EFLIB

USER’S GUIDE

RELEASE 3
1999-02-28

EFLIB is a sophisticated application
framework for every Pascal programmer.
This book guides you through EFLIB, and
teaches you how to create your own,
powerful applications.

TABLE OF CONTENTS
— Where to look for what

Table of contents 2

1. What and why 4

Welcome to EFLIB! 4
Who is EFLIB for? 4
The core of EFLIB 4
Features in EFLIB 5
Required equipment §
Installation guide 5
About this book §

2. Object primer 7

The object 7

Inheritance 7

Polymorphism and information
hiding 8

Classes and instantiation 8
Creating your first class 8
Exercises 9

2. Getting started 10

Units: the building blocks 10

Using objects 11
Construction and destruction 11
Virtual methods and VMT’s 11
Dynamic memory allocation 11

The parent class 12

3. Fundamental classes 14

Kernel classes 14

Streams 14
Creating a stream 14
Using streams 15
Other streams 16

Filters 16
Encryption filter 17
Sequential filters 17

Files 18

4. Data structures 19

Introduction 19

The ADT parent classes 19
Linear ADT’s 20
Ordered ADT’s 20

Arrays 20

Lists 21

Composite ADTs 21

Stacks 21

Queues 21

Hash tables 22

Trees 22

How to customize elements 22
Nodes: the element packaging 22

5. Mathematics 24

Introducing a the OO approach 24

Standard arithmetics 24
Complex numbers 24
Matrixes 25

Polynomials 25
Expressions 25
Mathematical functions 25
Equation solvers 25

6. User interactions 26

Introduction to the GUI 26
Components and managers 26

7. Advanced programming 27

Extending classes 27
Constructors and destructors 27
Overriding methods 28

Registering a new class 28
Component selectors 29
Plug technology 29

Stream storage mechanism 30
Storing an instance 30
Loading an instance 30
How to support stream storage 30

A. Tables 32
Class registration identities 32
B. Error messages 33

Installation 33

Developing 34
C. Definitions 35

1. WHAT AND WHY
— A simple solution with flexible features.

Welcome to EFLIB!

Welcome to EFLIB. You are about to explore a new world of programming possibilities for
the Pascal programming platform. The idea behind EFLIB is to make programming easier —
both for novice users and expert programmers. EFLIB is a complete application framework
that revolutionizes programming in Pascal:

® |ntuitive user interface ® Powerful mathematics
= Event-driven programming ® Solid object-orientation
® Classic data structures

Who is EFLIB for?

EFLIB provides elegant object-oriented solutions. A novice programmer can easily use them
without knowing very much about how EFLIB actually works beneath the surface. Novice
programmers will enjoy the user interface. It will enable them to write small programs and
still give them avery flexible and uniform user interface.

Furthermore, EFLIB is a great asset in education. The solid object orientation is suitable as a
start platform for those who want to explore object oriented programming. The naming
convention is makes it easy to learn OO programming. When you have learned a little about
EFLIB, you will see that many other things work in the same manner.

EFLIB simplifies and optimizes advanced programming, and hence reduces the time needed
for program developing. Moreover EFLIB makes your source code uniform and very readable.
Y our programs will be easier to modify and more stable.

The core of EFLIB

When designing a program, we usually concentrate on what the program is supposed to do
and give little attention to how, from the perspective of the user, the program will be used. If
you have a difficult problem to solve, it is natura to concentrate on the solution rather than
the way the solution is packaged. The packaging is important, however, because a program
that does the right thing but is difficult to use is of little or no value. EFLIB provide this
packaging.

EFLIB is an application framework. Being an application framework, EFLIB highly promote
extension of its classes. Most classes have specia features that ssmplify extension. Some parts
of EFLIB use a plug technology to make extension easier. This plug technology makes it
possible to attach certain classes to another class. Depending on what kind of class was
plugged in, it replaces some built-in feature in the extended class. For example, data structures
can be told to handle element comparisons differently in several ways. The smplest way isto
install a plug that overrides the built-in compare mechanism.

This and other technologies give EFLIB an unlimited extendibility. Y ou can customize EFLIB
and add new features to the framework whenever you want to.

Features in EFLIB

® EFLIB includes a complete user interface with windows, message boxes, buttons, menues,
editors and much more.

® There is a complete set of classic data structures delivered with EFLIB: linked lists,
vectors, tables and trees.

® Polymorphic data streams, filter classes and device classes simplifies every I/O processin
EFLIB.

® EFLIB comes with a full math package, that includes vectors, matrixes and complex
numbers, as well as numerical solvers and expression parsing.

Required equipment

Borland Pascal with Objects 7.0

MS-DOS or compatible operating system such as IBM OS/2 or Microsoft Windows.

A good memory configuration with DPMI or much available memory in the low 640K
region.

Optionally a mouse with installed driver.

Installation guide

1. Extract the files from the EFLIB archive with the PKUNZIP tool from PKWARE® Inc.
Use the -d parameter to restore the directory structure.

2. Make sure the computer has at least 600 KB free memory. If you do not have enough
memory, try to optimize your memory configuration. Consult your operating system
manual for further help. If you are using a DPMI-version of Borland Pascal or a compiler
that can compile huge programs, the memory in the DOS-region is of no concern.

3. Start Borland Pascal.
4. Go to the pull down menu "Options" and choose "Directories”.

5. Move to the field "Unit directories® and add ";C:\EFLIB" after the existing text. Replace
the directory name with the name of your EFLIB unit directory, ie. the directory to which
you extracted the archivein step 1.

6. Save the configuration using the choice "Save" in the "Options' pull down menu.

About this book

This guide presumes that the reader has a basic knowledge of Pascal programming. You
should know a little of object-oriented programming. This guide is not intended for
professional developers. Instead, they are adviced to study the comprehensive Function
Reference.

The best way of learning how to use EFLIB is to combine reading with the writing of your
own programs. Self-studies of the example source code that comes with the toolkit will enable
to go further.

2. OBJECT PRIMER
— An introduction to object-oriented progarmming.

The object

Object orientated programming, or OOP, is a software engineering technique that views
programs as a collection of components called objects that can interact. The core of OOP is
the object. An abject in OOP is much like a real-life object: it has properties and knows how
to perform certain tasks.

Figure 2.1

The object encapsulation.
Operations defined as ordinary Pascal
functions or procedures. Also known as
member functions.

Methods

The variables packaged in this object.

Also known as data members or fields.

Technically, an object is a combination of data and a set of operations. Think of an object as a
package of variables (the fields) and functions that only operate on the object (the methods).
Objects are used in away similar to arecord data type in Pascal or astruct in C. For example,
the object Car may have adatafield fColor. We can access thisfield by writing Car.fColor.

Inheritance

Objects can inherit properties from other objects. Assume that you have drawn a sketch of a
vehicle with four wheels. Inheritance would allow you to copy that sketch. You continue to
paint on your copy, and soon you have a car. Another copy could become a truck, and so on.
No matter how many copies you create, the origina will still be there in the background,
unchanged. Y ou are not limited to make only one copy!

The concept of inheritance is very similar to the copying of a sketch. We can derive new
objects from any existing object. We say that we specialize the original object into a new
object. Derived objects are aso known as ancestors or subclasses. A derived object
automatically inherit all properties of the parent object, but we are free to add new methods or
fields.

Inheritance allows the programmer to reuse objects that have been defined earlier, perhaps for
different purposes. We sometimes choose to define abstract objects. An abstract object is an
object that are not to be used directly. It is merely provided to define a common interface for
its concrete ancestors. Since inheritance preserves the interface, all objects derived from an
abstract object enable the user to call methods defined in the abstract parent object, but the
implementation, the actual result of the calls, can differ. All ancestors represent the abstract
object, but in different forms.

Polymorphism and information hiding

Now, assume that you want to buy a vehicle. You are more interested in that your vehicle is
sufficient, than how it work. A car and a truck is both vehicles. They both have four wheels,
breaks, etc. Y ou know that your objects are sufficient and you know that they actually descend
from the vehicle object, and that is all you need to know! One mechanism that enables us to
use an object without knowing details about it is known as polymorphism. It is very important
in OOP and often used in EFLIB.

Polymorphism is Greek and means "many forms’. In our example, the vehicle could be a
truck aswell asacar. The vehicle occur in severa different forms.

Polymorphism is related to dynamic binding. The compiler determines at execution time
which operation you require in a particular situation. When we use our vehicle, the compiler
decidesif it has acar engine or atruck engine - when the program is running.

Figure 2.2 Wall

Information hiding

Request, for example " store

Methods thiselement”.

. Result, for example
F|e|dS " element stored in sorted
order”

Object — the black box

Polymorphism enables us to hide information about our vehicle. However, there are other
ways to hide information. By using private fields and method, we can hide things that we do
not wish the user to bother about. We sometimes talk about objects as black boxes or isolated
modules. An object perform some well-defined tasks without |etting anyone see how it works
inside.

Classes and instantiation

When an object is defined using a type statement in Pascal, the resulting typeis called a class.
Like a record the class cannot be used until a variable have been declared. The variable is
known as an instance of the class. The classisinstantiated.

All classes must have at least one method called the constructor. This method initializes and
creates an instance of a certain class. Constructors make it possible to configure an instance
when it is created. We may for example want some fields to be zero to start with. However,
there are a technical explanation to the need of constructors. Some methods are classified as
virtual and need do be prepared before the instance is to be used. If you use the instance
without calling the constructor first, the computer may crash. Y ou should therefor always call
aconstructor before you use an instance.

Creating your first class

We have already mentioned that classes must be defined using a type statement, and that you
cannot use a type directly, but must declare a variable (instance) of that type to useit. Let us
create a simple object!

uses EFKERNEL;

{ Definition of the class }
type Myd ass = object (tbject)
constructor Initialize;
Field : integer

end,

{ Implementation of MyClass }
constructor MyCl ass.Initialize;
begin
Inherited I nitialize;
Field := 0;

end,;

{ The program }

var A . MO ass;

begin
Alnitialize;

end.

Though the above example is very simple, we have actually created a new classin EFLIB. The
new class ("MyClass’) inherits tObject - the base class from which al classes in EFLIB are
inherited. We have added a constructor to our class. The constructor resets the member field.
But before it does that, it enables the inherited class to initialize.

Exercises
1. Why isthe inherited constructor called before ”MyClass’ does anything?

2. Define and implement a destructor named Intercept for "MyClass’.
3. Why should the inherited destructor be called after "MyClass’ does anything in Intercept?
4. Add amethod named "Value” that returns the value stored in ”MyClass’.

2. GETTING STARTED
— Explore the sophisticated interface in EFLIB.

Units: the building blocks

EFLIB consists of some fundamental unit files which contain the classes. Units are arranged
to handle different functions. There are units for different kinds of data structures as well as
for screen routines. Since you must tell the Pascal programming what units you want to
incorporate with your program, it is very important that you know where EFLIBs classed are

|ocated.

EFDEF
Global definitions: constants, types and variables.
All units depend on EFDEF.

EFKERNEL

The most fundamental classes in EFLIB are
placed in this unit. Together these classes are
called the kernel classes or simply the kernel.
Most important is tObjcet, the base class from
which all other EFLIB classes are derived. The
kernel also manages the class hierarchy and
handles run-time errors.

EFINIT

When EFLIB run on a computer system it must
adjust some system specific settings. EFINIT
automatically does this whenever it is
incorporated with your program.

EFBASIC

Fundamental classes for timing, date handling, bit
sets and coordinate managing are located in the
EFBASIC unit.

EFSTREAM

EFLIB uses data streams to handle flows of data.
These data streams are defined by tStream in
EFKERNEL. tStream is an abstract class with
concrete ancestors in the EFSTREAM unit.

EFFILTER

Flows of data can be filtered, that is processed in
some way and dtill operate as a tStream. The
interface of such filters is defined in EFFILTER.
EFFILTER aso supply a set of different filter
classes, for instance encryption and compression.

EFIO

Fundamental file and directory operations are
handled by classesin EFIO.

EFCMAN

The event-driven interfface known as the
Component-Manager Architecture is defined in
the EFCMAN unit. This unit contains classes like
tComponent and tManager.

EFDEVICE

EFDEVICE defines the general deviceinterfacein
EFLIB, that iswhat al devices must be able to do.
In EFLIB, a device is a event-driven entity
capable of responding to predefined messages and
to post messages whenever the device senses an
action. For example, tKeyboard, a tDevice
descendant located in the EFKEYBRD unit,
automatically posts key-press messages when the
the user presses a key on the keyboard.

EFADT

EFADT defines the general interface of EFLIBs
data structure in the classes tADT, tLinearADT
and tOrderedADT. EFADT aso contains ADT
plugs and iterator classes.

EFMATH

EFMATH contains the powerful math classes in
EFLIB. These classes include complex numbers,
vectors and matrixes, as well as equation solvers
and expression parsers.

Using objects

In procedural programming, a unit contain some procedures and functions that you call from
your programs. The object-orientation in EFLIB instead supply you with classes that you
cannot use until you have declared an instance. Imagine that you want to write a program that
handles a text. You then declare an instance of some class, possibly tText. To perform some
operation on that text, you make calls to the methods in the class, by addressing the instance.

Construction and destruction

Instances must be constructed and initialized before they are used. This job is done when you
call the constructor named Initialize, or any other constructed specific for the class you are
using. When you have finished working with an instance, it must be destructed. Destruction
makes it possible for the instance to restore memory it have alocated. There are two
destructors that all classes must supply: Intercept and Free.

var MyQbj ect : tMWd ass;

with MyQbj ect do begin
Initialize;
{ ...}
I ntercept;

end;

There is an important difference between these destructors. Intercept releases memory used by
the instance. Free calls Intercept thus releasing memory, but then it releases the memory for
the instance.

Virtual methods and VMT'’s

Virtual methods are methods that are bound to instances at run-time rather than when you
compile the program. Virtual methods are very useful. Y ou can operate on some class without
knowing what virtual method you actually are calling. You just know the syntax of that
method. Thisis called polymorphism and discussed thoroughly in programming literature.

However, virtua methods could involve difficulties if they are misused. Virtual methods may
even cause your computer to crash if you are not cautious. Since virtua methods are
associated to code at run-time, it is important that the addresses to the code is right. These
addresses are set up when you call the constructor in your instance. Pascal then creates a
virtual memory table (known as VMT) that maps the virtual methods with their memory
addresses. It is therefore extremely important that you construct an instance before you use it.
Make it a custom to cal the Initialize constructor asin our previous examples.

Dynamic memory allocation

Borland Pascal provides you with a flexible mechanism that makes it possible to allocate
memory while the programming is running. Such memory is handled by a pointer, in our case
apointer to aclass. All classes have atype definition of their corresponding pointer. tObject’s
pointer typeis pObject. Similarly, other classes pointer types are pStream, pADT, pList and so
on. When you use dynamic memory, you cannot use a variable declared as a pointer type
immediately. Y ou must associate that pointer to some memory address; to some instance. You
allocate memory for an instance by calling the New function in Pascal. When you are done
with an instance, you can call the Intercept destructor, and then the Dispose function in Pascal

to release the allocated memory, or you can make a simple call to the Free destructor. It
automatically invokes the Dispose function for you.

var MyDynam cObj ect : pMd ass;

New (MyDynami cObject, Initialize (...));
Dispose (MyDynam cObj ect, Intercept);

MyDynam cObj ect := New (pMyd ass);
with MyDynam cObj ect™ do begin

{ ...}

Free;
end;

Be careful with the Free destructor. Since an instance cannot access its own pointer, your
pointers are not automatically reset to NIL after you call Free. Also, notice that you cannot call
the Dispose function with the Free destructor. Y ou then ask Pascal to dispose your instances
memory twice!

Dispose (MyDynami cQbject, Free); { Wrong - never do this! }

You are free to use the same variable several times in your program (as in our example
above). However, make sure that you do not make invalid calls to any destructor, for example
when you have not allocated memory for an instance. Since destructors are virtual methods,
such acall could cause your computer to crash.

The parent class

All classes in EFLIB descend from the same parent class: the tObject class. However, most
classes are derived from classes that in their turn are derived from tObject. This givesriseto a
class hierarchy — arelational network established by class inheritance.

When a class inherits another class, it automatically inherit al the properties defined in parent
classes. Therefor, EFLIBs classes share common properties, properties defined in tObject.
tObject do not have any data members. Most important of the common properties are:

® An object must construct when the constructor Initialize is called.

® An object must destruct when Intercept or Freeis called. The latter destructor also releases
memory used by the instance.

= An object knowsif it isequal to another object. The method IsEqual does this.

® An object knows if the class relation to another object. Methods like I1sParent, IsDerived
and 1sDescendant does this.

= An object knows whether or not it is compatible with another object. The method
IsCompatible does this.

The following methods are important:

tObject

Methods

EFKERNEL

constructor Initialize;
Constructs an instance, that is initializes the virtual memory table
and resets all data members.

destructor Intercept; virtual;
Destroys an instance, that is deallocates all internal memory and
fields.

destructor Free; virtual;

Calls Intercept and then releases the memory for the instance.
Notice that any instance variable is not set to NIL, and that this
could become a dangerous problem.

procedure Assert (Condition : boolean; ErrorCode : word); virtual;
Asserts that the condition is TRUE. If the condition is not TRUE,
a fatal error is triggered (that is, an error that must result in
program termination).

procedure Error (ErrorCode : word); virtual;
Triggers the specified error. tErrorHandler is called.

function IsEqual (Instance : pObject) : boolean; virtual;

Determines if thisinstance is equal to the specified instance. This
method can be overridden, but returns the result of a bitwise
comparison by default.

function IsCompatible (Instance : pObject) : boolean; virtual;
Returns TRUE if and only if this and the specified instance are
compatible. The criteria of compatibility differ between classes,
but it is basically the same thing as the classes can replace each
other with regard to something. A common criteria for
compatibility is that two classes share a common parent class
which define their interface.

3. FUNDAMENTAL CLASSES
- The building blocks in EFLIB

Kernel classes

The classes in the unit EFKERNEL are called kernel classes because their function play a
central role in the application framework. These classes are closely bound to each other. Most
important is tObject, the parent class. This class defines the common behavior of al classesin
EFLIB. tObject often request information about itself by asking questions to class hierarchy
(tClassManager). If something goes wrong, the error handler is informed about the problem
and decide what actions must be taken. The framework must be configured to run. The basic
configuration is handled by the kernel.

Thefollowing illustration gives an overview of EFLIBs kernel:

Figure 3.1 —
Kernel -
— Error- Config- Class-

. handler uration hierarchy

—.

Plug-in
kernel modules

Streams

A data streams is as collections of data on its way somewhere: typically to afile, memory or
some other device. Streams provide a simple, yet elegant, means of storing data and instances
outside your program.

On a fairly fundamental level, you can think about streams much as you think about Pascal
files. At its most basic, a Pascal file can be simply a sequential 1/O device: you write things to
it, and you read them back. A stream, then, is a polymorphic sequential 1/0 device, meaning
that it behaves much like a sequential file, but you can read or write any data, even instances.

Streams can a so (like Pascal files) be viewed as a random-access /O device, where you seek
to aposition in thefile, read or write at that point, return the position of the file pointer, and so
on. These operations are also available with streams.

Creating a stream

The interface of data streams is defined in the class tStream in EFKERNEL, but that class is
abstract and can never be used directly. Instead, you must instantiate one of the concrete
stream classes in EFSTREAM, for example tFileStream. tFileStream requires that two
parameters are passed to the constructor Initialize: the filename and the buffer size. The
filename can be any string (e.g. " c:\files\data.txt”). The buffer size can be any number from O
to 65520.

var MyFile : pFil eStream

begin
{ tFileStream requires two parameters to construct: }
MFile.Initialize (‘c:\files\data.txt’, 1024);

end.

When the file stream is constructed, it allocates that memory for a buffer. Buffers give your
file faster access, especialy if you will make alot of small data transfers. The principal design
of buffered file streams are shown in figure 3.2.

Figure 3.2
Data streams (reading)

DR

Input Buffer (optional) Output

Using streams

All streams share a common interface. The only difference in their usage is basically the way
they are constructed. tStream defines the common interface. All streams have the following
important properties:

® Current position is known and returned from the Position method.
® Size or length of the stream is known and returned from the Size method.

The size of the last transfer, that is the number of bytes that successfully could be
transferred, is known and returned from the LastTransfer method.

® They provide the methods Read, Write and Seek.
= They enable instances to be loaded or stored in the Load or Store methods

Most important are the Read and Write methods:

M/Fil e. Read (MyData, SizeOf(M/Data));
{ We now have moved SizeOf (MyData) steps forward
in MyFile. '}
MyData [1] := 5; { Change }
{ Let us write the changed data after the unchanged! }
MFile.Wite (MyData, SizeOf(MyData)); { write }

Both of these methods automatically moves to a new position in the stream. The resulting
transfer is sometimes smaller than your request — you could have reached the end of the
stream. If you are at the end, the method IsEnd returns TRUE, and your last transfer size is
returned by the LastTransfer method.

var SourceFile, TargetFile : pFileStream Storage : string;
begin
New (SourceFile, Initialize (‘source.txt’, 100));
New (TargetFile, Initialize (‘target.txt’, 100));

Sour ceFi | eM. CopyQut (TargetFile, SourceFile”. Size);

{ The above CopyOut could be relplaced with this
loop, but CopyOut is faster. }

St orage[0] : = #255;
while not FirstStreant.|sEnd do begin
Sour ceFi |l e”. Read (Storage[1l], 255);
TargetFile®. Wite (Storage[1],
Sour ceFi | e, Last Transfer);

end,;

Sour ceFi | en. Fr ee;
Target Fi | e™. Free;

end.

Stream modes

Streams must always be in one of three different modes: reading, writing or both. The mode
tells the stream what kind of operations it permit. The default mode is to permit both reading
and writing.

When you create a file stream (tFileStream) the file you specify does not have to exist. It is
automatically created if it is not found. If it exist, it is open and the stream moves to the first
position. In both cases, the stream will enable both read and write access.

File streams

File streams are buffered. Whenever you read some data, the stream tries to get that data from
the buffer. If the buffer is full, it must be reread. On the other hand, streams writes may
require that the buffer is flushed, that is written to the file and then cleared. This two things
are done in the Flush method.

Other streams

There are several other stream classes in EFSTREAM. Most important is tStandardStream and
tNullStream. The former enables you to access the standard 1/0 device, that is the console and
the keyboard. tStandardStream reads from the keyboard and writes to the screen. tNull Stream
is a blank stream. It consumes everything that it is asked to write and returns blank
information instead of actually reading anything.

Figure 3.3 tStandardStream
Stream classes

in EFLIB.
tMemoryStream

tBufferedStream +

Filters

You sometimes may want your data to be converted, but still want to provide the tStream
interface. You then can use a filter. A filter is a stream that gives physical data (the base

stream) a virtua representation. For example, you may want to work with compressed
information as if it was not compressed at al. You require a virtual representation that hide
the actual nature of the data: it is compressed. Figure 3.4 shows how the filer works.

Figure 3.4 Virtual

Filters representation
QOO

Physical storage
Translator

Thus, a filter is a trandator with the interface of a stream. EFLIB provides you with a
complete set of filters. Most important is compression and encryption.

A filter must always be associated to some other stream: the base stream. This base stream
represents the physical storage, that is the raw data that we are working with. This stream
must always be specified when afilter constructs. The default behavior of afilter, isto treat its
base streams as a dependent instance. The filter becomes responsible for the destruction of the
base stream when it is itself destructed. However, you can make the base stream independent
by calling the DisableDependence method.

Encryption filter

Y ou can encrypt any data by using tEncryptFilter. This filter uses the built-in random number
generator in Pascal and controls the random seed with a keyword that you must specify.

Figure 3.3
EFLIB.
"IsA”

tFilters own an arbitrary

tSequentialFilter instance of tStream.

Sequential filters cannot
jump to new positions.

(‘tcompressFitter) (tcrRc3zFiter)

Data compression with
the Splay algorithm.

Sequential filters

Filters derived from the class tSequential Filter ignore calls to the Seek method. Thus, you can
never change the position in the base stream other than by reading or writing data. EFLIB’s
compression filter is sequential. This compression filter uses a Splay algorithm to compress
data when you call the Write method, and to decompress data when you call Read.

tCRC32Filter defines a filter that calculate 32-bit cyclic redundancy checks compatible with
the Z-Modem transfer protocol and many programs, including PKZIP from PKWARE Inc. A
CRC is a checksum that validates that your data have not been changed. tCRC32Filter is
passive filter. It does not change the data, it just monitors the transfers and enables you to
fetch the current CRC value at any time.

Files

In EFLIB, al files are buffered streams, that is descendants from the tBufferedStream class. A
fileis hence used as any other stream.

4. DATA STRUCTURES
— How to manage your information

Introduction

EFLIB comes with a complete set of classic data structures. All data structures share a
common interface. This makes it very easy to use them. No matter what kind of structure you
are dealing with, you always use the same terminol ogy!

EFLIB distinguishes two categories of data structures: linear and ordered data structures.
Linear data structures are structures with elements that you access smply by telling what
number the element has. The first element has number 1. This number is aso called the index
of an element. Hence, linear data structures use a simple indexing technique. Ordered data
structures are data structures that arrange their elements in some way. You therefore do not
know the index of an element. Instead, all elements are associated with a search-key. You
refer to an element by specifying the search key. For instance, a queue of waiting people may
be known as”A”, "B” and ”"C”. The search-key can be any information that can be calculated
from the content of the element.

We have dready spoken of "elements’. What is an element? In EFLIB, an element is
information managed by a certain element class derived from tElement. Data structures are
not entirely responsible for their elements. Many things are handled on an individua level.
Elements are responsible for themselves. The data structure merely request the element to
perform some operations or to answer questions. For example, the data structure may tell its
element to swap contents, to allocate some data or to compare the content with some other
element.

How does this design affect your programming? Well, it becomes much more simple to
customize your datal You do not have to change the data structure. All you have to do is to
modify the element class. Thus, customizations of data structures are basically the same thing
as extending element classes.

The ADT parent classes

All data structures are derived from the class tADT and either tLinearADT or tOrderedADT.
The terminology ADT stands for Abstract Data Types.

Figure 4.1 tADT
ADT parent

classes

l tOrderedADT ' l tLinearADT '

tADT define the common interface for all ADTs. tLinearADT specializes tADT into data
structures that know the index of its elements. tOrderedADT instead assigns search-keys to its
elements.

Linear ADT'’s

A linear ADT is a data structure that assigns number to its elements. These numbers are
known as element index. The first element hasindex "1". Linear ADT’s can be sorted, and is
by default attached to a sort plug. A sort plug is a class that defines a way of sorting el ements.
The default plug uses the Quick Sort algorithm.

Ordered ADT'’s

Ordered data structures assign search-keys to their elements and can that way find the element
you require. Ordered ADT’s have exclusive access to the ordering of their elements. This
mean that you cannot change the order, and specifically not sort an ordered ADT. Thus, there
are no operations associated to ordered ADT’ s that change the ordering of their el ements.

Arrays

The most simple linear data structure is the array (tArray in EFARRAY). All arrays are two-
dimensional and can hold a predefined number of elements, a number known as the capacity
of the array. However, an array does not have to use al its element. Arrays keep track of their
elements by storing addresses to element instances in a dynamic memory allocation. Thus, the
array can change places of elements by just rearranging two pointers, and the array can change
its capacity or make space for new elements in the middle of the array by moving pointers,
instead of the entire element data. Arrays are the only linear data structure that can hold empty
elements. Basically, an array can be considered as a collections of slots. You can put one
element instance in an arbitrary slot. Empty slots are marked with NIL addresses. These slots
may not be accessed.

Array and its elements

Used elements can be
1 .7 / any tElement instance.
2 e (semen)
2 (e)
tAllocation with (] T Unused elements are marked
tElement addresses 5 with NIL addresses.

Arrays know the index of the first and last used element. These indexes are returned when the
methods High and Low are called. All arrays can be defragmented. This means that all used
elements are put into the front and all empty slots are moved to the end.

EFLIB provides two specialized arrays: the bounded array and the virtual array. The bounded
array (tBoundedArray) does not how to call the High and Low method to know the first and
last used element. Instead these indexes, the boundaries, are maintained as data fields and
automatically updated when the array is modified. A bounded array is automatically
defragmented, that is there cannot be unused space in the middle of the array. The virtual array
(tVirtualArray) inherits the bounded array, but adds the feature of automatically adjusting its
size according to the demand of new elements. The array is resized in a blocks of a predefined
number of elements, the growth size. Virtual arrays aways have sizes that are multiples of
their growth size. Like the bounded array, the virtual array is automatically defragmented.
Hence, the number of used elementsis aways equal to (High-Low+1).

Lists

In EFLIB, al lists are doubly linked. Elements are packaged in nodes with links in both
directions:

Figure 4.3

The doubly linked list / Node

(tLinkage J—= (tLinkage)

\ Dummy head node

All lists have a blank head node. This head node is attached to both the first and the last
element: the list is always circular. All list classes are located in the EFLIST unit. Most
important istList, the common doubly linked list. All other lists descend from this class: those
are tAdjustedList, tOrderedList and tReversedList. tAdjustedList is a self-organizing data
structure. When an element is used, it is automatically moved to the front of the list, hence
giving it faster access next time it is used. The ordered list automatically inserts element in
sorted order, and the reversed list inserts element at the end of the list. Notice that the list
ADT, especially the last three lists, are somewhere in the middle of an ordered and linear data
structure according to EFLIB’ s definition. These lists decide where elements are stored, but in
the meantime, the all provide indexes for there elements.

Composite ADTs

Many ordered data structures are based on a linear data structure. So are the stack and the
queue, the priority queue and the hash table. These ADTs are descendants of tOrderedADT,
but they all own an instance of tLinearADT that they operate on. The interface of a composite
ADT is defined in tCompositeADT. tCompositeADT define the default behavior of ordered-
linear ADT composites, and provide alinear search mechanism for the Get method.

Stacks

Stacks are composite ADTs that obey the LIFO protocol (Last In - First Out). Thus, the last
inserted element is the only element that can be retrieved for the stack. Stacks (tStack in
EFDATA) introduce a few new methods: Push, Pop, Top and Skip. Push inserts an element
into the stack. Pop retrieves the last inserted element and then erases it. Top returns the last
inserted element (the top element) without erasing it. Skip throws away the current top
element. Any attempt to retrieve el ements from an empty stack triggers fatal errors.

Queues

Queues are composite ADTSs that obey the FIFO protocol (First In - First Out). Queues are
much like real-life queues. The first thing to join the queue always becomes the first one to
leave it. Queues use the following methods: Enqueue, Dequeue, Skip and Circulate. Enqueue
puts a new element to the back of the queue. Dequeue retrieves the element that have waited
the longest time. Skip throws away the first element, and circulate moves it to the back of the
gueue again.

There are severa types of queues, all defined in EFDATA. tQueue defines a common queue
where the insertion order determines the position of an element. tCircularQueue is very
similar, but Dequeue automatically moves elements to the back of the queue — elements never
leave a circular queue except when they are explicitly erased. tPriorityQueue is somewhat
different from the two other queues. Instead of storing elements in the insertion order, the
priority queue sorts them according to their priority. The priority is determined by e ement
comparison. The largest element is always the first one to leave the queue.

Hash tables

Hash tables (tHashTable) is basically an array, though it is implemented as a composite ADT
(that is, descend from tCompositeADT). Hash tables provide very rapid access to their
elements.

Trees

EFTREE contains severa different tree data structures: the common tree, the binary (search)
tree, the AVL tree and the splay tree.

How to customize elements

In most cases you do not have to concern yourself about tElement instances. They exist in the
background and provide you with a flexibility that you benefit by without understanding the
technical solution. However, tElement classes can be customized. They are customized by
extension, that is by inheriting new classes from old element classes.

EFLIB provides you with a basic set of element classes. By default, al data structures use
elements with the tGenericElement class. This class can store any information. It uses a
dynamic memory allocation that automatically is set to the data you want to store.
tGenericElement is very flexible, but uses additiona memory to handle the dynamic
allocation. To eliminate this memory, you have to extend tElement into classes customized for
your data. EFLIB supply you with a few customized element classes that you can use straight
away. Most important is tString, tCarrierElement, tStreamElement and tMathObj ect.

It is easy to start using other element classes. Once the class is defined, and you have created
instances of that class - for example atext string with the tString class - you can easily store it
to any data structure by calling the Put method. Then, the data structure takes control of that
element instance. By taking control, it aso is responsible for calling the Intercept destructor if
the data structure is destructed. You can whenever you like to move or erase that element
instance by calling the corresponding method in the data structure.

Nodes: the element packaging

Some data structures require there elements to connect to each other. This behavior is not
defined in tElement. Thus, a special packaging for elements is required. This packaging is
implemented in nodes that carries a tElement instance. Linked lists uses nodes with the class
tLinkage. This class defines the ability to connect to two other nodes: the successor node and
the predecessor node (see figure 4.3). tLinkage is derived from tContainer in EFKERNEL.
The latter class define the connectivity in two directions, while the former handle the carried
tElement instance. The design isillustrated in the following figure:

Figure 4.4
Nodes are container
classes

tContainer

fSuccessor,
fPredecessor

tLinkage
fElement

The tree node (tTreeLinkage) is a descendant of tLinkage. This node can connect to arbitrary
many other nodes, in both directions.

5. MATHEMATICS
— Powerful object-oriented mathematical routines

Introducing a the OO approach

The conventional way of implementing mathematics in Pascal programming is to define
procedures that accept only a certain data type, for instance a record defining a complex
number or a matrix. Thus, the border-line between different mathematical objects is very
strict.

EFLIB introduces a polymorphic mathematical solution. You can now send mathematical
objects to routines without regard to what kind of object you are dealing with. To start with,
take alook at this example source code:

Z
C.:

New (plnteger, Initialize (4)); { z = 4}
New (pConplex, Initialize (2, 2)); { ¢ = 2+21i }

with C" do begin
{ Type-casting with complex numbers. }
Add (2); { Complex arithmetics with integers }
Divide (2);
Writeln ('(C+2)/Z =", Re:0:0, '+, Im0:0, "i.");
Free; { pComplex }

end;

In the above example, we construct two numbers. an integer and a complex number. We add
the integer to the complex number. Notice that the same Add method is used regardless what
mathematical object we want to add to C. In our case, Z is automatically converted to the
complex number 4+0i, and then added to C.

Standard arithmetics

All mathematical objects are derived from the class tMathObject in EFMATH. This class
defines some abstract methods that all mathematical objects must replace. These methods are:
Add, Subtract, Multiply, Divide and IsZero. All but the last require one argument: the second
operand. An operation always act on the called instance. For example, C*.Add(Z) in the above
exampletells C to become C+Z.

Complex numbers

Complex numbers support all the standard arithmetics, but also a great deal of more advanced
operations.

Matrixes

In addition to the standard arithmetics, matrixes support some specific operations. Most
important is Gauss elimination, inversion and traversal.

Polynomials
Polynomials are basically an extension of the matrix class.

Expressions

An expression is an descendant of the tMathObject with an associated instance of the class
tVariables. tVariables contain the unknown variables, and can be modified to change the
expression. For example, an expression could be represented as "2+x+y” and tVariables as
"x=2" and "y=2". This expression would then behave like atinteger with the value"6".

Mathematical functions

A mathematical function is either an expression or a pointer to some far-declared procedure
that returns a function value whenever called.

Equation solvers

EFLIB contains several classes specialized in solving equations or estimating values of certain
functions. Equations are solved with Newton-Raphsons method. Simpsons formula is
provided for estimation of an arbitrary intergrale. Heuns and Eulers method can solve simple
differential equationsin two variables.

Basicaly, a solver is some kind of iterative process associated to some expression. The
expression is defined in the tMathFunction class. The expression can either be a text string or
an address to a far-declared procedure.

Figure 5.1
The mathematical tSolver
solver ’—<> fFx, fGx, fHx

[tMathFunction]

If we are using an expression, tMathFunction contain an instance of tExpression, the
expression class.

6. USER INTERACTIONS
— How to make your program easy to use

Introduction to the GUI

EFLIBs graphical user interface (GUI) is event-driven. This means that different components
communicate with each other using small messages. For instance. when a mouse button is
clicked, amessage is sent to the concerned window.

Components and managers

Let us examine the user interface in Microsoft Windows. There, a program is described in
terms of an application and a window. The application contains a window. Each window can
hold (contain) several other sub-windows. Thisisakind of client-server architecture, since the
application acts like a server to a window client, and each window can be a server for
potential sub-windows.

In Microsoft Windows, a window is both a component (a client) and a manager (a server).
This is not true in EFLIB. A window in EFLIB is always a component, but it can hold a
manager — a tManager instance. This tManager instance enables the window to contain sub-
windows. Without the tManager extension, awindow can only handle itself.

tComponent

"Has A" %

tManager

/\ "IsA”

tApplication

Figure 6.1. The C-M class
hierarchy.

7. ADVANCED PROGRAMMING
— What is going on beneath the surface?

Extending classes

You may want to extend some classes, that is customize them according to your own needs.
When you extend a class you make use of class inheritance and override some virtual methods
to change the way the class work.

type t Ext endedLi st = object (tList)
constructor Initialize; { Always supply a constructor! }
procedure Put (El enent : pElenent); wvirtual

end,;

constructor t ExtendedList.Initialize;
begin
{ Begin by calling the inherited constructor to
asure that the instance inherited interface
is operable. }
Inherited I nitialize;

end,;

procedure t Ext endedLi st. Put (El enment : pEl enent);

begin
{ ...}
Inherited Put (El ement);
end,
begin
end.

In the above example, we do not provide a new destructor since there is no more things to take
care of when the extended class destructors. Unlike constructors, destructors are virtual and
does not always have to be replaced when a class is extended.

Constructors and destructors

Use inheritance to derive new classes from existing EFLIB classes. You automatically get
access to all public methods and data members. Y ou must always supply a constructor with a
new class since constructors are specific for each class. When you write your constructor,
always begin with acall to the inherited constructor, like:

Inherited Initialize (...);
Similarly, al destructor methods should end with acall to the inherited destructor, like:

Inherited Intercept;

By calling the inherited methods, you are guaranteed to have a operable instance. The
inherited method prepare the inherited interface, while you must add functions that initialize
new data members, etc.

There is no rule that says you must have just one constructor. Many objects in EFLIB uses
severa constructor to allow the user to construct objects with different properties. For
example, the mathematical matrix (tMatrix) can be initialized with the Initialize constructor or
with the InitializeUnitary method. The first of these requires two parameters; the number of
rows and columns that is desired for the created matrix. The second of these requires only one,
since it creates a square unitary matrix.

Overriding methods

If your new class is a descendant from a data type, a stream or similar, you may wish to
override some virtual or non-virtual methods to change the way the data type or stream
operates. Then, you have got to remember the difference between virtual and static (non-
virtual) methods. Virtual methods are attached to an instance at run-time but static methods
are attached at compile-time. This means that if you override a virtual method, you can be
sure that your the inherited methods in your new object calls the new method instead of the
old one. If you override a static method, your it will not change the behavior of methods that
callstheinherited version of this method, since it's address is determined at compile-time.

It is simple to override methods. Just supply new methods with the same name as the method
you want to replace, and make sure that their syntax is the same. If your inherited method is
virtual, so must your new method be. Notice that only virtual methods ater the interna
behavior of classes, and that virtual methods are the only way to change polymorphic
interfaces. For example, the Put method in tADT is virtual, since any ancestor class then can
provide a new method that is automatically called from any tADT of that class.

Registering a new class

Since the built-in class mechanism in Pascal is very limited, EFLIB uses a special class
hierarchy (tClassManager) to handle classes and there relations. EFLIB keeps track of from
where your class was inherited, what subclasses it have, its name, its virtual memory table,
and optionally what methods should be invoked when the classis |oaded or stored to a stream.

The tObject base class automatically communicate with the class hierarchy. It request
information about itself whenever it need to. It is therefore recommended that you register all
new classes you create, and in some cases you must do it to enable your new class to
communicate with existing EFLIB components.

If you register the class you automatically enable a set of methods defined in tObject. The
method NameOf Type returns a string containing the full type name of the instances class, for
example "tObject". An instance knows its relation to other instances. Y ou can ask an instance
if it is derived from any other instance, and vice versa. Thisis done in methods like IsParent,
IsDerived and IsDescendant.

Y ou register new classes by calling the method Register in the tClassManager instance named
Classes provided by EFKERNEL :

{ Register your new class to the class hierarchy: }

Cl asses”. Regi ster (1000, { Identity nunber }
‘"t yNewd ass’, TypeOf (t MyNewCl ass), TypeOf (t MyParent Cl ass),
@ MyNewd ass. StreanlLoad, @ MyNewCl ass. StreanfStore);

The first parameter is a specific identity number with range like a word integer. Each new
class you define will need its own, unique identity number. EFLIB reserves the registration
numbers O through 999 for its own classes, so your registration numbers can be anything from
1000 through 65,535. It’s your responsibility to keep a record of what identities you use and
what classes you associate them with. The second parameter is the a text string containing the
exact type name of this object, and the third is address to the VMT of the class. It must be
specified and valid. The next parameter is the VMT address of the registered parent class. It
may be NIL if there is no parent class. The last two parameters are used for the stream storage
mechanism. It's described in detail below. The first of these two parameters is the address to
the load constructor, and the second to the virtual store method. Both of these can be NIL
pointers if you class does not support stream storage. If you attempt to store a class that have
not been registered, your program will terminate and report an error.

tClassManager automatically distinguishes between VMT addresses and instance addresses;
except at registration. When you register a class, you must specify the VMT address by calling
the Pascal TypeOf function. An instance address is not accurate and will trigger a fatal error.
If you program terminate and report something like ”ambiguous identities” and refers to
tClassManager, you have most likely an invalid class registration. Verify that your identity is
not aready in use, and that all parent classes are registered before their descendants are
registered.

Component selectors

EFLIB uses a specia type of methods to provide classes with initialized instances of other
classes. These methods are called component selectors since they select a component (a class
to instantiate). ADT’s make use of this technology. They supply methods like Createlterator
and CreateElement. They return instances of tlterator or tElement respectively. Y ou can easily
change the behavior of an ADT by overriding a component selector method and thus force the
ADT to use some other instance.

Plug technology

EFLIB aso uses a plug mechanism to provide ADT s with a modular interface for sorting
algorithms and element compare techniques. This technology is defined in EFPLUG.
Basically, the plug technology givesthe ADT a plug manager. This manager is responsible for
providing the owner of the manager (in this case, the ADT) with plugs (tPlug), and for only
permitting one plug for a certain task. Ambiguous plugs are not allowed. For example, there
can only be one sorting algorithm associated with an ADT. Plugs that are associated to the
same task are called compatible. This compatibility is determined by the IsCompatible method
in the plugs. When a new plug is installed, any compatible plug is automatically destructed.
Hence, the unambiguity of the plugs are preserved.

Y ou are not recommended to extend the plug manager, but you are encouraged to create new
plugs that replace built-in plugs — for example new sorting agorithms (derived from tSortPlug
in EFADT).

Stream storage mechanism

Streams provide a mechanism for object storage, that is you can store any instance of EFLIBs
classes to a stream and later retrieve it, even in other applications. For example, you could
store a data structure or awindow to an encrypted file. This file may operate as your resource
file to make your program easier to modify.

There are severa benefits with stream storage:

® Memory saving technology; store your datain afileinstead of putting it al in EXE file.

® Makes it easy to modify your program; let’'s say that you design a program that shall be
used internationally. Then, you could use a file with the messages and just replace it when
you need other languages for the message text (such as Spanish).

The concept of stream storage will be explained in two steps. First, we will show how an
existing instance can be loaded or stored by calling certain methods in the concerned stream.
After this, we will study how you make create new classes that can be stored to streams.

You call one of these tStream methods if you want to load or store an instance:

procedure Store (Instance : pObject) ;
procedure Load (var Instance : pObject) ;

Storing an instance

The store method requires an argument with the address to your existing instance. However,
you can pass NIL instances to Store. NIL instances are stored as empty entries. They are
loaded as NIL instances and not constructed. The tStream.Store method does the following:

® |dentifies the class of the specified instance by calling tClassManager in EFKERNEL.
= Writes the identity word to the stream.
® Callsthe objects StreamStore method to transfer the data inside the instance to the stream.

Loading an instance

When you have a stream with some stored instances, you can load an instance from that
stream. Y ou then make a call to the tStream.Load method. This method does the following:

® Reads the identity word from the stream.
® |dentifiesthe class.
® Constructs and allocates memory for an instance of this type. The construction is

performed with the StreamL oad method in the corresponding object type. The StreamLoad
constructor transfers the data from the stream into the instance and initializes it.

The load constructor requires an argument with the variable you want to assign the loaded
instance to. Notice that the load method allocates the instance. Thus, you can pass any unused
pointer to Load.

How to support stream storage

Both methods require that your class is registered to tClassManager and that it support stream
storage, that is it is registered together with addresses to a StreamLoad and a StreamStore
method. Almost all classes in EFLIB are registered and can be stored to a stream. The only

exceptions are those that are abstract or cannot support stream storage of some technical
reason (for instance, because they are streams themselves).

If you design new classes, you must register them to tClassManager and supply at least an
overridden StreamLoad constructor (since constructors are specific for a certain class — you
cannot use the inherited constructor because that would construct the inherited class, not the
new class).

An instance can be constructed and read from a stream using the StreamLoad constructor. It
require one argument: a pointer to the stream from which the instance shall be |oaded.

constructor MyQbj ect. StreanlLoad (Stream: pStreamn;
begin

Inherited Streanload (Strean);

{ Load the data }

Streant'. Read (MyField, sizeOf(MField));

{ Do not forget to initialize variables, etc. }
end,;

An instance can be stored (written) to a stream using the StreamStore method. Like the
StreamL oad constructor, StreamStore require an argument: a stream pointer.

procedure MyCbj ect. StreanStore (Stream : pStrean);
begin

Inherited StreantStore (Stream;

{ Store the data }

Streant. Wite (MyField, sSizeOf(MField));

end;

Notice that both methods invokes the inherited method for the same task. This is handy, since
the inherited object loads or stores all previously defined fields for the object. Also, notice that
the above extracts for StreamLoad and StreamStore methods does not perform a stream
security check. If aNIL pointer is passed as an argument your program may crash.

A.TABLES
— A shortcut for professional programmers

Class registration identities

ADT base class 500 Kernel classes 0..19
ADT plug extensions 700 .. 729 Linear ADTs 501 .. 599
ADT sort plug extensions 730 .. 749 Mathematical objects 300 .. 349
Application engine 950 .. 999 Mathematical parsers 380 .. 399
Basic and IO classes 220 .. 229 Mathematical solvers 350 .. 379
Device classes 200 .. 219 Memory handlers 50..54
Elements 750 .. 799 Message classes 230 .. 249
Fundamental classes 20..49 Ordered ADTs 600 .. 699
Fundamental C-M classes 210 .. 219 Register classes 260 .. 269
Fundamental plug classes 250 .. 259 Streams and filters 55..99
GUI styles 890 .. 899 Text and string handling 100 .. 149

GUI 860 .. 889 View classes 800 .. 859

B. ERROR MESSAGES
— A guide to errors related to Pascal and EFLIB

Installation

EFLIB requires agreat deal of system memory to compile. The most common error is dueto a
bad memory configuration.

File not found (EFxxx.TPx)

The compiler cannot find a component that is required for EFLIB to compile. The
most likely cause is that you have not correctly entered the EFLIB kernel directory
name in the Options Directories Unit dial ogue box.

File not found (xxxxx.INC)
Verify that the Option Directories Include Files dialogue box contains the EFLIB
kernel directory name.

Out of memory

Borland Pascal cannot compile or run your program since there is not enough free
system memory available. Try to reconfigurate your system and remove unnecessary
memory hogging programs such as TSRs. If it does not help try the following:

® Consider instaling a DPMI memory manager and the use of the Borland Pascal
DPMI IDE (start with BP.EXE).

= Set the Compile Destination to disk. Y our program will then be built directly to
the disk and you save some memory.

® Set the Options Linker to disk.
= Set the Options Debugger settings so "stand-alone” and "integrated” are disabled.

® Edit thefile FLAGS.INC and remove the line with the "$DEBUG" directive. You
then disable range-checking and other debug options that waste memory.

® |f al else fails, compile your program from the DOS command-line using the
"BPC" command-line compiler that is delivered with Borland Pascal.

File not found (xxxxx.INC)
Verify that the Option Directories Include Files dialogue box contains the EFLIB
kernel directory name.

Unit file format error ...
Your unit files are damaged. Try to rebuild them with the BUILD.PAS program that
is delivered with EFLIB (in the Kernel directory).

Developing

Most run-time errors are automatically detected and handled by EFLIB. EFLIB provides a
very safe developing platform. By setting the DEBUG flag in FLAGS.INC you tells EFLIB
that you want maximum protection from fatal errors such asinvalid pointer operations. EFLIB
will avoid computer crashes, and instead tell you that you passed an invalid pointer.

[Component name]: [error message]
EFLIB’s internal error handler registered a run-time error and halted the program
execution. Your program makes an invalid call to an EFLIB component.

C.DEFINITIONS

Abstraction

Abstract

Class

Constructor

Component selector

method

Component selector
class

Derived

Descendant

Destructor

— Definitions of object-orientated concepts

The technique in problem solving in which details are grouped into a
single common concept. [Budd93]

A class that is not used to make direct instances, but class rather is used
only as abase from which other classes inherit. [Budd93]

An abstract description of the data and behavior of a collection of similar
objects. Classes provide a mechanism for encapsulation and instance
generation.

A method that initializes an instance. A constructor must be called prior
to instance use.

A method designed to provide the class with initialized instances of
another class. Component selectors enable the user to change the
behavior of a class by changing the components it uses. Example:
Createlterator.

A class exclusively dedicated to provide other classes with initialized
instances of some other classes - the components.

A class (instance) X is derived from Y, if Y is any parent to X - not
necessary a immediate parent. In EFLIB, X is also classified as derived
fromY if X and Y isthe same class.

A class (instance) X descend from aclass Y if Y is the immediate parent
to X. In EFLIB, X is aso classified as an descendant if X is the same
classasY.

A method invoked when an instance no longer shall be used - when it is
destroyed.

Dynamic memory
allocation

Equal type

Extension

Inheritance

Message

Node

Override

Parent

Reciever

Virtual method

A process where memory managed and handled during program
execution. The programmer is responsible for the handling of
dynamically allocated instances and variables.

Instances have equal type if their classes are the same.

Where a class is inherited and some methods are overridden or added,
we say that the classis extended.

If aclass X has al the properties of aclass Y, and some more, then X is
inherited from Y.

Some information carried between components. In EFLIB, messages are
instances of a special message class.

Any encapsulation of an element that enables the element to connect to
other elements.

The action that occurs when a method in a subclass with the same name
as a method in a parent class takes precedence over the method in the
superclass. [Budd93]

A classX istheparentto Y if Y isderived from X.

The component to which amessage is sent.

A method assigned to a class upon run-time using dynamic (late)
binding.

© Johan Larsson, 1992 - 1997. All rights reserved.

