command &1og10(3) — log10(3).

Making a macro library

If you regularly use particular macros then these can be easily stored in an ASCII
file as a library (say, mathspic.lib) as follows.

%%-—- mathspic.lib---

%def logl0(a)log(a)/log(10)%
hdef loge(a)log(ad¥

%hdef mod(a)rem(a)

%hdef d2r() _pi_/180%

%def r2d() 180/_pi_%
%%h-—-—end of library---

This library file can then be input at the beginning of the mathsPIC script, as
follows.

inputfile{mathspic.lib}

4.3 Command definitions

Names of points, constants and variables

The names of points, constants and variables all conform to the same name con-
vention, as follows: The name must begin with a single letter (either upper or
lower case), and may have up to a mazimum of three following digits.

While constants and variables should not have the same name, it is quite possi-
ble for points and variables (and constant) to have the same name. Consequently,
it is a useful rule to arrange for points to have uppercase letters and for variables
and constants have lowercase letters.

Numerical expression

When dealing with commands we will refer frequently to the term ‘numerical ex-
pression’ by which is meant either (a) a number (integer or decimal), (b) a numeric
variable or constant (defined using the var or const command), (c¢) any mathsPIC
function, macro, or mathematical expression which evaluates to a number, or (d) a
pair of point names (e.g. AB) representing the Pythagorean distance between the
two points. A leading zero must be used with decimal fractions having an absolute

4.3. COMMAND DEFINITIONS 41

value less than one. The syntax of the numerical expression, which we will refer
to as (expr) is therefore as follows:
(expr) ::= (two-points) | (number) | (variable) | (maths)

Unit

When dealing with commands we will refer frequently to the term ‘unit’ by which
is meant one of the valid TEX units (see Knuth (1986) p. 57).

(unit) ::= (mm) 1 (em) | (pt) | (pe) | {in) | {dd) | (cc) | (sp)

Line thickness

Commands and parameters which control line-thickness are described in Sec-
tion 3.7.1.

4.3.1 Backslash
e\ | oo]

e Notes

A line having a leading backslash is processed (copied verbatim) slightly
differently depending on whether the character following the backslash is a
space or not.

A leading backslash followed by a non-space character tells mathsPIC to copy
the whole line verbatim (including the backslash) through to the output-file
(thus a line leading with the TEX command \begin{document} will be
copied unchanged).

However, a leading backslash followed by one or more spaces, (e.g. \Ly - --)
tells mathsPIC to copy the rest of the line verbatim through to the output-file,
but without the leading backslash.

4.3.2 ArrowShape

This command defines the shape of an arrowhead, and allows arrowheads to be
customised (see Section 7.3 for details).
e Syntax
ArrowShape ((expr) [(units)] , {expr) , (expr))
ArrowShape (default)

42 CHAPTER 4. MATHSPIC COMMANDS

e Notes

The first parameter is the length of the arrow head itself. If (units) are not
given then the current default units will be applied. The last two parameters
are angles (default is degrees) which define the shape of the arrow head (see
Section 7.3 for details).

The default arrow shape is equivalent to the command Arrowshape (2mm, 30,40).
This default arrowhead shape can be reset using Arrowshape (default) com-
mand.

e Examples

Arrowshape (4mm, 30,60)

var h = 3

Arrowshape ((3*h)mm,30,60)
drawArrow (AB)

Arrowshape (default)
drawArrow (PQ)

4.3.3 beginLoop ... endLoop environment

—see Loop

4.3.4 beginSkip ... endSkip environment
—see Skip

4.3.5 Const

The const command is used to define scalar constants.

e Syntax

const (name) = (expr) [, (name) = (expr) | ...

e Notes

The constant name follows the same naming convention as points and vari-
ables (see Section 4.3). The scalar argument can be any numeric expression.
There is no terminal comma. If a new value is allocated to an existing
constant name then mathsPIC issues an error message.

e Example

const h=5
const r = 20, r4 = r3*tan(0.3)

4.3. COMMAND DEFINITIONS 43

4.3.6 DashArray

The dasharray command takes an arbitrary number of paired arguments that are
used to specify a dash—-gap—dash... pattern.

e Syntax
dasharray (DASH , GAP [DASH , GAP] ...)
DASH ::= {expr) (unit)

GAP ::= (expr) (unit)

e Notes

There must be an even number of arguments. If a variable or expression is
used then it should be separated from the unit either by a , or with round
brackets () as shown below.

Macros are useful for allocating names to frequently used dashArray com-

mands.

e Example

dasharray(6pt, 2pt, 1pt, 2pt)

var d=2

dasharray(6pt, 2pt, 1pt, d pt)

dasharray(6pt, 2pt, 1pt, (d)pt)

dasharray(6pt, 2pt, 1pt, (3*d)pt)

%def fancydashes()dasharray(6pt, 2pt, 1pt, 2pt)%

4.3.7 DrawAngleArc

This command draws an arc in the specified angle, a distance radius from the
angle.
e Syntax
drawAnglaArc{ ANGLE , RADIUS , LOCATION , DIRECTION }

drawAnglaArc{ ANGLE RADIUS LOCATION DIRECTION }

ANGLE : := angle((three-points))
RADIUS ::= radius((ezpr))
LOCATION ::= internal | external

DIRECTION ::= clockwise | anticlockwise

44

CHAPTER 4. MATHSPIC COMMANDS

e Notes

The angle location is either internal (< 180°) or external (> 180°). The
direction of the arc is either clockwise or anticlockwise, and this direction
must correspond with the letter sequence specified for the angle. Strange and
unexpected results will be produced if the four parameters are not internally
consistent. The parameter order angle/radius/internal/clockwise etc is
important.

Examples

DrawAngleArc{angle (ABC), radius(3), external, clockwise}
var r = 2
DrawAngleArc{angle(PQR), radius(r), internal, anticlockwise}

4.3.8 DrawAngleArrow

This command draws an arrow in the specified angle, a distance radius from the
angle.

e Syntax

drawAnglaArrow{ ANGLE , RADIUS , LOCATION , DIRECTION }

drawAnglaArrow{ ANGLE RADIUS LOCATION DIRECTION }

ANGLE ::= angle((three-points))

RADIUS ::= radius((ezpr))

LOCATION ::= internal | external
DIRECTION ::= clockwise | anticlockwise

Notes

The angle location is either internal (< 180°) or external (> 180°). The
direction of the arrow is either clockwise or anticlockwise, and this direction
must correspond with the letter sequence specified for the angle. Strange and
unexpected results will be produced if the four parameters are not internally
consistent. The parameter order angle/radius/internal/clockwise etc is
important.

The radius can be any numerical expression.

Examples

DrawAngleArrow{angle (ABC), radius(3), external, clockwise}
var r = 2
DrawAngleArrow{angle(PQR), radius(r), internal, anticlockwise}

4.3. COMMAND DEFINITIONS 45

4.3.9 DrawArrow
This command draws an arrow(s) joining two points.

e Syntax

drawArrow ((two-points) [, (two-points)] ...)

e Notes

The direction of the arrow is in the point order specified. The shape of
the arrowhead is controlled by the ArrowShape command (see Section 7.3).
Commands and parameters which control line-thickness are described in Sec-
tion 3.7.1.

¢ Examples
drawArrow(AB)
drawArrow(FG, HJ)

4.3.10 DrawCircle

Draws a circle with its centre at a given point and with a given radius.

e Syntax
DrawCircle (CENTRE , RADIUS)
CENTRE : := (point)
RADIUS ::= {expr)

e Notes

Note that P[CTEX draws circles with the \circulararc command, using a
radius equivalent to the distance from the centre to the point at which it
starts drawing the arc. Consequently, if the units of the x and y axes are
different, circles may be drawn strangely. MathsPIC therefore generates a
message to this effect in the output-file if different units are selected for the
two axes in the units command.

¢ Examples

drawCircle(C2,5)

var r2=3

drawCircle(C2,r2)
drawCircle(C2, (r2/tan(1.2)))
drawCircle(C2,AB)

46 CHAPTER 4. MATHSPIC COMMANDS

4.3.11 DrawCircumcircle

Draws the circumcircle of a triangle defined by three points

e Syntax
DrawCircumcircle((three-points))
e Example

drawCircumcircle (ABC)

4.3.12 DrawCurve
Draws a smooth quadratic curve through three points in the order specified.

e Syntax

DrawCurve ((three-points))

e Notes

This command will be upgraded in the next version to apply to more than
three points.

Note that curves drawn using this command do not break to avoid line-free
zones associated with the points (the drawLine command for straight lines
does acknowledge line-free zones).

e Example

drawCurve (ABC)

4.3.13 DrawExcircle
Draws the excircle touching a given side of a triangle.
e Syntax
DrawExcircle(TRIANGLE , SIDE)
TRIANGLE : := (three-points)
SIDE : := (two-points)
e Example

drawExcircle (ABC,BC)

4.3. COMMAND DEFINITIONS 47

4.3.14 Drawlncircle

Draws the incircle of a triangle defined by three points

e Syntax

DrawIncircle((three-points))

¢ Example

drawIncircle (ABC)

4.3.15 DrawLine

This command draws a line(s) between sets of two or more points.

e Syntax
drawLine (LINE [, LINE]| ...)
LINE : := (two-points) [(point) | ...
e Notes

Lines are drawn in the point order specified. Commands and parameters
which control line-thickness are described in Section 3.7.1.

Note that the drawline command uses the P[CTEX \putrule command for
horizontal and vertical lines, and the \plot command for lines of all other
orientations.

¢ Examples

drawLine (AB)
drawLine(FG, HJ)
var d = 3

4.3.16 DrawPerpendicular
Draws the perpendicular from a point to a line.
e Syntax
DrawPerpendicular ((point) , LINE)
LINE : := (two-points)
¢ Example

drawPerpendicular (P, AB)

48 CHAPTER 4. MATHSPIC COMMANDS

4.3.17 DrawPoint

Draws a symbol at the point-location.

e Syntax
DrawPoint ((point) [(point) | ...)

e Notes There must be no commas in the list of points (spaces are allowed).

e Example
drawpoint (T4)

drawpoint (ABCDEF)
drawpoint (P1 P2 P3 P4)

4.3.18 DrawRightangle

Draws the standard right-angle symbol in the internal angle specified, and at
specified size.

e Syntax
DrawRightangle ((three-points) , (expr))

e Example

drawRightangle (ABC,3)

4.3.19 DrawSquare
Draws a square at a given point with a given side-length.

e Syntax
DrawSquare ((point) , {expr))

e Example

drawSquare(P,5)
drawSquare (P,s2)
drawSquare (P, s2*4/(3%j))
drawSquare (P,AB)

4.3. COMMAND DEFINITIONS 49

4.3.20 DrawThickArrow
This command draws a thickarrow(s) joining two points.

e Syntax
drawThickArrow ((two-points) [, (two-points)] ...)

e Notes

The direction of the arrow is in the point order specified. The shape of
the arrowhead is controlled by the ArrowShape command (see Section 7.3).
Commands and parameters which control line-thickness are described in Sec-
tion 3.7.1.

¢ Examples
drawThickArrow(AB)
drawThickArrow(FG, HJ)

4.3.21 DrawThickLine

This command draws a thick line(s) between sets of two or more points.

e Syntax
drawThickLine (LINE [, LINE| ...)
LINE : := (two-points) [(point) | ...

e Notes

Lines are drawn in the point order specified. Commands and parameters
which control line-thickness are described in Section 3.7.1.

Note that the drawThickLine command uses the P[CTEX \putrule com-
mand for horizontal and vertical lines, and the \plot command for lines of
all other orientations.

¢ Examples

drawThickLine (AB)
drawThickLine (FG, HJ)
var d = 3

4.3.22 InputFile

Inputs a plain text file containing mathsPIC commands, one or more times.

50

CHAPTER 4. MATHSPIC COMMANDS
e Syntax
InputFile((file-name)) [LOOP]
LOOP ::= (expr)
Notes

Optionally, the file can be input [LOOP] times, in which case this command
can be used to implement something akin to a primitive DO—LOOP if the file
contains mathsPIC commands.

See also the LOOP command (a beginLOOP...endLOOP environment).

If LOOP is not an integer then mathsPIC will round the value down to the
nearest integer. Note that the inputfile* command has no [LOOP] option.
Example

The following command inputs the file newfile.dat 4 times in succession.
inputFile(myfile.dat) [4]

The inputfile* command is used to input a file in wverbatim, i.e. a file
with no mathsPIC commands. For example, a file containing only P[CTEX
commands or data-points for plotting etc. A typical example might be the
following file (curve-A.dat) which would be input verbatim using the com-
mand inputfile*(curve-A.dat).

%% curve-A.dat

\setquadratic
\plot

0 0

3.56 4.87
8.45 9.45

5 7

2.34 3.23/
\setlinear

4.3.23 LineThickness

Sets a particular linethickness.

e Syntax

Linethickness ((expr) (units))

Linethickness (default)

4.3. COMMAND DEFINITIONS 51

e Notes

This command also sets the font to cmr and plotsymbol to {\CM .}, and also
sets the rule thickness for drawing horizontal and vertical lines. For example
the command linethickness(2pt) results in the following commands in
the output .mt file.

\linethickness=2.00000pt\Linethickness{2.00000pt}’
\font\CM=cmr10 at 19.94451pt}
\setplotsymbol ({\CM .})%

The command linethickness(default) restores the working linethickness
to the default value of 0-4pt.

The current value of linethickness (in the current units as defined in the
paper command) can be accessed as the value _linethickness_ as follows.

var t = _linethickness_

See also—the chapter on P[CTEX commands as there is a similar P[CTEX
command with the same name (but with a different syntax).

e Example

linethickness(2pt)
linethickness(default)
var t = _linethickness_

4.3.24 Loop environment

This environment cycles a block of code a number of times.

e Syntax
beginLoop (ezpr)...endLoop

e Notes The block of code which lies within the environment is input (expr)
times.

¢ Example
beginLoop 5

endLoop

52 CHAPTER 4. MATHSPIC COMMANDS

4.3.25 Paper

Defines the plot area and scale, and optional axes and tick marks.
e Syntax

Paper{ UNITS , XRANGE , YRANGE , AXES , TICKS }

Paper{ UNITS XRANGE YRANGE AXES TICKS }

UNITS ::= units((expr) (units) [, (y-expr) (y-units) |)
XRANGE : := xrange((low-expr) , (high-expr))
YRANGE ::= yrange((low-expr) , (high-expr))

Axes ::= axes ([(L)[*]] [(R)[*]] [(T)[*]] [(B)[*]] [(X)[*] [(Y)[*]]

TICKS ::= ticks((z-expr) , (y-expr))

e Notes

The following statement sets up a rectangular drawing area 5 cm X 5 cm
with axes on the Left (y-axis) and Bottom (x-axis), and tick marks at 1 cm
intervals.

paper{units(icm) ,xrange(0,5) ,yrange(0,5) ,axes(LB) ,ticks(1,1)}

All combinations of the axis-codes (XYLRTB) are allowed, and a * following
an axis-code (e.g. L*) disables the drawing of ticks on the specified axis.

If it is necessary to have different unit scales for the x and y axes, say 1
cm and 2 mm respectively, then this is implemented by units(1cm,2mm). If
only a single unit is specified (e.g. units(3cm)) then mathsPIC automatically
makes this the unit scale for both axes. If the unit option is omitted P[CTEX
will use the last defined units (within the same picture environment), the de-
fault units being zunit=1pt and yunit=1pt (see the P[CTEX Manual, page 3;
Wichura, 1992).

If different units or different sizes of the same unit are used for the z and y
scales then mathsPIC issues a warning message to this effect.

e Example

paper{units(icm) ,xrange(0,10),yrange(0,10) ,axes(XY)}

var j=5

paper{units(lcm) ,xrange(0,j) ,yrange(0,5) ,axes (LBT*R*) ,ticks(1,1)}
var u = 3

paper{units((u)mm) ,xrange(0,50) ,yrange(0,50) ,axes (LBTB)}

4.3. COMMAND DEFINITIONS 593

4.3.26 Point
Allocates coordinates to a point-name.

e Syntax
Point [*] point)) { (point) } [OPTION [, OPTION]]

o
Point [*] ((point)) { LOCATION } [OPTION [, OPTION]]

LOCATION : := (z-expr) , (y-expr)

LOCATION : := xcoord((point)) , ycoord((point))
LOCATION ::=midpoint ((two-points))

LOCATION ::= intersection((two-points) , (two-points))
LOCATION ::= PointOnLine((point) , (expr))

LOCATION : := perpendicular((point) , (two-points))
LOCATION : := Circumcirclecenter ({three-points))
LOCATION ::= Incirclecenter((three-points))
LOCATION ::= Excirclecenter((three-points) , (two-points))
LOCATION : := (point) , POINT-FUNCTION
POINT-FUNCTION ::= shift((z-expr) , (y-expr))
POINT-FUNCTION : := polar((r-expr) , (0-expr))

POINT-FUNCTION : := rotate((point) , (f-expr))

POINT-FUNCTION : := vector ({(two-points))

OPTION ::= symbol = CHARS | radius = (expr)
CHARS ::= (string) | square((expr)) | circle({(expr))
e Notes

The default point-symbol is the \bullet. An optional alternative point-
symbol (or string of characters) can be specified within square brackets
e.g. [symbol=\triangle]

By default lines drawn to a ‘point’ are drawn to the point location. However,
the radius of an optional line-free zone (line-free radius) can be specified
within an optional square bracket e.g. [symbol=\triangle,radius=2].
A line-free radius option can be specified by itself, for example [radius=2].

The polar(r,theta) defaults to radians for the angle theta. If degrees are
required then need to append < deg >; e.g. polar(r,theta deg). Note
that direction() or directiondeg() can be used instead of theta.

An optional symbol=circle() or symbol=square() can also be used as the
symbol. In these cases a numeric expression is required as the argument, and

54

CHAPTER 4. MATHSPIC COMMANDS

is taken to be the side length (for square ()) or circle-radius (for circle()).
If a radius (ezpr) is also included then the square will have associated
with it a line-free radius of the specified value, e.g. [symbol=square(2),
radius=5]; and similarly if the symbol is a circle.

Note (1) there must be a comma between the options, and (2) the options
are not order specific. If no line-free radius value is specified, the line-free
radius used is the current (default) value).

Points can also be defined relative to previously defined points. For example,
as the intersection of two existing lines, or as a +ve or —ve extension (in
the direction indicated by the letters) between two previously defined points,
(e.g. the PointOnLine () construction).

If the command point () {} is used to reallocate new parameters to an ex-
isting point-name then mathsPIC will generate a warning message indicating
that an existing point-name is being reallocated. For example, the following
code

point(8){6,6}
point (8){7,7}

will generate the following warning message in the output file, but still real-
locate the point-name.

%% point(S){6,6} S = (6, 6)

%% *** Line 15: point(S

Do Hkx){7,6}

%% ... Warning: Point S has been used already
%% point(S){7,6} s = (7, 6)

The point* command allocates parameters to a point-name irrespective of
whether that point-name has been previously defined or not. Thus in the
above example, the reallocation proceeds without any warning message at
all, as follows

%% point(S){6,6} S = (6, 6)
%% point*(8){7,6} S = (7, 6)

Examples

point(A){5,5}

point (B2){22,46} [symbol=\odot]
point(B2){22,46} [symbol=circle(2) ,radius=5]
point (B2){22,46} [symbol=square(3) ,radius=5]

4.3. COMMAND DEFINITIONS 55

point (B2){22,46} [radius=5]

point(D2){B2, shift(5,5)}

point (D3){D2, polar(6,32 deg)}

point (D4){D2, polar(6,1.2 rad)}

point (D4){D2, polar(6,direction(AB))}

point (D4){D2, polar(6,directiondeg(AB)deg)}
point (G2){Q, rotate(P, 23 deg)}

point (J4){B2, vector(AB)}

point (D2) {midpoint (AB)}
point(D2){intersection(AB,CD)}

point (F){PointOnLine(AB,5.3)}

point (G) {perpendicular(P,AB)}

point (H){circumcirclecenter (ABC)}

point (J){incirclecenter (ABC)}

point (K){excirclecenter (ABC,BC)}

point*(A){6,3}

point*(B){B, shift(5,0)}

point*(P){J} %% make J have the same coords as P
point*(P){xcoord(J),ycoord(J)} %% same as Point*x(P){J}

4.3.27 PointSymbol
Sets a particular point-symbol and line-free radius.

e Syntax
pointSymbol ((chars) , (expr))
pointSymbol (square({expr)) , (expr))
pointSymbol (circle({expr)) , (expr))

e Notes

This command allows the default point-symbol (\bullet, line-free radius
zero) to be changed. The square option takes the side-length as argument.
The circle option takes the radius as argument.

The PointSymbol command is particularly useful where a set of points uses
the same point-symbol, and also when drawing graphs.

For example, the following command changes the point-symbol to ® having
a line-free radius of 0-7 units.

PointSymbol (\odot, 0.7)

Note that the PointSymbol command only influences subsequent point
commands. The optional square bracket of the point command overrides

56 CHAPTER 4. MATHSPIC COMMANDS

the PointSymbol command. The point-symbol can be reset to the default
(\bullet, zero line-free radius) using the command PointSymbol (default).

e Example

PointSymbol (\odot, 0.7)
PointSymbol (square(4), 5)
PointSymbol(circle(3), 3)

var r = 1.2

PointSymbol (\triangle, 0.7)
PointSymbol (circle(r), r)
pointSymbol{default)

4.3.28 Skip environment
This is an environment within which commands are not actioned.

e Syntax
beginSKIP. . .endSKIP

e Notes

It is useful in development for by-passing commands (i.e. its function is
equivalent to the \iffalse....\fi commands in a TEX document).

4.3.29 System

This command allows the user to access the command line and execute system
commands. Allows programs to be run from within mathsPIC.

e Syntax

system (" {command) ")

e Notes

The whole command must be delimited by inverted commas. For example,
the following command will temporarily stop mathsPIC processing, access the
command-line and run I2TEX on the file myfile.tex, and then seamlessly
return and continue mathsPIC processing.

system("latex2e myfile.tex")

Alternatively, the system() command may be used to create a small batch
file on-the-fly in order to facilitate some procedure. In mathsPIC a common
use is for running a Perl program to write mathsPIC commands to a file which
is then input by mathsPIC (see the examples at the end of the Examples
chapter).

4.3. COMMAND DEFINITIONS o7

e Example

system("dir > mydir-listing.txt")
system("perl drawbox.pl 5 5 temp.txt")
inputFile(temp.txt)

4.3.30 Show...

This command makes mathsPIC return the value of a calculation or specified pa-
rameter.
e Syntax
ShowLength ((two-points))
ShowAngle ((three-points))
ShowArea ((three-points))
ShowPoints

ShowVariables

e Notes

The showarea() command is only for triangles. The results of the Show. ..
commands are shown in the output-file as a commented line.

e Example

showLength (AB)
showAngle (ABC)
showArea (ABC)
showPoints

showVariables

When the above examples are processed, the results appear as commented
lines in the output-file as follows.

%% Length (AB) 25.35746
%% Angle(ABC) = 39.35746 deg (0.68691 rad)

%% Area(ABC) = 54.54267
===

He LIST OF POINTS
===

%t = (8.000, 9.000), LF-radius = 5.000, symbol = \bigodot

q
%% s = (6.000, 6.000), LF-radius = 0.000, symbol = \bullet
%%h p = (56.000, 5.000), LF-radius = 3.000, symbol = \circle
%% t = (5.000, 5.000), LF-radius = 7.000, symbol = \square

58 CHAPTER 4. MATHSPIC COMMANDS

===

Wt END OF LIST OF POINTS
===
===
yAA LIST OF VARIABLES
Sttt
%h a =4

%% b = 12

fhmmmmmmm e
%o END OF LIST OF VARIABLES

=== =

4.3.31 Text

Places text at a given location.

e Syntax
Text ((string)) { LOCATION } [POSSN [, POSSN]]
LOCATION : := (point)
LOCATION : := (z-expr) , (y-expr)
LOCATION : := (point) , POINT-FUNCTION
POINT-FUNCTION ::= shift ((z-expr) , (y-expr))
POINT-FUNCTION ::= polar((r-expr) , (f-expr))
PossN::= 1 |t |l r|RID

e Notes

This command puts the given text-string either at the named point, or with
a displacement specified by the optional shift() or polar() or rotate()
functions. By default the text is centreed vertically and horizontally at the
specified location.

Optionally, text can be placed relative to the specified location using appro-
priate combinations of the P[CTEX position options 1 t r B b to align the
left edge, right edge, top edge, Baseline, bottom edge respectively of the
text box with the point-location (see the P[CTEX Manual, page 5; Wichura,
1992). For example, the text box ‘ This is point P ‘would be aligned such
that the right edge of the text box would be centreed vertically at the point
P, using text(This is point P){P}[r] (see figure3.3).

Note that TEX and ETEX macros are very useful for defining blocks of text
in this setting, since the macro name can be used in the text () command
for convenience, as shown in the examples below.

4.3. COMMAND DEFINITIONS 99

e Example

text (A){5,6}

text (A_1){A1, shift(2, 2)}

text (22){Z2, shift(5, -5)}[tr]
text (23){Z2, polar(5, 20 deg)l}[Br]
text ($Z4$){Z2, rotate(P, 45)}

text (\framebox{$Z5%$3}) {Z3}
\newcommand{\mybox}{\framebox{$Z5$}}
text (\mybox) {P421}

4.3.32 Var

The var command is used to define scalar variables.

e Syntax

var (name) = (expr) [, (name) = (expr)] ...

e Notes

The variable name follows the same naming convention as points and vari-
ables (see Section 4.3). The scalar argument can be any numeric expression.

New values can be re-allocated to existing variable-names; however, when
this occurs then mathsPIC does issue a warning message to hightlight
this fact. If it is important to be warned if a potential variable is accidentally
reallocated then one should consider using the const command instead (since
mathsPIC does generate an error message if a constant is reallocated).

Note that in addition to all the mathematical functions, the following func-
tions can also be used.

angle ({three-points))
angledeg ((three-points))
direction ((two-points))
directiondeg ({two-points))
area ((three-points))
xcoord ({point))
ycoord({point))

¢ Example

var r = 20, r4 = r3*tan(0.3), j = (r*2e3)*x2, rb5 = AB
var e = _e_, pl = _Pi
var t = _linethickness_

60 CHAPTER 4. MATHSPIC COMMANDS

var L25 = AB %% gives length of line AB

var gl37 = angle(ABC) %(default: returns in radians)

var g = angledeg(ABC) % returns in degrees

var d = direction(PQ) % angular direction of PQ in radians
var d = directiondeg(PQ) % angular direction of PQ in degrees
var h = area(ABC)

var x2 = xcoord(A), y2 = ycoord(A)

var mb = 12 rem 3 %} remainder after dividing by 3
var s1 = sgn(h) % returns the sign (+1, -1, 0) of h
var i = int(k) % returns the integer value of k

4.4 Summary of mathsPIC commands

The following list shows the format and typical usage of all mathsPIC commands.
Although mathsPIC commands are not case sensitive, in this summary of com-
mands points are represented using upper case letters, and variables and constants
are represented using lower case letters. Note that a leading \, is used for copying
TEX or PICTEX lines verbatim, for example with macros or coordinates of data
points etc.

\ 4.5 6.3

%def loge(n)log(n)¥%

%def fancydashes() dasharray(ipt,2pt,3pt,4pt)%

%def plaindashes() dasharray(lpt,ipt)%

hdef d2r () _pi_/180%

hdef r2d()180/_pi_}

ArrowShape (4mm, 30,50)

ArrowShape(default) %) generates arrowshape(2mm,30,40)

beginloop ... endLoop 5
beginloop ... endLoop n
beginNoOutput ... endNoQOutput
beginSKIP ... endSKIP

const r40=40

drawAngleArc{angle(ABC), radius(3), internal, clockwise}
drawAngleArrow{angle(ABC), radius(3), internal, clockwise}
drawArrow (AB) Y%from A to B

drawArrow(AB,CD)

drawCircle(J,12)

drawCircle(C,r2)

drawCircle(C,AB) %% the radius is length of line AB
drawCircumcircle (ABC)

drawCurve (ABC) %% three points only

4.4. SUMMARY OF MATHSPIC COMMANDS 61

drawExcircle (ABC)

drawIncircle (ABC)

drawLine (AB)

drawlinex(AB, CDEF) %% the * option disables use of \putrule
drawLine (ABCDE)

drawPerpendicular (P, AB)

drawPoint (B)

drawPoint (ABP1P2)

drawRightAngle (ABC, 4)

drawSquare(P,2) %% side = 2

drawThickArrow(AB)

drawThickArrow(AB,CD)

drawThickLine (RS, TU)

inputFile(mathspic.dat)

inputFile(mathspic.dat) [4]

inputfilex*(fig2.dat) %% disables mathsPIC processing of file
linethickness(2pt)
paper{units(imm,3mm) ,xrange(-5,50) ,yrange(-5,50) ,axes(LR) }
paper{units(2cm) ,xrange(0,5) ,yrange(0,9) ,axes (X*Y) ,ticks(1,1)}
paper{units(k mm) ,xrange(0,5) ,yrange(0,9),axes(X*Y) ,ticks(1,1)}
point(D1){20,2}

point(D4){6.3,8.9}

point (P){x1,y1}

point(P){Q} %’ make P have same coords as Q

point (P){xcoord(Q) ,ycoord(Q)} %% same as point(P){Q}

point (P){AB,PQ}

point (P){3,4} [symbol=\odot,radius=2]

point (P){3,4} [radius=2]

point (D2){20,2} [symbol=square(2) ,radius=3]

point (D3) {20, 3} [symbol=circle(r) ,radius=5]

point (D4){20,4} [symbol=\Box]

point (E1){D1, shift(5,6)}

point (E5){D1, shift(r2,6)}

point (E2){D2, polar(8, 1.34)} %% radians is the default
point (E2){D2, polar(8, 1.34 rad)}

point (E2){D2, polar(8, direction(AB))} %% radians is the default
point (E2){D2, polar(8,45 deg)}

point (E6){D2, polar(r4,45 deg)}

point (E2){D2, polar(8, directiondeg(AB) deg)}

point (E5){D2, polar (AB,45 deg)}

point(G2){Q, rotate(P, 23 deg)} Y% rotate Q about P by 23 deg
point (P){J, vector(AB)} %% from J with direction and length AB

62 CHAPTER 4. MATHSPIC COMMANDS

point (D32) {midpoint (AB)}
point(D2){intersection(AB,CD)}

point (F){PointOnLine (AB,5)}

point (F){PointOnLine(AB,-d)}

point (G) {perpendicular(P,AB)}

point (H){circumcirclecenter (ABC)}
point (J){incirclecenter (ABC)}

point (K){excirclecenter (ABC,BC)}
point*(D1){20,3}

point*(E1){D1, shift(3,0)}
point*(E1){E1}[radius=3] %)% change the line-free radius
PointSymbol (circle(r))
PointSymbol(square(1),2)

PointSymbol (\odot,2)

PointSymbol (default)

PointSymbol (default,0.5)

showAngle ()

showArea()

showLength ()

showVariables

showPoints

system("dir > mydir-listing.txt")
system("perl myprogram.pl")

text (P){5,7}

text (A) {A}

text (K) {K} [r]

text (B){B, shift(5,5)}

text (23) {22, polar(5, 20 deg)}[Br]
text (\framebox{$Z5%$}) {Z3}
\newcommand{\mybox}{\framebox{$Z5$}}
text (\mybox) {P421}

text (\framebox{C}){C, polar(5,62 deg)}[Br]
var r3 = 20, r4 = r3 * tan(0.4), rb = AB, e=_e_, pl = _Pi

var g = angle(ABC)% (returns in radians)

var g = angledeg(ABC)% (returns in degrees)

var a = area(ABC)

var d = vector(PQ) % angular direction of PQ in radians
var d = vectordeg(PQ) % angular direction of PQ in degrees

var x2 = xcoord(A), y2 = ycoord(A)
var mb = 12 rem 3 %% remainder after dividing by 3

PCTEX commands

Note that P[CTEX commands can only be used within the \beginpicture ...
\endpicture environment, as described in the P[CTEX Manual® (Wichura, 1992).

Most PICTEX commands are short one-line commands starting with a leading
backslash. Such commands can be used in the normal way as mathsPIC will auto-
matically copy lines starting with a backslash command unchanged through into
the output-file (.mt file). For example, drawing with dashed lines is enabled using
the P[CTEX \setdashes command, and this would be expressed in the mathsPIC
file as follows.

\setdashes

However, some P[CTEX commands are very long. It is therefore sometimes nec-
essary to have the initial part of a P[CTEX command on one line, with the rest
of the command continuing onto the next line, such that the second and subse-
quent lines may well not have a leading backslash command. In order to protect
such subsequent lines from being processed as mathsPIC commands, they must be
protected by a leading backslash followed by one or more spaces (e.g. \...) as
this instruction tells mathsPIC to copy the rest of the line unchanged (without the
leading backslash) through into the output-file. For example, the P[CTEX code
for plotting data-points for a curve could be spread across several lines in the
mathsPIC file as follows.

\setquadratic

\plot 1.15 -0.67

\ 1.25 0.02
\ 1.35 1.24
\ 1.45 3.13 /
\setlinear

ISee Section 9.5 for information regarding the P[CTEX manual, and P[CTEX files on CTAN.

63

64 CHAPTER 5. P[CTEX COMMANDS

When these commands are processed by mathsPIC, they will appear in the output
TEX file (.mt file) as follows.

\setquadratic

\plot 1.15 -0.67
1.25 0.02
1.35 1.24
1.45 3.13 /

\setlinear

5.1 Useful P[CTEX commands

The following is a list of PICTEX commands which are particularly useful for in-
cluding in the mathsPIC file, mainly for controlling the thickness of lines and axes,
customising dash patterns and symbol spacing, and for plotting and rotation. See
also Chapter 9 for details of other PJ[CTEX files and packages available on CTAN.

Note that there is a section on P[CTEX in Alan Hoenig’s recent book TgEX
Unbound? which also includes a brief list of commands.

Note that where small angle brackets are shown (e.g. <...>) then these must
be used exactly as shown, including spaces.

\grid {cols} {rows} %% eg \grid {5} {10}
\setdashpattern <4pt, 2pt>
\setdashes <7pt> %% equivalent to \setdashpattern <7pt, 7pt>

\setdashes %% default is \setdashes <b5pt>
\setdots <4pt>
\setdots %% default is \setdots <b5pt>
\setsolid %% sets solid-line mode (ie not dashes/dots)
\setlinear %% sets straight-line plotting mode
%% (ie not quadratic)
\setquadratic %% sets curved plotting for graphs etc

\setplotsymbol ({\large .})
\setplotsymbol ({\tiny .}) %% default size for curves
%% (used by \plot)
\plotsymbolspacing=2pt %, sets spacing between plot symbols
%% (used by \plot)

\plotheading{. .} %% eg \plotheading{This is a quadratic}
\headingtoplotskip=1cm 7%/, separation between plotheading & graph
\linethickness=2pt %% for horiz & vert lines: default 0.4pt
\frame <sep> {text} %% eg \frame <5pt> {Hello}

2Hoenig A (1998). TEX Unbound: KTEX and TEX strategies for fonts, graphics, & more. (Ox-
ford University Press, UK) pp 580. 1sBN: 0-19-509685-1 (hardback), 0-19-509686-X (paperback);
see pages 377-389.

5.2. USING THE $ SYMBOL WITH P[CIgX 65

\rectangle <width> <height> %) eg \rectangle <2cm> <lcm>
\putrectangle corners at 5 10 and 30 5 %% corners at Top-left
%% and Bottom-right

\inboundscheckon %% restricts plotting to plotting area
\inboundscheckoff %o
\normalgraphs %% restores default values for

%% graph parameters (see Section 4.6.1)
\circulararc 30 degrees from 3.5 4.5 center at 5 5
\ellipticalarc axes ratio 2:1 360 degrees from 3 3 center at 5 5
(axes ratio is major-axis:minor-axis, i.e.” a:b)

Note that P[CTEX also has an excellent rotation facility. P[CTEX will rotate
about a given point, by a given angle, all picture elements (but not text) which are
detailed between its \startrotation... and \stoprotation commands. How-
ever the decimal value of the Sine and Cosine angle must be supplied (see below).
If the point is not specified then rotation is performed about the origin. The
format is as follows.

\startrotation by cos(t) sin(t) [about x y]

\stoprotation

This command is particularly useful for rotating curves. For example, to rotate
an ellipse by 30 degrees about the point (5,5) one would write

\startrotation by 0.86602 0.5 about 5 5
\ellipticalarc.....
\stoprotation

Note that the \startrotation command would be easily amenable to rewriting
as a mathsPIC macro (to avoid calculating the radian values etc).

A PICTEX error-bar facility is also available by loading the file errorbar.tex
(see Section 9.4). Note that PICTEX does allow more sophisticated graph axes and
tick-marks to be setup, as well as shading of enclosed areas. However, these are
complicated and require access to the PICTEX Manual (see Section 9.5), and are
currently outside the scope of mathsPIC.

5.2 Using the $ symbol with P[CTEX

Because P[CTEX was originally written for Plain TEX there is a difficulty when
using the $ symbol in the labels for axes. The ‘work-around’ fix for this is to
re-encode it as, say, \dollar, and express $2 as {\dollar}2, as shown in the
following example which has dollars on the y-axis (note the % at the end of the
first line to stop unwanted horizontal space being grabbed by P[CTEXand pushing
the Y-axis slightly to the right).

66 CHAPTER 5. P[CTEX COMMANDS

\newcommand{\dollar}{\char’44}/,

\setcoordinatesystem units <lmm, 1mm>

\setplotarea x from O to 50, y from O to 50

\axis bottom ticks numbered from 0 to 50 by 10 /

\axis left ticks withvalues {\dollar}1 {\dollar}2 / at 10 20 / /
\plotheading{A nice picture costing \$25}

6
TEX and IATEX commands

A mathsPIC file (or script) can contain any appropriate TEX and BTEX commands.
Clearly a significant chunk of these commands relate to the preamble, and many
of these are described in detail in Section 3.2.

6.1 The \typeout{} command

A very useful command is the \typeout{} command, which will make TEX print
comments to the screen while the output-file is being processed. For example, the
following commands in the mathsPIC file will print a message to the screen just
before processing a data-file for a curve.

\typeout{processing the data-file nowl}’
inputfile*(curve.dat)

This command is also useful when a file is input several times in a loop using the
mathsPIC inputFile{..}[] command. In such cases it is quite useful to include
the line \typeout{...}% at the beginning of the file being input, as this results
in TEX printing . .. to the screen each time the file is input.

Note the importance of including the comment % symbol at the end of the line
when the \typeout{}/, command is used within the P[CTEX picture environment.

6.2 The Color package

The Color package can be used to draw parts of a diagram in colour, in much the
same way one would when dealing with text (note that the color package must
be installed after mathspic). One simply inserts the the usual B TEX commands
between mathsPIC commands. In practice we have found that it is prudent to

67

68 CHAPTER 6. TgX AND BTEX COMMANDS

include the \normalcolor command immediately following the \beginpicture
command, and also immediately before the \endpicture command, in order to
prevent strange colors spreading into any following text (following the diagram).

For example, the following code will draw the line PQ in blue. Note the two
instances of the \normalcolor command.

\usepackage{mathspic, color}

\beginpicture
\normalcolor

iééior{blue}
\drawline (PQ)
\color{black}

\normalcolor
\endpicture
The colours will be visible in PostScript (use dvips) and PDF (use ps2pdf;

pdfLaTeX) . Note however, that some DVI-viewers do not currently show colour
(e.g. XDVI for Linux).

6.3 Other useful BTEX commands

Note that it is important to put a % on the end of these WTEX commands in order
to prevent P[CTEX from adding spaces to the end. For more details of these useful
commands see Knuth (1990) p 272-279; Eijkhout (1992); Salomon (1995).

\typeout{drawing circle nowl}

\scrollmode ¥%(forces TeX to display errors but not to stop)
\nonstopmode

\batchmode

\newlength{}

\newcommand{}

\settowidth{}

\settolength{}

\settodepth{}

\newcount %% \newcount\loopcounter
\advance %% \advance\loopcounter by 1
\divide %% \divide\mycounter by 2
\multiply %% \multiply\mycounter by 2

6.3. OTHER USEFUL BTEX COMMANDS

\newwrite

\openout
\immediate\writel18{...}
\write

\closeout

\the

\number

\showthe

\jobname

69

70

CHAPTER 6. TgX AND BTEX COMMANDS

Examples

This section describes some practical examples of figures drawn using mathsPIC,
together with the associated code.

When drawing a new figure or diagram, the authors finds it best to start with
a graduated coordinate frame (see Figure 7.1) using the axes and ticks options
of the paper command. The next step is to define an anchor point from which
other points can be derived—this has the advantage that the whole figure can then
be moved by simply changing the coordinates of the anchor point. If necessary,
different parts of a complicated figure can be made having their own separate an-
chor points, allowing the various parts to be easily adjusted relative to each other.
Finally, the frame should be moved close to the edge of the figure by adjusting
the xrange and yrange parameters, in order to remove unnecessary surrounding
white space, after which the the axes and ticks options of the paper command
can be removed ready for inserting into the document. The code can then be ei-
ther pasted into the document directly (within a \beginpicture. ..\endpicture
environment), or kept as a separate file and then \input as required.

As regards scales and units, the authors find it most convenient to use the
1lmm units and to keep the z and y scales the same whenever possible (i.e. use
paper{units(imm)...}), since this allows easy scaling up and down after the
figure has been finished.

7.1 Input- and output-files

The following example mathsPIC file (input-file) illustrates how some of these com-
mands are used to draw Figure 7.1. Note that the dashed line BD is drawn after
the P[CTEX \setdashes command is invoked; following this \setsolid is used
before drawing the right-angle symbol. Also, the points A, B, C are defined using
the TEX \odot symbol ®, in conjunction with a line-free zone of 1-2 mm in order

71

72 CHAPTER 7. EXAMPLES

to make the lines go to the edge of the symbol—the value of the radius of such
TEX symbols has to be determined by trial and error—see Table 1.

0 10 20 30 40 50 60 70

04+ --1-—--1—-—-J__1__1__L__L5
[[
[[

40 - 40
[[

[[
30+ 30
[[

[[
20—| c |—20
[[
10—: :—10
[[

O+--~-~-~-—~7-~7-~-1~--F0

-
0 10 20 30 40 50 60 70
Figure 7.1:

%% mpicpm07-1.m (Figure 7.1)

\documentclass [adpaper]{article}

\usepackage{mathspic}

\begin{document}

\beginpicture

\setdashes

paper{units(1mm) ,xrange(0,70) ,yrange(0,50) ,axes(LRTB) ,ticks(10,10)}
\setsolid

point (A){10,10} [symbol=\odot, radius=1.2] %% anchor point
point (B){A, polar(40, 50 deg)}[symbol=\odot, radius=1.2]
point (C){A, polar(50, 10 deg)}[symbol=\odot, radius=1.2]
point (D) {perpendicular(B,AC)}

drawPoint (ABCD)

drawLine (ABCA)

\setdashes

drawLine (BD)

\setsolid

drawRightangle(BDC,2.5)

text (B) {B, shift(-1,4)}

text (A){A, shift(-4,-2)}

7.1. INPUT- AND OUTPUT-FILES 73

text (C){C, shift(4,-1)}
text (D){D, shift(1,-4)}
showLength (BD)
showLength (AC)

showArea (ABC)

showAngle (ABC)
\endpicture
\end{document}

When the above mathsPIC file is processed by mathsPIC the output-file (.mt
file) is as follows. Note how the PICTEX commands are preceded by their mathsPIC
commands (commented out), some of which have additional information (e.g. the
coordinates of a derived point—see the line %% point(D)...). Being able to
compare the mathsPIC commands and the resulting P[CTEX commands in the
output-file is particularly useful when debugging. Note also how the show...
commands at the end of the file return the lengths AD, BC, the area ABC, and
the angle ABC.

Yok —m
%* mathsPIC (Perl version 0.99.22 Dec 29, 2004)

%* A filter program for use with PiCTeX

%* Copyright (c) 2004 A Syropoulos & RWD Nickalls
%* Command line: mpic09922.pl -b mpicpm07-1.m

%* Input filename : mpicpm07-1.m

%* Output filename: mpicpmO7-1.mt

%* Date & time: 2005/01/05 10:00:40

Yk
%% mpicpm07-1.m (figure 7.1)

%% mathsPIC Perl triangle

\documentclass [adpaper]{article}
\usepackage{mathspic}

\begin{document}

\beginpicture

\setdashes

%% paper{units(imm) ,xrange(0,70),yrange(0,50),axes(LRTB),ticks(10,10)}
\setcoordinatesystem units <imm,imm>

\setplotarea x from 0.00000 to 70.00000, y from 0.00000 to 50.00000
\axis left ticks numbered from O to 50 by 10 /
\axis right ticks numbered from 0 to 50 by 10 /
\axis top ticks numbered from O to 70 by 10 /
\axis bottom ticks numbered from O to 70 by 10 /
\setsolid

%% point (A){10,103} [symbol=\odot, radius=1.2]

74 CHAPTER 7. EXAMPLES

%% anchor point A = (10.00000, 10.00000)
%% point (B){A, polar(40, 50 deg)}[symbol=\odot, radius=1.2]
B = (35.71150, 40.64178)
%% point (C){A, polar(50, 10 deg)}[symbol=\odot, radius=1.2]
C = (59.24039, 18.68241)
%% point (D) {perpendicular(B,AC)} D = (40.17626, 15.32089)
%% drawPoint (ABCD)
\put {\odot} at 10.00000 10.00000 %% A
\put {\odot} at 35.71150 40.64178 % B
\put {\odot} at 59.24039 18.68241 %% C
\put {\bullet} at 40.17626 15.32089 %% D
%% drawLine (ABCA)
\plot 10.77135 10.91925 34.94015 39.72253 / %% AB
\plot 36.58878 39.82302 58.36311 19.50117 / %% BC
\plot 58.05862 18.47403 11.18177 10.20838 / %% CA
\setdashes
%% drawLine (BD)
\plot 35.91988 39.46001 40.17626 15.32089 / %% BD
\setsolid
%% drawRightangle(BDC,2.5)
\plot 42.63828 15.75501 42.20416 18.21703 /
\plot 39.74214 17.78291 42.20416 18.21703 /
%% text(B){B, shift(-1,4)}
\put {B} at 34.711500 44.641780
%% text(A){A, shift(-4,-2)}
\put {A} at 6.000000 8.000000
%% text(C){C, shift(4,-1)}
\put {C} at 63.240390 17.682410
%% text(D){D, shift(1,-4)}
\put {D} at 41.176260 11.320890
%% length(bd) = 25.7115062228898
%% length(ac) = 50.0000025076019
%% area(abc) = 642.7877063896
%% angle(abc) = 86.97613 deg (1.51802 rad)
\endpicture
\end{document}

If the above output-file (.mt file) is to be included or \input into a document
(say, into a figure environment), it is sometimes useful to reduce the size of
the file by disabling the writing of %% comment lines (using the command-line -¢
switch), as well as some of the header and footer lines which are not now required,
as follows.

7.1. INPUT- AND OUTPUT-FILES 75

Yok —m
%* mathsPIC (Perl version 0.99.22 Dec 29, 2004)

%* A filter program for use with PiCTeX

%* Copyright (c) 2004 A Syropoulos & RWD Nickalls
%* Command line: mpic09922.pl -c mpicpm07-1.m

%* Input filename : mpicpm07-1.m

%* Output filename: mpicpm07-1.mt

%* Date & time: 2005/01/05 11:50:14

Yk m
\documentclass [adpaper]{article}
\usepackage{mathspic}

\begin{document}
\beginpicture

\setdashes

\setcoordinatesystem units <imm, imm>
\setplotarea x from 0.00000 to 70.00000, y from 0.00000 to 50.00000
\axis left ticks numbered from O to 50 by 10 /
\axis right ticks numbered from O to 50 by 10 /
\axis top ticks numbered from O to 70 by 10 /
\axis bottom ticks numbered from 0 to 70 by 10 /
\setsolid

\put {\odot} at 10.00000 10.00000 %% A

\put {\odot} at 35.71150 40.64178 %% B

\put {\odot} at 59.24039 18.68241 %% C

\put {\bullet} at 40.17626 15.32089 %% D

\plot 10.77135 10.91925 34.94015 39.72253 / %% AB
\plot 36.58878 39.82302 58.36311 19.50117 / %% BC
\plot 58.05862 18.47403 11.18177 10.20838 / %% CA
\setdashes

\plot 35.91988 39.46001 40.17626 15.32089 / %% BD
\setsolid

\plot 42.63828 15.75501 42.20416 18.21703 /
\plot 39.74214 17.78291 42.20416 18.21703 /
\put {B} at 34.711500 44.641780

\put {A} at 6.000000 8.000000

\put {C} at 63.240390 17.682410

\put {D} at 41.176260 11.320890

%% length(bd) = 25.7115062228898

%% length(ac) = 50.0000025076019

%% area(abc) = 642.7877063896

%% angle(abc) = 86.97613 deg (1.51802 rad)
\endpicture

\end{document}

76 CHAPTER 7. EXAMPLES

Note that the remaining comments at the end of the \plot and \put lines are
generally sufficient to understand what each line relates to. Note also that the -c
switch only removes comment lines having a leading %7 pair of characters (but not
the results of the show() commands); comment lines prefixed with only a single %
character remain.

7.2 Line modes

When drawing figures with both solid and dashed lines it is necessary to switch
between the P[CTEX commands \setdashes and \setsolid, as in the following
code for drawing the rectangular box shown in Figure 7.2. The default \setdashes
gives alternating lines and spaces, each of width 5pt.

More fancy dash-patterns (see Figure 7.2) can be easily generated using the
mathsPIC dasharray () command which defines the pattern cycle, and hence takes
an even number of parameters. For example the command

dasharray(6pt,2pt,1pt,2pt)

generates the dash pattern used for lines AH and DFE in Figure 7.2.
If several different dash patterns are required then it maybe useful to define
them as separate mathsPIC macros, as follows for example.

%def fancydashes() dasharray(6pt,2pt, 1pt, 2pt)
%def simpledashes() dasharray(4pt,4pt)

The separate patterns can then be called as required as follows (see Figure 7.2).

fancydashes
drawline (AH, DE)
simpledashes
drawline(BG, CF)

The equivalent P[CTEX command is the \setdashpattern command which
also takes an even number of parameters but has a slightly different syntax as
follows.

\setdashpattern <6pt,2pt,1ipt,2pt>
The equivalent IXTEX macro would be as follows.

\def\fancydashes{\setdashpattern <6pt, 2pt, 1pt, 2pt>}%

\fancydashes

7.2. LINE MODES 77

Note that in Figure 7.2 all the points are defined, directly or indirectly, relative
to point A, with the effect that the position of the whole figure can be adjusted
simply by altering the coordinates of point A. This can be useful when drawing
diagrams having several components since the relative position of each component
can then be easily adjusted.

G F
Y B |
/ 1 /71
// 1 // 1
/ 1 / 1
// 1 // 1
/" Hjpmmam=d |
// /,/ // /4/
/ /
B . o ,/
/ 4
/ /
/ /
/ /
/ /
A D
Figure 7.2:

%/ mpicpm07-2.m (Figure 7.2)

\documentclass [a4paper]{article}
\usepackage{mathspic}

\begin{document}

\beginpicture

paper{units(imm), xrange(0,50), yrange(0,62)}
var s= 20 7% Sides front & back

var L = 34 Y Length

var a2 = 56.6 ¥ angle degrees

%def fancydashes() dasharray(6pt,2pt, 1lpt, 2pt)%
%def simpledashes() dasharray(4pt,4pt)%

point (A){5,7}

point (B){A, polar(s,90 deg)}

point(C){B, polar(s,0 deg)}

point(D){A, polar(s,0 deg)}

point (H){A, polar(L,a2 deg)}

point (G){B, polar(L,a2 deg)}

78

point (F){C, polar(L,a2 deg)}
point (E){D, polar(L,a2 deg)}
drawpoint (ABCDEFGH)
linethickness(2pt)
\setsolid
drawline (ABCDA)
\setdashes
drawline (HGFEH)
linethickness(default)
&fancydashes
drawline(AH, DE)
&simpledashes
drawline (BG, CF)
text (A){A, shift(-2,-4)}
text (B){B, shift(-4,1)}
text (C){C, shift(4,0)}
text (D){D, shift(1,-4)}
text (E){E, shift(4,0)}
text (F) {F, shift(2,4)}
text (G){G, shift(-1,4)}
text (H) {H, shift(-4,1)}
\endpicture
\end{document}

CHAPTER 7. EXAMPLES

7.3. ARROWS 79

7.3 Arrows

Arrows can be drawn in all possible orientations, will stretch between points, and
arrow-heads are readily customised using the mathsPIC Arrowshape command (see
also Salomon, 1992).

Although arrow shape can of course be controlled using the standard P[CTEX
\arrow command, the mathsPIC Arrowshape command makes this easier by allow-
ing you to define (in degrees) the angle parameters (B and C) of the arrow-head
directly (see box). The default arrowshape is equivalent to the following command

Arrowshape (2mm, 30,40)

and can be invoked using the command

ArrowShape (default)

Arrowshape (L, B,C)
B = angle B; AB5 degrees Ch
C = angle C1ACs degrees

— [—
B,

D e A

Arrowshape(6,30,60) B

%— Arrowshape (4,30,60)

———> Arrowshape(2,30,60) Ca
———> Arrowshape (6,30,40)

———= Arrowshape(4,30,40)

——> Arrowshape(2,30,40) default

Figure 7.3: The mathsPIC code for this figure is given in the appendix

If the arrowshape has been altered, it can be reset using the ArrowShape (default)
command. Curved arrows (circular arcs) are drawn using the drawAngleArrow
command, which takes parameters for the angle, radius of arc, direction, and
whether the angle is internal or external (see Figures 7.4 and 7.5).

Arrows can also be used to link elements in a diagram, as shown in Figure 7.5.
The right-hand diagram uses the drawArrow command; the small gap between

80 CHAPTER 7. EXAMPLES

%% mpicpm07-4.m (Figure 7-4)

\documentclass [ad4paper]{article}

\usepackage{mathspic}

\begin{document}

\beginpicture A
paper{units(1mm) ,xrange(5,45) ,yrange(5,45)}

point (A){30,30}

point(P){10,10}

point (B){30,10%}

drawPoint (APB)

drawLine (APBA) P B
var d = 5 Figure 7.4:
text (A){A,shift(1,d)}

text (B) {B,shift(d,0)}

text (P) {P,shift(-d,0)}

drawAngleArrow{angle(BPA) ,radius(11),internal, anticlockwisel}
text (ψ){P,polar(7,22.5 deg)}

drawRightangle (ABP,2.5)

\endpicture

\end{document}

the arrows and the letters P, @, R,T being due to the 5 unit line-free radius as-
sociated with these points (see Figure 7.5b. The arrows are easily ‘stretched’ to
accommodate their labels simply by adjusting the separation of the nodes using
the polar(r,f#) commands (see Feruglio, 1994).

%% mpicpm07-5a.m (Figure 5a)

\documentclass [adpaper]{article}

\usepackage{mathspic}

\begin{document}

\beginpicture

paper{units(imm) ,xrange(10,40) ,yrange(0,45)},, axes(LB), ticks(10,10)}
point (N){15,20}

point (S){N,shift(20,0)}

text (\framebox{N}){N,shift(0,-2.5)}

text (\framebox{s}){S,shift(0,-2.5)}

point (Z){midpoint (NS)}
drawAngleArrow{angle(NZS) ,radius(NZ) ,internal,clockwise}
point (N1){N,shift(2,1)}

point (S1){S,shift(-2,1)}

point(Z1){Z,shift(0,-3)%}

7.3. ARROWS 81

gxgxgrxgxgq

R

b1 D3 t

P ——— T
D2

a. Circular arrows b. Straight arrows

Figure 7.5:

drawAngleArrow{angle(N1Z1S1) ,radius(N1Z1) ,internal,clockwise}
point (N2){N1,shift(2,-0.5)}

point(82){S1,shift(-2,-0.5)}

point (Z2){Z,shift(0,-10)}
drawAngleArrow{angle (N2Z2S52) ,radius (N2Z2) ,internal,clockwise}
\endpicture

\end{document}

%% mpicpm07-5b.m (Figure 7.5Db)

\documentclass [adpaper]{article}
\usepackage{mathspic}

\begin{document}

\beginpicture

paper{units(imm) ,xrange(0,45) ,yrange(0,45)}%, axes(LB), ticks(10,10)}
point (P){5,10} [symbol=P,radius=5]

point (Q){P,polar(30,90 deg)}[symbol=Q,radius=5]
point (R){Q,polar(40,0 deg)} [symbol=R,radius=5]
point(T){P,polar(30,0 deg)} [symbol=T,radius=5]
drawPoint (PQRT)

drawArrow(PQ,QR,PT,TR,PR)

point (P1) {midpoint (PQ)}

text (p_1){P1,shift(3,0)}

point (P2){midpoint (PT)}

text (p_2){P2,shift(0,-3)%}

point (P3) {midpoint (PR)}

82 CHAPTER 7. EXAMPLES

text (p_3){P3,shift(2,-2)}

point (T1) {midpoint (TR)}

text (t){T1,shift(3,0)}

point (Q1) {midpoint (QR)}

%% use a LaTeX macro for the label
\newcommand{\q}{$q \star q \star q \star g \star q$}
text (\q){Q1,shift(-1,3)}

\endpicture

\end{document}

7.4 Circles & colour

MathsPIC allows the point-symbol to be designated as a circle using the option
[symbol=circle(r) ,radius=z] to the point() command, which not only gives
the circles an internal line-free zone, but also arranges that they are drawn by the
drawPoint command, as shown in Figure 7.6. This construction greatly simplifies
the drawing of directed graphs, trees and equivalent structures. In Figure 7.6
we have also made use of the IXTEX Color package to make the circles red, the
lines blue, and the text and labels black, as can be seen from the code in the
mathsPIC file. However, the colours will only be visible when viewing the PDF
(via pdfIATEX) or PostScript (via dvips) derivatives of the diagram.

Figure 7.6:

7.4. CIRCLES & COLOUR 83

%% mpicpm07-6.m (figure 7.6)

%% 4 circles figure
\documentclass [adpaper]{article}
\usepackage{mathspic,color}
\begin{document}

\beginpicture

\normalcolor?,

paper{units(1mm) ,xrange(0,70),yrange(0,60)}%

point (A){30,11} [symbol=circle(8) ,radius=8]

point (B){A,shift(-10,30)} [symbol=circle(15) ,radius=15]
point (C){A,polar(30,20 deg)}[symbol=circle(5),radius=5]
point (D) {A,polar (45,50 deg)}[symbol=circle(7),radius=7]
\color{red}%

drawPoint (ABCD)

\color{bluel}y,

drawLine (AB,AC,BC,BD,CD)

\setdashes

drawLine (AD)

\color{black}%

text (A) {A}

%% use a macro for the formula

\newcommand{\formula}{%

\ $\displaystyle \sum_{p\geO} \Delta_{jp} z~{(p+1)}$%
\ jyA

text (\formula){B}

text (C) {C}

text (D) {D}

\normalcolor?,

\endpicture

\end{document}

Note that in this particular case it is necessary to define the maths formula
using the KTEX \displaystyle, in order to avoid the embedded \textwidth
white space associated with using \vbox{\formula}in the \text () command, and
hence allow centering of the figure. Note also how the mathsPIC \,. .. commands
make it easy to include multi-line macros in the mathsPIC file.

Points on circles (and their labels) are most easily defined and positioned using
the polar(r,f) option, as shown in the mathsPIC file for Figure 7.7. Notice the
use of the variable r for the radius of the circle (allocated using the command
var r = 20), which then allows the use of r to define the radius in the polar
commands for the points P, Q, S.

84 CHAPTER 7. EXAMPLES

Q

N

S

P

Figure 7.7:

%% mpicpm07-7.m (Figure 7.7)

\documentclass [adpaper]{article}

\usepackage{mathspic}

\begin{document}

\beginpicture

paper{units(imm), xrange(5,55), yrange(5,55)}

point (C){30,30} [symbol=\odot,radius=1.2] %% center
var r = 20 %% radius
drawcircle(C,r)

point (P){C, polar(r,250 deg)}

point(Q){C, polar(r,120 deg)}

point(S){C, polar(r,-30 deg)}

drawpoint (CPQS)

drawline (PCSQP)

text (P){P, polar(5,250 deg)}

text (Q){Q, polar(5,120 deg)}

text (S){S, polar(5,-30 deg)}
drawAngleArrow{angle(PCS), radius(8) internal anticlockwise}
text (β){C, polar(5,285 deg)}
drawAngleArrow{angle(PQS), radius(12) internal anticlockwise}
text (α){Q, polar(8,-65 deg)}

showangle (PQS) % alpha
showangle (PCS) % beta
\endpicture

\end{document}

Note that the returned values in the output-file from the showAngle commands

7.4. CIRCLES & COLOUR 85

(see below) for Figure 7.7 indicate that 3 is twice a, as one would expect.

%% angle(pgs) = 40.00000 deg (0.69813 rad) %alpha
%% angle(pcs) = 80.00000 deg (1.39626 rad) YJbeta

MathsPIC offers a range of other circle commands (drawIncircle,
drawExcircle, drawCircumcircle) specifically for geometry diagrams, as shown
in Figure 7.8.

| | Triangle, pentagon B
50 4 | and three circles

|

|

|

|

|

40 + [

| |

| |

30 4 |

| |

| |

20—| |

| |

N [

10 | |

| |

0+__I___I__7__T__T__r__|
0 10 20 30 40 50 60 70

%% mpicpm07-8.m (Figure 7.8)
\documentclass [adpaper]{article}
\usepackage{mathspic}
\begin{document}

\beginpicture

\setdashes

paper{units(imm) ,xrange(0,70),yrange(0,60) ,axes (LBT*R*) ,ticks(10,10)}
\setsolid

point(A){10,10} %% anchor point
point (B){A, polar(50,50 deg)}
point (C){A,polar(50,0 deg)}

point (J){pointonline (AB,30)}
point (K) {perpendicular(J,AC)}

86 CHAPTER 7. EXAMPLES

drawRightangle (JKC,3)
drawLine (AB,AC, JK)
drawIncircle (AJK)
drawExcircle (AJK, JK)
\setplotsymbol({\large .}) \setdots
drawCircumcircle (AJK)
\setplotsymbol ({\tiny .})
point(I){IncircleCenter (AJK)} [symbol=\odot, radius=1.2]
point (E){ExcircleCenter (AJK,JK)} [symbol=\odot, radius=1.2]
point (P1) {perpendicular(E,AC)}
var r = EP1 JJ radius of excircle
var d = 72 %% angle of pentagon (deg)
var al = -90, a2=al+d, a3=a2+d, a4=a3+d, ab=ad+d
point (P2){E, polar(r,a2 deg)}
point (P3){E, polar(r,a3 deg)}
point (P4){E, polar(r,ad deg)}
point (P5){E, polar(r,ab deg)}
drawPoint (ABCJKIEP1P2P3P4P5)
\setdashes
drawLine (P1P2P3P4P5P1,EP1,EP2)
\setsolid
drawAngleArc{angle (P2EP1) ,radius(9),internal,clockwise}
\newcommand{\figtitle}{%
\fbox{%
\begin{minipage}{30mm}’,
\ Triangle, pentagon and three circles’,
\end{minipagel}’
A3
text (\figtitle){20,52}
var s = b
text (A) {A,polar(s,230 deg)}
text (B) {B,polar(s,50 deg)}
text (C) {C,polar(s,0 deg)}
text (J){J,polar(s,90 deg)}
text (K) {K,polar(s,270 deg)}
text (E){E,polar(s,a3 deg)}
text (72){E,polar(5.5,-54 deg)?}
text (I){I,shift(3, 0%}
text (P_1){P1,polar(s, al deg)}
text (P_2) {P2,polar(s, a2 deg)}
text (P_3) {P3,polar(s, a3 deg)}
\endpicture

7.5. FUNCTIONALLY CONNECTED DIAGRAMS 87

\end{document}

7.5 Functionally connected diagrams

When constructing diagrams it is often useful to write the mathsPIC file in such a
way that the position of each new point is related to that of earlier points, since
then the structure of the diagram is maintained even when points are moved as
shown in Figure 7.9. Although the two diagrams appear to be quite different the
mathsPIC code for the two diagrams differs only in the angle of the line AB (left
diagram, 60 degrees; right diagram, 5 degrees) as defined in the point(B){...}
command as follows.

e Left-hand diagram: point (B){A,polar(45,60 deg)}

e Right-hand diagram: point(B){A,polar(45,5 deg)}

A A
Q

Figure 7.9: The mathsPIC code for the two diagrams differs only in the angle of
the line AB as defined in the point (B){. ..} command (see mpicpm07-9.m).

%% mpicpm07-9.m (Figure 7.9)

\documentclass [adpaper]{article}
\usepackage{mathspic}

\begin{document}

\beginpicture

paper{units(imm), xrange(5,110), yrange(0,45)%}

point (A){15,5} [symbol=\odot, radius=1.2]

point (P){A, shift(10,30)} [symbol=\odot, radius=1.2]

88 CHAPTER 7. EXAMPLES

point (B){A, polar(45,60 deg)}

point (Q){perpendicular(P,AB)}

drawRightangle (PQA,2)

drawPoint (ABPQ)

drawLine (ABPQ)

drawIncircle(PQB)

var d = 5

text (A) {A,shift(-d, 0)}

text (B) {B,shift(d, 0)}

text (P){P,shift(-d, 0)}

point (S){pointOnLine(QP,-5)3}

text (Q){S?}

point (N){A,shift(0,10)}

\setdashes

drawline (AN)

\setsolid

drawAngleArrow{angle(NAB), radius(5.7), internal, clockwisel}
Yoty====————= second figure —--------—-——--————-—-
point*(A){60,5} [symbol=\odot, radius=1.2]
point*(P){A, shift(10,30)}[symbol=\odot, radius=1.2]
point*(B){A, polar(45,5 deg)} %%5 60 deg
point*(Q){perpendicular(P,AB)}

drawRightangle (PQA,2)

drawPoint (ABPQ)

drawLine (ABPQ)

drawIncircle(PQB)

text (A){A,shift (-5, 0)}

text (B) {B,shift (5, 0)}

text (P) {P,shift (-5, 0)}
point*(S){pointOnLine(QP,-5)3}

text (Q){S}

point*(N){A,shift(0,10)}

\setdashes

drawline (AN)

\setsolid

drawAngleArrow{angle(NAB), radius(5.7), internal, clockwise}
\endpicture

\end{document}

Note that in Figure 7.9 the location of the label ‘Q’ is made to lie outside the
figure by placing the label at point S, which is defined as being 5 mm to the right
of the line AB and in-line with the points PQ, using the command
point (S){pointOnLine(QP,-5)}

7.6. INPUTTING THE SAME DATA-FILE REPEATEDLY 89

7.6 Inputting the same data-file repeatedly

There are two methods:

e use the beginloop [n] ... endloop environment

The file myfile.dat is input six times sequentially using the commands

beginL0OOP 6
inputfile(myfile.dat)
endLOOP

e use the inputfile [n] command

The file myfile.dat is input six times sequentially using the single command
inputfile(myfile.dat) [6].

Figure 7.10:

Figure 7.10 was produced by the following code which inputs a small file of
mathsPIC code (mpicpm07-10.dat) repeatedly 35 times using the command
inputfile(mpicpm07-10.dat) [35]. Note the use of the point* commands in
the data-file to re-allocate points.

%% mpicpm07-10.m (figure 7-10)

%/ mathsPIC small spiral by recursion
%% (requires datafile mpicpm07-10.dat)
\documentclass [adpaper]{article}

90 CHAPTER 7. EXAMPLES

\usepackage{mathspic}

\begin{document}

\beginpicture

paper{units(imm), xrange(0,60), yrange(0,60)}/ axes(LB), ticks(10,10)}
point(C){30,30} ¥ circle center
drawcircle(C,25)

%% initialise the reusable points and variables
var a=315 Y, angle degrees

var r=20 % start radius

var s=b % square semi-diagonal (see datafile)
point(T){C,polar(r,330 deg)}

%% cycle datafile 35 times

inputfile (mpicpm07-10.dat) [35]

\endpicture

\end{document}

%% mpicpm07-10.dat —-------- first line-————-----—-—-——-
%% mathsPIC (spiral data) input by file mpicpm07-10.m
var a = a+15, r = r-0.5 %% increment angle and radius
point*(P){C,polar(r,a deg)} ' increment point P

drawpoint (P)
drawline (TP) %% draw line from OLD T to NEW P
point*(T){P} %% reallocate T <-- P

%% make a rotated square centered on P with side/2=s
point*(Q1){P,polar(s,0 deg)}

point*(Q2){P,polar(s,90 deg)}
point*(Q3){P,polar(s,180 deg)}
point*(Q4){P,polar(s,270 deg)}

drawline (Q1Q2Q3Q4Q1)

%h €0f ———m—mmmm o

When the inputfile command is used mathsPIC writes the iteration number to
the output file, prefixed using three % symbols (to make sure they are not deleted
when using the -c switch, as follows.

%%% Iteration number: 26

For example, the following extract shows the resulting output .mt file showing
how mathsPIC writes the iteration number of each data-file input to the output
file just before it inputs the data-file. This example includes the whole of the 26th
cycle of data-file input. It also demonstrates the value of labeling the beginning
and the end of the data-file differently in order to make it easy to see the cycling
of the input file. This is very helpful as it allows you to check whether the data-file
is working correctly.

7.6. INPUTTING THE SAME DATA-FILE REPEATEDLY 91

\plot 31.49519 26.25000 36.49519 21.25000 / %% Q3Q4
\plot 36.49519 21.25000 41.49519 26.25000 / %% Q4Q1
%t eof
%% Iteration number: 26

%% mpicpm07-10.dat --—----- first line-—————--——--——--——

%% mathsPIC (spiral data) input by file mpicpm07-10.m

%% var a = a+15, r = r-0.5 %), increment angle and radius

%h a = 705

hhr =T

%% point*(P){C,polar(r,a deg)} %increment P, P=(36.76148, 28.18827)
%% drawpoint (P)

\put {\bullet} at 36.76148 28.18827 % P

%% drawline (TP) %% draw line from OLD T to NEW P

\plot 36.49519 26.25000 36.76148 28.18827 / %% TP

%% point*(T){P} %) reallocate T <-- P T = (36.76148, 28.18827)

%% make a square on P with side/2=s (s is defined in mpicpm07-10.m)
%% point*(Q1){P,polar(s,0 deg)} Q1 = (41.76148, 28.18827)

%% point*(Q2){P,polar(s,90 deg)} Q2 = (36.76148, 33.18827)

%% point*(Q3){P,polar(s,180 deg)} Q3 = (31.76148, 28.18827)

%% point*(Q4){P,polar(s,270 deg)} Q4 = (36.76148, 23.18827)

%% drawline(Q1Q2Q3Q4Q1)

\plot 41.76148 28.18827 36.76148 33.18827 / %% Q1Q2

\plot 36.76148 33.18827 31.76148 28.18827 / %% Q2Q3

\plot 31.76148 28.18827 36.76148 23.18827 / %% Q3Q4

\plot 36.76148 23.18827 41.76148 28.18827 / %% Q4Q1

%t eof
%%ht% Iteration number: 27

%% mpicpm07-10.dat --—----- first line-—————--—--——--—

Because mathsPIC prefixes the iteration number comment with %%% these com-
ments remain even when the -c switch is used, as the following extract of the
same data shows.

\plot 31.49519 26.25000 36.49519 21.25000 / %% Q3Q4
\plot 36.49519 21.25000 41.49519 26.25000 / %% Q4Q1
%%% Iteration number: 26

\put {\bullet} at 36.76148 28.18827 %% P

92 CHAPTER 7. EXAMPLES

\plot 36.49519 26.25000 36.76148 28.18827 / %% TP
\plot 41.76148 28.18827 36.76148 33.18827 / %% Q1Q2
\plot 36.76148 33.18827 31.76148 28.18827 / %% Q2Q3
\plot 31.76148 28.18827 36.76148 23.18827 / %% Q3Q4
\plot 36.76148 23.18827 41.76148 28.18827 / %% Q4Q1
%%h% Iteration number: 27

\put {\bullet} at 36.50000 30.00000 %% P

Using the beginloop. . .endloop environment

The script for the previous spiral figure of squares can be written more simply
(i.e. without repeatedly inputing a separate file) using the beginloop. . .endloop
environment as shown in the following example. Some care needs to be taken in
initialising (before the loop) all those quantities which get changed or incremented
with each cycle of the loop. Note also that (a) since we are not using the inputfile
command it is useful to create a loop counter (n) so we can see which loop is
which when we read the output .mt file, (b) the squares will not be rotated in this
particular example as we are using the [symbol=square(s)] option with the point
command in order to generate the square, and (c) since all mathsPIC commands
are case-insensitive we have chosen to capitalise the ‘loop’ of the commands for
clarity.

\beginpicture
paper{units(ilmm), xrange(0,60), yrange(0,60) axes(LB), ticks(10,10)}
point(C){30,30} ¥ circle center
drawcircle(C,25)
%% initialise loop counter (n), angle (a), radius (r), side (s)
var n=0, a=315, r=20, s=7
point(T){C,polar(r,330 deg)}
beginL0OOP 35 % loop 35 times
%% increment loop counter (n), angle (a) and radius (r)
var n=n+1, a = a+15, r = r-0.5
%% increment position of new square with side s
point*(P){C,polar(r,a deg)}[symbol=square(s)]

drawpoint (P) % draw new square
text (\bullet){P} 7 draw bullet in center of new square
drawline (TP) % draw line from OLD T to NEW P
point*(T){P} % reallocate T <-- P

endLOOP

\endpicture

7.6. INPUTTING THE SAME DATA-FILE REPEATEDLY 93

Using BTEX to cycle a loopcounter

A slightly irritating problem associated with processing diagrams which involve
repeated loops is that while the .mt file is being processed by ETEX there is no
screen activity to show how things are proceeding.

In this example program we therefore illustrate a simple way of using some
KTEX register commands (Knuth (1990) p 118-121; 272-273; Eijkhout (1992)
p 242-244) in order to make BTEX indicate the loop status on the screen while it
is processing the .mt file. This can be useful for debugging especially if the loop
is cycled many times.

We first allocate a suitable name to an unused TEX integer register (a so-called
count register) using the TEX \newcount command (here we have used the name
\loopcounter), and then we initialise it to zero, as follows (all in the main calling
program).

\newcount\loopcounter
\loopcounter=0

Then in the loop (or in the data file itself) we increment the counter and also
print the result to the screen using the \typeout{. ..}/, command, remembering
to include a % symbol at the end.

\advance\loopcounter by 1
\typeout{loop = \the\loopcounterl}y,

A typical use might therefore be as follows:-

\beginpicture

\newcount\loopcounter %% allocate a TeX rigester
oopcounter= % initialise the register

\loop ter=0 %% initialise th gist

%% create a convenient macro

\newcommand{\showloopnumber}{’
\advance\loopcounter by 1 %increment TeX loop counter
\typeout{loop = \the\loopcounterl}) Yprint loop no to screen
\ Y

beginLOOP 26
\showloopnumbery

endLOOP

\endpicture

The screen output during the ITEX processing (with respect to the the com-
mand latex mpicpm07-10.mt) for this example then appears as the following.

94 CHAPTER 7. EXAMPLES

This is TeX, Version 3.14159 (Web2C 7.4.5)

(./mpicpm07-10.mt

LaTeX2e <2001/06/01>

Babel <v3.7h> and hyphenation patterns for american, french, german,
basque, italian, portuges, russian, spanish, nohyphenation, loaded.
(/usr/share/texmf/tex/latex/base/article.cls

Document Class: article 2001/04/21 vi1.4e Standard LaTeX document class
(/usr/share/texmf/tex/latex/base/sizel10.clo))

(/usr/share/texmf /tex/latex/base/mathspic.sty

Loading mathsPIC package (c) RWD Nickalls & A Syropoulos 08/08/2004
(/usr/share/texmf/tex/generic/pictex/prepictex.tex)
(/usr/share/texmf/tex/generic/pictex/pictexwd.tex)

(/usr/share/texmf /tex/generic/pictex/postpictex.tex)) (./mpicpm07-10.aux)
loop =1

loop = 2
loop = 3
loop = 4
loop = 33
loop = 34
loop = 35

[1] (./mpicpm07-10.aux))
Output written on mpicpm07-10.dvi (1 page, 106560 bytes).
Transcript written on mpicpm07-10.log.

7.7 Plotting graphs

Data-files which do not contain mathsPIC commands can be input using the
inputfile* () command. This command inputs files verbatim, and so can be used
for inputting files containing, for example, only P[CTEX commands and/or points
for plotting curves. For example, the following mathsPIC code (mpicpm07-11.m)
draws the quartic curve shown in Figure 7.11, by inputting in verbatim a datafile
containing some P[CTEX commands and a set of data points for plotting. Note that
in this example the z-axis is stretched by using units(3cm,cm) in the paper{}
command.

%% mpicpm07-11.m (Figure 7-11)
\documentclass [adpaper]{article}
\usepackage{mathspic}
\begin{document}

7.7. PLOTTING GRAPHS

A quartic equation

f(z) =62 — 823 + 1

\

inflection points

\beginpicture
\linethickness=1pt %%

Figure 7.11:

make a thick line for the axes

95

paper{units(3cm, 1lcm) ,xrange(-1,2) ,yrange(-2,4) ,axes(XY) ,ticks(1,1)}

\linethickness=0.4pt
\headingtoplotskip=8mm

%% reset to default value

\plotheading{\fbox{\Large A quartic equation}}
%% now load file containing data points for curve

inputfile* (mpicpm07-11

.dat)

pointsymbol(default,0.3) % define line-free-radius

point(E1){1,3.5}

text ($f(x)=6x"4 - 8x"3
point(E2){1.4,2}
drawarrow(E1E2)
point(J1){0.55,2}

+ 1$){E1} J center the equation at E1

text(inflection points){J1} % center inflection text at J1

point (J2){0,1}
point (J3){0.6,0}
drawarrow(J1J2,J1J3)
\endpicture
\end{document}

96 CHAPTER 7. EXAMPLES

The datafile for the curve is as follows. Note that P[CTEX requires an odd
number of pairs of data points to satisfy its curve-drawing algorithm.!

%% mpicm07-11.dat (Figure 7.11)
%% quartic curve data (use an odd number of data points)

\setquadratic
\plot
-0.6 3.50
-0.5 2.37
-0.4 1.66
-0.35 1.43
1.15 -0.67
1.25 0.02
1.35 1.24
1.45 3.13 /
\setlinear
hhEQF

However, when there are only a few data points, it is sometimes more convenient
just to plot the points separately and then draw connecting lines, as shown in
Figure 7.12.

%% mpicpm07-12.m (Figure 7.12)
\documentclass [adpaper]{article}
\usepackage{mathspic}
\usepackage{amssymb}
\begin{document}

\beginpicture
paper{units(lcm),xrange(0,6) ,yrange(73,77),axes (LBT*R*) ,ticks(1,1)}
pointsymbol (\odot,0.2)
point(d1){1, 76.2}

point(d2){2, 76.2}

point(d3){3, 75.5}

point(d4){4, 75.7}

point(d5){5, 74.6}

drawpoint (d1d2d3d4d5)

drawline (d1d2d3d4d5)

%

1See the PICTEX manual (Wichura, 1992).

7.8. DRAWING OTHER CURVES 97

Weight change with diet

s
76 - ®_®\
Weight O o—0C
(kg) 754 Y g \
\\\\ @
74 - -
73 T | T | |
0 1 2 3 4 5 6
Weeks
Figure 7.12:

pointsymbol (\boxdot, 0.2)

point(k1){1, 75.2}

point (k2){2, 75.4}

point (k3){3, 74.8}

point (k4){4, 74.1}

point (k5){5, 74.0}

drawpoint (k1k2k3k4k5)

\setdashpattern <2pt, 2pt>

drawline (k1k2k3k4k5)

)

\plotheading{\textsf{\Large Weight change with dietl}}
text (\shortstack{\textsf{\large Weight}\\ (kg)}){-1.5,75.3}
text (\textsf{\large Weeks}){3,72}

\endpicture

\end{document}

7.8 Drawing other curves
The drawcurve command can also be used for drawing smooth curves linking a

number of points or touching lines. For example, Figure 7.13 shows a smooth curve
touching a piecewise linear closed line?, some of the points being constructed using

2Figure 7.13 was constructed and drawn by Frantisek Chvila.

98 CHAPTER 7. EXAMPLES

a Bézier technique®. The smooth curve is drawn using the drawcurve () command
for successive three-point sequences.

G D

Figure 7.13: A smooth curve inscribed in the intersecting closed line ABCDEFGA

%% mpicpm07-13.m (Figure 7.13)

\documentclass [adpaper]{article}
\usepackage{mathspic}

\begin{document}

\beginpicture

var u = 12 %% units = 12 mm

paper{units(Umm) ,xRange(0.5,8.5) ,yRange(-0.5,5.5)}
var r = 0.7 %) line-free radius of \circ (O.7mm)
var r = r/u %) line free radius scaled for U mm
pointsymbol (\circ,r)

Point (A){1,1}

Point (B){2,4%}

Point (C){5,3%}

Point (D){6,0%}

Point (E){8,2}

Point (F){8,5%}

Point (G){3,0%}

3see The Metafont book by DE Knuth, chapter 3 for details regarding Bézier curves.

7.8. DRAWING OTHER CURVES

pointsymbol(default) %/ restore \bullet
)

Point (A1) {midpoint (AB)}
Point (B1){midpoint (BC)}
Point (C1){midpoint (CD)}
Point (D1){midpoint (DE)}
Point (E1){midpoint (EF)}
Point (F1){midpoint (FG)}
Point (G1){midpoint (GA)}

)

Point (A2){midpoint (G1A1)}
Point*(A2){midpoint (AA2)}
Point (B2){midpoint (A1B1)}
Point*(B2){midpoint (BB2)}
Point (C2){midpoint (B1C1)}
Point*(C2){midpoint (CC2)}
Point (D2){midpoint (C1D1)}
Point*(D2){midpoint (DD2)}
Point (E2) {midpoint (D1E1)}
Point*(E2){midpoint (EE2)}
Point (F2){midpoint (E1F1)}
Point*(F2){midpoint (FF2)}
Point (G2){midpoint (F1G1)}
Point*(G2){midpoint (GG2)}
)

DrawPoint (ABCDEFG)
DrawPoint (A1B1C1D1E1F1G1)
DrawPoint (A2B2C2D2E2F2G2)
)

DrawLine (ABCDEFGA)
\setplotsymbol ({\Large.})
DrawCurve (A1B2B1)
DrawCurve (B1C2C1)
DrawCurve (C1D2D1)
DrawCurve (D1E2E1)
DrawCurve (E1F2F1)
DrawCurve (F1G2G1)
DrawCurve (G1A2A1)

)

Text (A){A,shift(-0.2,0)}
Text (B){B,shift(-0.2,0.1)}
Text (C){C,shift(0,0.25)}

100 CHAPTER 7. EXAMPLES

Text (D){D,shift(0,-0.25)}

Text (E){E,shift(0.2,0)}

Text (F){F,shift(0,0.25)}

Text (G){G,shift(0,-0.25)}
\scriptsize

Text (A_1){A1,shift(0.25,0)}

Text (B_1){B1,shift(0,-0.2)}

Text (C_1){C1,shift(0.25,0)}

Text (D_1){D1,shift(-0.2,0.15)} %
Text (E_1){E1,shift(-0.2,0)}

Text (F_1){F1,shift(0.15,-0.15)%}
Text (G_1){G1,shift(0.1,0.2)}
Text (4_2){A2,shift(0.25,0)}

Text (B_2){B2,shift(0.1,-0.2)}
Text (C_2){C2,shift(-0.1,-0.15)%}
Text (D_2){D2,shift(0.1,0.2)}
Text (E_2){E2,shift(-0.25,0.05)} %
Text (F_2){F2,shift(0.05,-0.2)} %
Text (G_2){G2,shift(0,0.25)} b
\endpicture

\end{document}

Note the technique used in the code for Figure 7.13 above, for making the
physical line-free radius (r) invariant with respect to the scaling value (u) (i.e.
does not change when the figure is enlarged or reduced by varying the value of the
variable u), as follows.

var u = 12 %% units = 12 mm

paper{units(u mm) ,xRange(0,9) ,yRange(-1,6)}
var r = 0.7 %% line-free radius of \circ = 0.7mm
var r = r/u %% scaled linefree radius for u mm

pointsymbol(\circ, r)
point (A){1,1}

This technique can be very useful when it is necessary to scale the figure after
having designed the figure in order, say, to make it fit into a particular space in a
document.

7.9. USING PERL PROGRAMS & THE SYSTEM() COMMAND 101

7.9 Using Perl programs & the system() command

Since mathsPIC allows access to the command-line via the system() command,
users can write Perl programs which can then be used as a powerful aid for drawing
complicated mathsPIC diagrams. In other words, components of a diagram (par-
ticularly those components which are frequently used) can be encoded as a small
Perl program which can then be invoked via the mathsPIC system() command.
Particularly useful is the fact that Perl programs can have parameters passed to
them, which greatly increases their value and utility with regard to mathsPIC. In-
deed, a mathsPIC file for drawing a particularly complicated diagram could usefully
input several Perl programs, each drawing separate elements of the diagram.

In view of the interplay between the mathsPIC file and the Perl program it
calls, we now describe two typical examples in some detail. In the following some
familiarity with the Perl programming language is assumed.

7.9.1 Example-1

This example (see Figure 7.14) uses the small Perl program drawcurvedarrow.pl
(see below) to generate the mathsPIC commands for drawing a curved arrow (note
that there is no mathsPIC command for doing this at the moment), and place them
in a temporary file which can then be accessed by the mathsPIC file.

4 | | | | 4
Q
3 -3
2 - =2
14 END L1
0 | | | I 0
0 1 2 3 4 5
Figure 7.14:

A curved arrow drawn using the Perl program
drawcurvedarrow.pl

Perl program (drawcurvedarrow.pl)

#!/usr/bin/perl
drawcurvedarrow.pl

102 CHAPTER 7. EXAMPLES

5 command-line parameters A B C h filename

my ($A, $B, $C, $h, $filename)=QARGV;

open (outfile, ">$filename")|| die "ERROR can’t create file $filename\n";
print (outfile "Point*(P999){pointonline(BA, -(AB)/3)}I\n");

print (outfile "Point*(H999){pointonline($C P999,$h)}\n");

print (outfile "Drawcurve(AB H999)\n");

print (outfile "drawArrow(H999 $C)\n");

close (outfile);

The above Perl program accepts five parameters and writes the mathsPIC com-
mands required for drawing a curved arrow through the three points A, B, C' (from
A to C). The program places an arrowhead (length h) at the end pointing at
point C', and places all the necessary mathsPIC commands into the temporary file
filename.

Note that in this example all new points defined in the Perl program are defined
using the point*() command, since this allows the program to be reused without
needing to know which points have been defined before. The point names P999
and H999 have been chosen in order to try and avoid clashing with any point
names likely to be used in the mathsPIC file. Indeed, the authors suggest that
point numbers > 900 be reserved for use in Perl programs in this way. Note also
that these particular point names (e.g. H999) need to be separated by a space from
a previous string name (e.g. AB H999) since they are not Perl variable names
(Perl variable names are prefixed with a $ symbol).

System() command

mathsPIC ‘calls’ a Perl program (with appropriate parameters) via the system()
command. For example, the following mathsPIC commands (a) call the Perl pro-
gram drawcurvedarrow.pl to draw the curved arrow PQR with an arrowhead
length 0-4 units, and places the commands in the file temp.txt, and (b) inputs
the temporary file which then contains the commands.

system("perl drawcurvedarrow.pl P Q R 0.4 temp.txt")
inputfile(temp.txt)

It is useful to include the filename as one of the parameters, since this allows us to
write the mathsPIC command to input the same file immediately afterwards. Note
also that since we are, in effect, using the command-line here then the parameters
following the program name must be separated by spaces, as required by Perl
syntax.

7.9. USING PERL PROGRAMS & THE SYSTEM() COMMAND 103

The mathsPIC file

The following example mathsPIC file uses the above commands to draw a curved
arrow from a box (just below the first point P) to an box (below
the last point R) as shown in Figure 7.14. Note the use of the [t] option at the
end of two of the text() commands which places the point at the [tJop of the
\fbox{}

%% mpicpm07-14.m (Figure 7.14)

\documentclass [adpaper]{article}
\usepackage{mathspic}

\begin{document}

\beginpicture

paper{units(lcm) xrange(0,5) yrange(0,4), axis(LRTB),ticks(1,1)}
point(P){1.25,1}

point(Q){P, polar(2, 65 deg)}

point (R){Q, polar(2,-40 deg)}

drawpoint (Q)

text (\fbox{START}) {P}[t]

text ($0%$){Q, shift(0,0.5)}

text (\raisebox{-5mm}{\fbox{END}}){R}[t]
linethickness(1pt)

arrowshape(0.4cm, 30,40)

system("perl drawcurvedarrow.pl P Q R 0.4 temp.txt")
inputfile(temp.txt)

\endpicture

\end{document}

The temporary file

When the above mathsPIC file is run it creates (in the same directory) the following
four-line temporary ASCII text-file (named temp.txt) containing the mathsPIC
commands which actually draw the curve, and then inputs the file temp.txt into
the mathsPIC file for processing.

Point*(P999){pointonline(QP, -(PQ)/3)}
Point*(H999) {pointonline(R P999,0.4)}
Drawcurve (PQ H999)
drawArrow(H999 R)

Output file

The output TEX file which is generated by running the file mpicpm07-14.m through
mathsPIC is as follows. Towards the end of the file you can see the temporary file

104 CHAPTER 7. EXAMPLES

code and the results after processing by mathsPIC located between the following
two lines

%#h ... start of file <temp.txt> loop [1]

%% ... end of file <temp.txt> loop [1]
The full output file is as follows.

Yk mm

%* mathsPIC (Perl version 0.99.22 Dec 29, 2004)

%* A filter program for use with PiCTeX

%* Copyright (c) 2004 A Syropoulos & RWD Nickalls

%* Command line: mpic09922.pl mpicpm07-14.m

%* Input filename : mpicpm07-14.m

%* Output filename: mpicpm07-14.mt

%* Date & time: 2005/01/05 09:30:55

Yok —mmm

%% mpicpm07-14.m (Figure 7.14)

%% curved arrow

\documentclass [adpaper]{article}

\usepackage{mathspic}

\begin{document}

\beginpicture

%% paper{units(lcm) xrange(0,5) yrange(0,4), axis(LRTB),ticks(1,1)}
\setcoordinatesystem units <lcm,lcm>

\setplotarea x from 0.00000 to 5.00000, y from 0.00000 to 4.00000
\axis left ticks numbered from O to 4 by 1 /

\axis right ticks numbered from O to 4 by 1 /

\axis top ticks numbered from O to 5 by 1 /

\axis bottom ticks numbered from O to 5 by 1 /

%% point (P){1.25,1} P = (1.25000, 1.00000)

%% point (Q){P, polar(2, 65 deg)} Q = (2.09524, 2.81262)
%% point (R){Q, polar(2,-40 deg)} R = (3.62733, 1.52704)
%% drawpoint (Q)

\put {\bullet} at 2.09524 2.81262 %% Q

hth text (\fbox{START}){P}[t]

\put {\fbox{START}} [t] at 1.250000 1.000000

%% text(Q){Q, shift(0,0.5)%}

\put {Q} at 2.095240 3.312620

%#h text (\raisebox{-5mm}{\fbox{END}}){R} [t]

\put {\raisebox{-5mm}{\fbox{END}}} [t] at 3.627330 1.527040
%% linethickness(1ipt)
\linethickness=1.00000pt\Linethickness{1.00000pt}’

7.9. USING PERL PROGRAMS & THE SYSTEM() COMMAND 105

\font\CM=cmr10 at 9.97226ptY%

\setplotsymbol ({\CM .})%

%% arrowshape(0.4cm, 30,40)

YA arrowLength = 0.4cm, arrowAngleB = 30 and arrowAngleC = 40

%% system("perl drawcurvedarrow.pl P Q R 0.4 temp.txt")

%% inputfile(temp.txt)

%% ... start of file <temp.txt> loop [1]

%%% Iteration number: 1

%% point*(P999){pointonline(QP, -(PQ)/3)} P999 = (2.37699, 3.41683)
%% point*(H999) {pointonline(R P999,0.4)} H999 = (3.40661, 1.86063)
%% Drawcurve (PQ H999)

\setquadratic

\plot

1.25000 1.00000 %P

2.09524 2.81262 %Q

3.40661 1.86063 / %H999

\setlinear

%% drawArrow(H999 R)

\arrow <0.40000cm> [0.2679,0.7279] from 3.4066 1.8606 to 3.6273 1.5270
%% ... end of file <temp.txt> loop [1]

\endpicture

\end{document}

ETEXing this file then generates the DVI file for Figure 7.14.

7.9.2 Example-2

Once the main working part of a Perl program has been debugged, then some
finishing touches can be added. In the following example, therefore, we have
‘upgraded’ the previous program by including (a) error messages, (b) made it
delete the temporary file automatically, (c¢) useful macros, (d) added colour.

Note also how the one-line system() command in the mathsPIC file calling the
drawcube.pl program is processed into the large output file necessary for drawing
the cube. This illustrates the value of being able to encode certain elements of
a diagram as a separate Perl program capable of receiving parameters, and so
making it possible for them to be used as and when necessary.

Delete temporary file
We can automatically delete the temporary file by writing the mathsPIC command
system("rm temp.txt")

(where rm is the Linux command for ‘remove’).

106 CHAPTER 7. EXAMPLES

Now, this can be done by the Perl program itself (providing the temporary file
is not to be input more than once), in which case it would have to output the
above command. However, in order for it to do this, the Perl command would
have to be as follows:-

print (outfile qq(system("rm $filename")\n));

where the qq() command exports the argument in inverted commas, as required.

Useful macros

In addition, we have improved the mathsPIC file (made it more readable) by cre-
ating the macros ¢er (), &side () and &filename () to hold the three param-
eters, namely center point, the sidelength and the temporary filename. In this way
we can pass P, s and temp.txt as ¢er (P), &side(s) and &filename (temp.txt)
(note that when the macros are used then they need to be prefixed with the & sym-
bol).

%def center(j)j% %hcenter point

%hdef side(j)j% %hsidelength

%def filename(j)j% %% temporary file name

point (P){5,5} [symbol=\bigodot]

var s=4 Y%/ sidelength

system("perl drawcube.pl ¢er(P) &side(s) &filename(temp.txt)")
inputfile(temp.txt)

Added colour

We have also made use of the XTEX Color package and coloured the sides of the
cube blue, the diagonals red, and the points and labels black. Always load the
color package after the mathsPIC package.

MathsPIC program

All these improvements are implemented in the following example mathsPIC script
& Perl program drawcube.pl which draws a simple cube (side s) about a central
point P (see Figure 7.15).

%% mpicpm07-15.m (Figure 7.15)

\documentclass [adpaper]{article}

\usepackage{mathspic,color}

\begin{document}

\beginpicture

\normalcolor,

paper{units(lcm) xrange(0,6) yrange(0,6), axis(LB),ticks(1,1)}

7.9. USING PERL PROGRAMS & THE SYSTEM() COMMAND 107

point (P){3,3} [symbol=\bigodot] Ycenter of the cube

%def center(j)j% %% center point

%def side(j)j% %% sidelength

%def filename(j)j% '%% temp filename

var s=3 %/ sidelength

system("perl drawcube.pl ¢er(P) &side(s) &filename(temp.txt)")
inputfile(temp.txt)

\normalcolory

\endpicture

\end{document}

Note that the point-name P, side-length s, and filename temp.txt are all passed
to the Perl program as parameters using the system() command. The code of the
Perl program drawcube.pl is listed below.

Perl program (drawcube.pl)

#!/usr/bin/perl

drawcube.pl

pickup command line parameters P,s,filename
use: system("perl drawcube.pl P s3 temp.txt")

#
H

my ($argnumber) = $#ARGV +1;
if ($argnumber != 3){

print " \n";

print "ERROR: drawcube.pl requires 3 arguments\n";

print "USE: drawcube.pl <pointname> <sidelength> <filename> \n";
print "===== \n";

exit(1);

}

my ($point, $side, $filename)=Q@ARGV;

open (outfile, ">$filename")|| die "ERROR can’t create file $filename\n";
print (outfile <<EOF);

AVAY Attt mathsPIC code-———-——————————--

var r=$sidex*sqrt(2)/2

var a=30 %/ angle degrees

Point*(P990) {$point, polar(r/2, (a-180) deg)}
Point*(P991){P990, polar(r, 45 deg)}
Point*(P992){P991, rotate(P990, 90)}
Point*(P993){P991, rotate(P990, 180)}
Point*(P994){P991, rotate(P990, 270)}
Point*(P995){P991, polar(r, a deg)}
Point*(P996){P992, polar(r, a deg)}

108 CHAPTER 7. EXAMPLES

Point*(P997){P993, polar(r, a deg)}

Point*(P998){P994, polar(r, a deg)}

%% draw the sides

\\color{blue}

drawline (P991 P992 P993 P994 P991, P994 P998 P995 P996 P992, P991 P995)
\\setdashes

drawline (P993 P997 P998, P997 P996)

%% draw the diagonals

\\color{red}

drawline (P991 P997, P992 P998, P996 P994, P995 P993)

%% draw the points and labels

\\setsolid\\color{black}

drawpoint ($point P991 P992 P993 P994 P995 P996 P997 P998)
text (\$$point\$) {$point, shift(-0.5,-0.1)}

text (\$P991\$) {P991, shift(-0.3,0.3)}

text (\$P995\$) {P995, shift(-0.3,0.3)}

now delete the temp file

print (outfile qq(system("rm $filename")\n));

close outfile

__END__

Note the use of the <<EQF...EOF environment to contain the chunk of mathsPIC
code which is written to text file temp.txt Note also that where you want $ and \
characters written to the output file (temporary file—for use by mathsPIC) by the
Perl program, it is important to remember that these characters need to be ‘es-
caped’ using a preceding backslash. In the above example the point name P is held
in the Perl variable $point; consequently since we need the Perl program to write
the mathsPIC command text (P){P,shift(-0.5, -0.1)} to the temporary file
the Perl code needs to be text (\$$point\$) {$point, shift(-0.5,-0.1)}

The temporary file

var r=s*sqrt(2)/2

var a=30 %% angle degrees
Point*(P990){P, polar(r/2, (a-180) deg)}
Point*(P991){P990, polar(r, 45 deg)}
Point*(P992){P991, rotate(P990, 90)}
Point*(P993){P991, rotate(P990, 180)}
Point*(P994){P991, rotate(P990, 270)}
Point*(P995){P991, polar(r, a deg)}

7.9. USING PERL PROGRAMS & THE SYSTEM() COMMAND 109

Point*(P996) {P992, polar(r, a deg)}
Point*(P997){P993, polar(r, a deg)}
Point*(P998){P994, polar(r, a deg)}

%% draw the sides

\color{blue}

drawline (P991 P992 P993 P994 P991, P994 P998 P995 P996 P992, P991 P995)
\setdashes

drawline (P993 P997 P998, P997 P996)

%% draw the diagonals

\color{red}

drawline (P991 P997, P992 P998, P996 P994, P995 P993)
%% draw the points and labels
\setsolid\color{black}

drawpoint (P P991 P992 P993 P994 P995 P996 P997 P998)
text (P){P, shift(-0.5,-0.1)%}

text ($P991$) {P991, shift(-0.3,0.3)}

text ($P9959%) {P995, shift(-0.3,0.3)}

system("rm $filename")

Output file

When the mathsPIC script is run the output file is as follows.

Yok —mm

%* mathsPIC (Perl version 0.99.22 Dec 29, 2004)

%* A filter program for use with PiCTeX

%* Copyright (c) 2004 A Syropoulos & RWD Nickalls

%* Command line: mpic09922.pl mpicpm07-15.m

%* Input filename : mpicpm07-15.m

%* Output filename: mpicpm07-15.mt

%* Date & time: 2005/01/05 09:46:22

Yk mm -

%% mpicpm07-15.m (Figure 7.15)

\documentclass [adpaper]{article}

\usepackage{mathspic,color}

\begin{document}

\beginpicture

\normalcolor

%% paper{units(lcm) xrange(0,6) yrange(0,6), axis(LB),ticks(1,1)}
\setcoordinatesystem units <lcm,lcm>

\setplotarea x from 0.00000 to 6.00000, y from 0.00000 to 6.00000
\axis left ticks numbered from O to 6 by 1 /

110 CHAPTER 7. EXAMPLES

\axis bottom ticks numbered from O to 6 by 1 /
%% point (P){3,3} [symbol=\bigodot] ‘center P = (3.00000, 3.00000)

%def center(j)j% %% center point

%def filename(j)j% '%% temp filename
%def side(j)j% %% sidelength

hh var s=3 %% sidelength

%h s =3

%% system("perl drawcube.pl P s temp.txt")
%% ... start of file <temp.txt> loop [1]
%%% Iteration number: 1

hth=——=—= mathsPIC code-——----—-——-——-—-

%k var r=s*sqrt(2)/2

%h r = 2.12132034355964

%k var a=30 %) angle degrees

%% a = 30

%% point*(P990){P, polar(r/2, (a-180) deg)} P990 = (2.08144, 2.46967)

%% point*(P991){P990, polar(r, 45 deg)} P991 = (3.58144, 3.96967)

%% point*(P992){P991, rotate(P990, 90)} P992 = (0.58144, 3.96967)

%% point*(P993){P991, rotate(P990, 180)} P993 = (0.58144, 0.96967)

%% point*(P994){P991, rotate(P990, 270)} P994 = (3.58144, 0.96967)

%% point*(P995){P991, polar(r, a deg)} P995 = (5.41856, 5.03033)

%% point*(P996){P992, polar(r, a deg)} P996 = (2.41856, 5.03033)

%% point*(P997){P993, polar(r, a deg)} P997 = (2.41856, 2.03033)

%% point*(P998){P994, polar(r, a deg)} P998 = (5.41856, 2.03033)

%% draw the sides

\color{blue}

%% drawline (P991 P992 P993 P994 P991, P994 P998 P995 P996 P992, P991 P995)

\putrule from 3.58144 3.96967 to 0.58144 3.96967 %% P991P992

\putrule from 0.58144 3.96967 to 0.58144 0.96967 %% P992P993

\putrule from 0.58144 0.96967 to 3.58144 0.96967 %I P993P994

\putrule from 3.58144 0.96967 to 3.58144 3.96967 %% P994P991

\plot 3.58144 0.96967 5.41856 2.03033 / %% P994P998
5 2
5 5
5 0
3 5

\putrule from 5.41856 2.03033 to 5.41856 5.03033 %’ P998P995
\putrule from 5.41856 5.03033 to 2.41856 5.03033 %) P995P996
\plot 2.41856 5.03033 0.58144 3.96967 / %/ P996P992

\plot 3.58144 3.96967 5.41856 5.03033 / %/ P991P995
\setdashes

%% drawline(P993 P997 P998, P997 P996)

\plot 0.58144 0.96967 2.41856 2.03033 / %% P993P997

\putrul